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1 Introduction

Let � := {A, B, C} be a triangle in the Euclidean plane. The side lengths of � shall be
denoted by c := AB, b := AC and a := BC . The interior angles enclosed by the edges of
� are β := ∠ABC , γ := ∠BC A and α := ∠C AB , see Fig. 1.

It is well-known that the bisectors wα , wβ and wγ of the interior angles of � are concurrent
in the incenter I of �. The bisectors wβ and wγ of the exterior angles at the vertices A
and B and wα are concurrent in the center A1 of the excircle touching � along BC from
the outside.

Changing α, β and γ cyclically, we can find the remaining two excenters A2 and A3. To
get familiar with the notations used in this paper, see Fig. 1.

Here we remark that the base triangle � is the orthoptic triangle of the triangle built by
the excenters. The orthocenter of � is the incenter of the orthoptic triangle. Later, when
we give our theorems, a second interpretation will use this fact.

.

Die Inkreismitte und die drei Ankreismitten eines Dreiecks � sind die Mittelpunkte
jener vier Kreise, die alle Seiten von � berühren. Aus diesen Punkten lassen sich drei
weitere Punkte ableiten. Das so entstehende Dreieck �S geht aus dem Dreieck �A

der Ankreismitten durch eine Halbdrehung um den FEUERBACH-Punkt von � hervor.
Die Dreiecke �A und �S haben die EULER-Gerade und den Neunpunktekreis von
FEUERBACH gemeinsam. In der vorliegenden Arbeit werden diese und weitere damit
in Zusammenhang stehende Resultate mit elementaren Mitteln bewiesen.
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Fig. 1 Notations used in the paper

2 Results and theorems
Now we draw some normals emanating from the excenters Ai and the incenter I . We use
the symbol n A1 (AC) to indicate that this line is perpendicular to AC and contains the
point A1. Drawing the lines n A1(AC), n A2 (BC) and nI (AB), respectively, we observe
that these lines are concurrent in one point S3. Cyclic rearrangement of (A, B, C) and
(1, 2, 3) enables us to state the following theorem:

Theorem 2.1 The following triples of lines are concurrent:

(1) (n A1(AC), n A2 (BC), nI (AB)) are concurrent in S3.

(2) (n A2(AB), n A3(AC), nI (BC)) are concurrent in S1.

(3) (n A3(BC), n A1 (AB), nI (AC)) are concurrent in S2.

Even in classical literature [3, 4] these points and the concurrencies of these normals are
not mentioned. The concurrencies of the lines mentioned in Theorem 2.1 are illustrated in
Fig. 2.

Moreover, we are able to prove the following result:

Theorem 2.2

(1) The circumcenter of the triangle �S := {S1, S2, S3} is the incenter of �.

(2) The circumradius of �S equals twice the circumradius of �.

For the sake of simplicity we use the abbreviation �A := {A1, A2, A3} and state:

Theorem 2.3 The triangles �A and �S are congruent. There exists a rotation ρ about the
center of the FEUERBACH circle of �S with angle φ = π with ρ(�A) = �S.

Theorem 2.4

(1) The FEUERBACH circle of �S equals the circumcircle of �.

(2) The triangles �A and �S share the FEUERBACH circle.
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Fig. 2 Three remarkable points occuring as the intersection of some normals

Theorem 2.5

(1) The incenter I lies on the EULER line e�S of �S.

(2) The triangles �A and �S share the EULER line.

None of the above theorems are hitherto known. Even in [3, 4] the points Si and the
theorems dealing with them are not mentioned.

3 Proof of the main results

Proof of Theorem 2.1. In order to show that the lines n A1 (AC), n A2 (BC) and nI (AB) are
concurrent in S3, we compute the length of I S3 in two different ways and obtain equal
results. I S3 can be seen as the coordinate of the intersection points nI (AB) ∧ n A1 (AC)

and nI (AB) ∧ n A2(BC) on nI (AB).

We look at the triangles appearing in Fig. 3 and compute the length I S3. The first triangle
to look at is �1 := {A, B, A1}. The lengths of its edges are AB = c, B A1 and A1 A,
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respectively. The opposite angles have values 1
2 (π − α − β), α/2 and 1

2 (π + β). So we
find

A1 B = c
sin α

2

cos α+β
2

. (1)

The next triangle we pay attention to is �2 := {B, I, A1}. The lengths of edges appearing
here are B I , I A1 and A1 B, respectively. The values of the angles lying opposite to these
three edges are 1

2 (π − α − β), π/2 and 1
2 (α + β), respectively. Thus we find

I A1 = 2c
sin α

2

sin(α + β)
. (2)

At last we look at �3 := {I, A1, S3} with edge lengths I A1, A1S3 and S3 I , respectively.
The angles opposite to these edges have values α, 1

2 (π − α) and 1
2 (π − α), respectively.

Finally, we arrive at

I S3 = c

sin(α + β)
. (3)

The computation of I S3 can be done in the same way with the triangles �′
1 := {A, B, A2},

�′
2 := {A, I, A2} and �′

3 := {I, A2, S3}, which leads again to (3). Thus the coordinate of
nI (AB)∧ n A1(AC) and nI (AB)∧ n A2(BC) on nI (AB) are equal and we have nI (AB)∧
n A1 (AC) = nI (AB) ∧ n A2 (BC) = S3.
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Cyclic rearrangement of indices shows that the points S1 and S2 mentioned in Theorem
2.1 do exist and lie on the respective three normals. �

We additionally obtain:

Theorem 3.1 The point Si is the circumcenter of the triangle {I, A j , Ak} and (i, j, k) is
either (1, 2, 3) or (2, 3, 1) or (3, 1, 2).

Proof . Looking at triangles �4 := {I, A1, S3} and �5 := {I, A2, S3} we find

∠I A1S3 = ∠A1 I S3 and ∠I A2S3 = ∠A2 I S3 .

So we have I S3 = A2S3 = A1S3. Rearranging the indices completes the proof. �

Proof of Theorem 2.2. Replacing (A, B, C) and (1, 2, 3) cyclically in (3) we obtain

I S1 = a

sin(β + γ )
and I S2 = b

sin(α + γ )
. (4)

Since the values of the interior angles sum up to π , that is γ = π − α − β, we find

c

sin(α + β)
= c

sin γ
= 2R . (5)

Further, we use the well-known formulae

c

sin γ
= b

sin β
= a

sin α
= 2R , (6)

which gives a simple relation between the angles, the side lengths and the circumradius R
of �. Thus the circumradius of {S1, S2, S3} is twice the circumradius of �. �

Proof of Theorem 2.3. In order to show that �A ≡ �S , we show that the lines A1 A2 and
S1S2 are parallel. (Equivalently, we could show that A1 A3 and S1S3 are parallel and also
A3 A2 and S3S2 are parallel. Changing the indices while keeping the cycling ordering we
obtain the equivalent results for the other pairs of lines.)

By definition we have A1 A2⊥wγ and from Theorem 2.2 we have I S1 = I S2. Since wγ

is interior bisector of AC and BC it also is interior bisector of nI (AC) and nI (BC).
Consequently, S1S2⊥wγ and thus S1 S2 is parallel to A1 A2.

Since n A2(AB) and n A1(AB) are parallel we have A1 A2 = S1S2. The same is true if we
change indices (1, 2, 3) and (A, B, C), respectively, while keeping the cyclic ordering.

So far we have shown that �A is congruent to �S . Now we have to prove that there is a
rotation ρ with angle π and ρ(�A) = �S .

We observe that A2S2 and A3S3 are the diagonals of the parallelogram �1 := {S2, S3, A2,
A3}. Thus they intersect in a point X . Each of the parallelograms �2 := {S1, S3, A1, A3}
and �3 := {S1, S2, A1, A2} shares a diagonal with �1. Therefore, the diagonals of �1,
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�2 and �3, respectively, are concurrent in X . Consequently, there exists a unique reflec-
tion about X which maps �A to �S . The existence of this reflection is equivalent to the
existence of a rotation ρ about X with angle π transforming �A into �S .

At last we have to show that X is the FEUERBACH point F�S of �S . The base triangle
� is the pedal triangle of �A. Thus the circumcircle of � is the FEUERBACH circle of
�A. Since ρ maps �A to �S it maps the corresponding pedal triangles onto each other
by reflecting them about X . Thus the FEUERBACH circles of �S and �A coincide such as
their centers coincide in X . �

Proof of Theorem 2.4. There is nothing to be done. This theorem is a consequence of the
proof of Theorem 2.3. �

Proof of Theorem 2.5. The incenter I of � is the circumcenter of �S , see Theorem 2.1.
Thus it is contained in the EULER line e�S of �S .

Since e�S passes through the FEUERBACH point F�S , the rotation ρ with center F�S

transforms e�S into e�A . �
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Fig. 4 Triangles �A and �S with common EULER line e�A = e�S and FEUERBACH circle f
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4 Alternative interpretation

As remarked in Section 1, the theorems given in Section 2 can be seen in a different light.

For a given triangle �A := {A1, A2, A3} draw the orthoptic triangle �O := {B1, B2, B3},
where Bi ∈ A j Ak with cyclic ordering of (i, j, k). The orthocenter H of �A is the incenter
of �O . Now we recall that �A is the excenter triangle of �O .

Thus Theorem 2.1 can be reformulated:

Theorem 4.1 (Equivalent to Theorem 2.1)

The normals from the vertex A1 of the base triangle �A to the side B1 B2 of the orthoptic
triangle �O , the normal from A3 to B2 B3, and the normal through the orthocenter H of
�A to B1 B3 are concurrent in a point S2.

This remains true if we change the indices while keeping the cyclic ordering. �
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