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Some relations concerning triangles and bicentric quadri-
laterals in connection with Poncelet’s closure theorem
when conics are circles not one inside of the other

Mirko Radić
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Rijeka, Croatia. There he was lecturing for more than fourty years. He is still active
and working on problems concerning polygons.

1 Introduction
A polygon which is both chordal and tangential will be called a bicentric polygon.
The first who was concerned with bicentric polygons was the German mathematician
Nicolaus Fuss (1755–1826), a friend of Leonhard Euler (see [5]). He posed the following
problem (known as Fuss’ problem of the bicentric quadrilateral):

Find the relation between the radii and the line segment joining the centres of the circles
of circumscription and inscription of a bicentric quadrilateral.

He found that
2ρ2(r2 + z2) = (r2 − z2)2, (1.1)

where r and ρ are radii and z is the distance between the centers of the circles of
circumscription and inscription.

.

Die allgemeine Fassung des Schliessungssatzes von Poncelet besagt folgendes: For-
men C,C1, . . . ,Cn ein Kegelschnittbüschel, ist P ∈ C ein Punkt, konstruiert man
P1, . . . ,Pn ∈ C derart, dass die Gerade durch PP1 die Kurve C1, die Gerade durch
P1P2 die Kurve C2, . . ., die Gerade durch Pn−1Pn die Kurve Cn berührt und entsteht
bei dieser Konstruktion die Gleichheit P = Pn, so gilt diese Koinzidenz unabhängig
von der Wahl von P. In der vorliegenden Arbeit werden die Spezialfälle n = 3 und
n = 4 betrachtet, wobei zusätzlich vorausgesetzt wird, dass die Kegelschnitte (nicht
notwendigerweise verschiedene) Kreise sind. In den genannten Spezialfällen, in denen
zudem die Kreise nicht ineinander enthalten sind, wird ein elementarer Beweis des
Satzes von Poncelet gegeben.
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This problem is listed and considered in [4, p. 188] as one of the 100 great problems of
elementary mathematics.

Fuss also found corresponding formulas for bicentric pentagons, hexagons, heptagons
and octagons (Nova Acta Petropol., XII, 1798).

The corresponding formula for triangles is

r2 − z2 = 2rρ (1.2)

and had already been given by Euler.

The very remarkable theorem concerning bicentric polygons is given by the French
mathematician Poncelet (1788–1867). In the formulation of this theorem the so-called
Poncelet traverse will be used. This in short is:

Let C1 and C2 be two circles in a plane. If from any point on C2 we draw a tangent to C1,
extend the tangent line so that it intersects C2, and draw from the point of intersection
a new tangent to C1, extend this tangent similarly to intersect C2, and continue in this
way, we obtain the so-called Poncelet traverse which, when it consists of n chords of
the circle C2 (circle of circumscription), is called n-sided.

The Poncelet theorem for circles can be expressed as follows:

If on the circle of circumscription there is one point of origin for which the n-
sided Poncelet traverse is closed, then the n-sided traverse will also be closed
for any other point of origin on the circle.

Poncelet proved that the analogue holds for conic sections so that the general theorem
reads:

Poncelet’s closure theorem. If an n-sided Poncelet traverse constructed for two given
conic sections is closed for one position of the point of origin, it is closed for any position
of the point of origin.

Although this problem dates back to the nineteenth century, many mathematicians have
been working on a number of problems in connection with it. Many contributions have
been made. Very interesting and useful information about this we found in the references
concerning Poncelet’s closure theorem, particulary in [2], [6] and [8].

In this article we shall restrict ourselves to triangles and bicentric quadrilaterals when
the conics are circles not one inside of the other and where instead of incircles there are
excircles under consideration. In this case for triangles instead of relation (1.2) Euler’s
relation holds:

z2 − r2 = 2rρ. (1.3)

But Fuss’ relation (1.1) holds in both of these cases. (More about this will be given in
Section 3.)
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2 Some relations concerning triangles which have the same
excircle and same circumcircle

Notation used in this section:

Let r, z and ρ be any given lengths (positive numbers) such that Euler’s relation (1.3)
holds, and let M and O be points and C1 and C2 be circles such that

|MO| = z, C1 = M(ρ), C2 = O(r). (2.1)

Then, by Poncelet’s closure theorem, for every point A1 on C2 there is a triangle A1A2A3

whose excircle is C1 and circumcircle C2. (See Fig. 1, where r = 3, z = 5, ρ = 8
3 .)

A triangle will be degenerate if one of its vertices belongs to the set {P1,P2,Q1,Q2},
where the points P1, P2, Q1, Q2 are shown in Fig. 2. So, for example, triangle B1B2B3

shown in Fig. 1 is a degenerate one.

Now, let us consider Fig. 3. It is easy to see that

(t1 − t2 − t3)ρ = area of triangle A1A2A3, (2.2)

where ti = |AiTi|, i = 1, 2, 3. Thus, in this case, instead of t2 and t3 we must take −t2

and −t3. It is because in this case we must use oriented angles. Namely, if the angle
MAiTi is negatively oriented, then instead of ti we must take −ti.

It can be easily seen that for every triangle A1A2A3 whose excircle is C1, one of
the angles MAiTi , i = 1, 2, 3, is negatively oriented and the other two positively, or
conversely, one is negatively oriented and the other two positively.

Also, it is easy to see that

|t i + t i+1| = |AiAi+1|, i = 1, 2, 3,
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where
t i = ti if ∠MAiTi is positively oriented,

t i = −ti if ∠MAiTi is negatively oriented.

Using vertices A1, A2, A3 instead of T1, T2, T3 this can be expressed as follows:

t i = ti if ∠MAiAi+1 is positively oriented,

t i = −ti if ∠MAiAi+1 is negatively oriented.

Of course, if ∠MAiAi+1 is “obtuse” then its supplement is taken.

Remark 1 For simplicity in some of the formulations in this section we shall assume
that the vertices of every triangle A1A2A3 whose excircle is C1 and circumcircle C2 are
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denoted such that
|A1M| = max{|A1M|, |A2M|, |A3M|}.

So, for example, triangle A1A2A3 in Fig. 3 is such. Triangle A1A2A3 in Fig. 1 becomes
such if A1 and A2 are mutually interchanged.

Using Fig. 2 it can be said that A1 ∈ �
P1Q1, where

�
P1Q1 ∩ OM = ∅. As will be seen,

doing so, nothing essentially will be changed. First, it can be easily proved that

(t1 − t2 − t3)ρ2 = t1t2t3. (2.3)

Namely, from Fig. 3 we see that

2β2 = 2β1 + ψ, 2β3 = 2β1 + ϕ,

from which we get
−β1 + β2 + β3 = 90◦. (2.4)

Thus, we can write

cot(β2 + β3) = − tanβ1,

cotβ1 − cotβ2 − cotβ3 = cotβ1 cotβ2 cotβ3,

t1

ρ
− t2

ρ
− t3

ρ
=

t1t2t3

ρ3
,

which can be written as (2.3). Now, we can prove the following theorem.

Theorem 2.1 For every triangle A1A2A3 which is such as described in Remark 1, the
following holds:

| − t1t2 + t2t3 − t3t1| = 4rρ− ρ2. (2.5)

Proof. From (2.3) we have

t3 =
ρ2(t1 − t2)
t1t2 + ρ2

. (2.6)

Using the above expression for t3 we get

| − t1t2 + t2t3 − t3t1| =
ρ2(t2

1 + t2
2) + t2

1t2
2 − ρ2t1t2

t1t2 + ρ2
. (2.7)

Now, we can use the relations

J = (t1 − t2 − t3)ρ, J =
abc
4r

, (2.8)

where
J = area of ABC, a = t1 − t2, b = t2 + t3, c = t1 − t3.
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From

(t1 − t2 − t3)ρ =
(t1 − t2)(t2 + t3)(t1 − t3)

4r

and from (2.6) we get

4rρ =
(ρ2 + t2

1)(ρ
2 + t2

2)
t1t2 + ρ2

(2.9)

or, subtracting ρ2 from both sides,

4rρ− ρ2 =
ρ2(t2

1 + t2
2) + t2

1t2
2 − ρ2t1t2

t1t2 + ρ2
. (2.10)

So, equation (2.7) can be written as (2.5). Theorem 2.1 is proved. �

Corollary 2.1.1 For every triangle A1A2A3 whose excircle is C1 and circumcircle is
C2

|t 1t 2 + t 2t 3 + t 3t 1| = 4rρ− ρ2 (2.11)

holds, where
t i = ti if ∠MAiTi is positively oriented,

t i = −ti if ∠MAiTi is negatively oriented.

Proof. The value |t 1t 2 + t 2t 3 + t 3t 1| does not depend upon numeration of vertices of
a triangle whose excircle is C1 and circumcircle is C2. �

Corollary 2.1.2 Let A1A2A3 and B1B2B3 be any two triangles whose excircles have
equal radii. Then the circumcircles of these triangles have also equal radii iff

|t 1t 2 + t 2t 3 + t 3t 1| = |u1u2 + u2u3 + u3u1|, (2.12)

where
|t i + t i+1| = |AiAi+1|, i = 1, 2, 3,

|ui + ui+1| = |BiBi+1|, i = 1, 2, 3.

Proof. Iff (2.11) holds, then from

|t 1t 2 + t 2t 3 + t 3t 1| = 4rρ− ρ2,

|u1u2 + u2u3 + u3u1| = 4r1ρ− ρ2

it follows that r = r1. �

Corollary 2.1.3 Let B1B2B3 be the degenerate triangle shown in Fig. 1. Then

t1 =
√

z2 − (r − ρ)2.
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Proof. From (2.5), since t2 = 0, we get

t2
1 = 4rρ− ρ2. (2.13)

Now, using Euler’s relation (1.3), we can write

t2
1 = 2rρ + 2rρ− ρ2 = z2 − r2 + 2rρ− ρ2 = z2 − (r − ρ)2. �

For the following use, the length
√

z2 − (r − ρ)2 will be denoted by t0, that is

t0 =
√

z2 − (r − ρ)2. (2.14)

See Fig. 2. Let us remark that t0 = |P1P2| = |Q1Q2| = |P1R1| = |Q1R2| since |P1R1| =√
z2 − (r − ρ)2.

Corollary 2.1.4 For degenerate triangles P1P2P3 and Q1Q2Q3 shown in Fig. 2 we have

|P1P2|2 = |Q1Q2|2 = |P1R1|2 = |Q1R2|2 = 4rρ− ρ2. (2.15)

Proof. Note that t2
0 = 4rρ− ρ2 holds. �

In the following theorem we shall use the length tM given by

tM =
√

(r + z)2 − ρ2. (2.16)

Let us remark that tM ≥ t for every tangent drawn from C2 to C1 (see Fig. 4); tM = |PQ|,
and |PQ| =

√
(r + z)2 − ρ2.

Also, let us remark that t0 ≤ t1 ≤ tM , where t1 = |A1T1| and A1A2A3 is a triangle as
noted in Remark 1.

Theorem 2.2 Let t1 be such that

t0 ≤ t1 ≤ tM. (2.17)

Then the lengths of the other two tangents are given by

t2 =
2rρt1 +

√
D

ρ2 + t2
1

, t3 =
2rρt1 −

√
D

ρ2 + t2
1

, (2.18)

where
D = 4r2ρ2t2

1 − (ρ2 + t2
1)(ρ

2t2
1 − 4rρ3 + ρ4). (2.19)
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Proof. The relation (2.9) can be written as

(ρ2 + t2
1)t

2
2 − 4rρt1t2 + ρ2t2

1 − 4rρ3 + ρ4 = 0,

from which, solving for t2, we get

(t2)1,2 =
2rρt1 ±

√
D

ρ2 + t2
1

.

Of course, (t2)2 = t3 since

|t 1 + t 2| = |A1T1|, |t 1 + t 3| = |A1T3|.
Thus, it remains to prove that D ≥ 0 for every t1 such that (2.17) holds. For this purpose
it is enough to prove that D = 0 for t1 = tM and t1 = −tM , that is for t2

1 = t2
M . The

proof is as follows: Putting t2
M instead of t2

1 in D/ρ2 and using Euler’s relation (1.3) we
can write

D/ρ2 = 4r2(r + z)2 − 4r2ρ2 − (r + z)4 + 4rρ(r + z)2

= 4r2(r + z)2 − (z2 − r2)2 − (r + z)4 + 4rρ(r + z)2

= (r + z)2
(
4r2 − (z − r)2 − (z + r)2 + 2(z2 − r2)

)
= (r + z)2 · 0 = 0.

Theorem 2.2 is proved. �

Although t1 is not given explicitly as are t2 and t3, but by condition t0 ≤ t1 ≤ tM , it is
easy to check that for t1, t2, t3 given by (2.17) and (2.18) in the end we get

| − t1t2 + t2t3 − t3t1| =
(4rρ− ρ2)(ρ2 + t2

1)
ρ2 + t2

1

= 4rρ− ρ2.

Example 1 Let r = 3, z = 5, ρ = 8
3 . Then

tM ≈ 7.542472333, t0 ≈ 4.988876516.

If we take t1 = 6, then by (2.18) we get

t2 ≈ 3.994824489, t3 ≈ 0.458783759.

The corresponding triangle A1A2A3 is shown in Fig. 4.
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In connection with this example let us remark that for t1 = tM by (2.18), since D = 0,
we have

t2 = t3 =
2rρtM

ρ2 + t2
M

≈ 1.885618083.

If we take t1 = t0, then by (2.18) we have

t2 = t0, t3 = 0.

In this case, we have D = 4r2ρ2t2
0 since (ρ2 + t2

0)(t
2
0−4rρ+ρ2) = 0. Using this example

in connection with relation (2.11) we can write

| − t1t2 + t2t3 − t3t1| ≈ 24.88888889, 4rρ− ρ2 ≈ 24.88888889.

Remark 2 It is easy to see that proving Theorem 2.2 we in fact give another proof of
Poncelet’s closure theorem for triangles where circles are intersecting, using very simple
and elementary facts. Therefore, this theorem may be interesting in itself.

Relation (2.11) which has the key role in the proof of Theorem 2.2 has also an important
role in the following theorem.

Theorem 2.3 From (2.11) follows Euler’s relation given by (1.3).

Proof. Let ABC be an axially symmetric triangle as shown in Fig. 5a and let PQR be
a degenerate triangle as shown in Fig. 5b. Then

t2
1 = (r + z)2 − ρ2, t2

2 = t2
3 = r2 − (z − ρ)2,

u2
1 = z2 − (r − ρ)2, u2 = 0, u3 = −u1.

In connection with u1 let us remark that u1 = |PQ| and |PQ| = |PT|. Theorem 2.3
immediately follows from

|u1u2 + u2u3 + u3u1| = 4rρ− ρ2 or u2
1 = 4rρ− ρ2

since
z2 − (r − ρ)2 = 4rρ− ρ2 ⇐⇒ z2 − r2 = 2rρ. �
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The following may also be interesting, namely, we can write

−t1t2 + t2t3 − t3t1 = −2t1t2 + t2
2, −u1u2 + u2u3 − u3u1 = −u2

1,

and by (2.11) it holds
−2t1t2 + t2

2 = −u2
1

or
4t2

1t2
2 = (t2

2 + u2
1)

2,

which can be written as

(r2 + 2rρ− z2)(r + z − ρ)2 = 0.

Let us remark that from z2 − r2 = 2rρ, putting r + z = ρ, we get z = 3r and that for
z = 3r, ρ = 4r it holds z2 − r2 = 2rρ. In this limit case we have 4rρ− ρ2 = 0. Thus in
this case, t1 = t2 = t3 = 0 (the triangle becomes tangential point of C1 and C2).

3 Some relations concerning bicentric quadrilaterals
when excircles instead of incircles are under consideration

Notation used:

Let r, ρ and z be any given lengths (positive numbers) such that

z2 = r2 + ρ2 +
√

4r2ρ2 + ρ4. (3.1)

Let M and O be points and C1 and C2 be circles such that

|MO| = z, C1 = M(ρ), C2 = O(r). (3.2)

The circles C1 and C2 are not intersecting since from (3.1) it follows that

z2 > r2 + ρ2 + 2rρ or z > r + ρ.

Let us remark that (3.1) follows from Fuss’ relation (1.1), namely, from

(r2 − z2)2 = 2ρ2(r2 + z2)

it follows that
z2 = r2 + ρ2 ±

√
4r2ρ2 + ρ4.

The condition for a bicentric quadrilateral where C1 is inside of C2 is given by

z2 = r2 + ρ2 −
√

4r2ρ2 + ρ4, (3.3)

from which it follows that z < r − ρ.
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Now, for example, let r = 4, ρ = 3, z = 7.115617418 (see Fig. 6). It is easy to see that

(t1 − t2 + t3 − t4)ρ = area of quadrilateral A1A2A3A4, (3.4)

where

|A1A2| = t1 − t2, |A2A3| = t2 − t3, |A3A4| = t4 − t3, |A4A1| = t1 − t4.

Thus, in this case, we must instead of t2 and t4 take −t2 and −t4. It is because we must
use oriented angles. Namely, if the angle MAiTi , i = 1, 2, 3, 4, is negatively oriented,
then instead of ti we must take −ti .

It is easy to see that for every quadrilateral A1A2A3A4 whose excircle is C1 and cir-
cumcircle is C2 either

t1, −t2, t3, −t4 (3.5)

or
−t1, t2, −t3, t4 (3.6)

holds. Namely, the angles MA1T1 and MA3T3 are positively oriented and the angles
MA2T2 and MA4T4 are negatively oriented or it is conversely.

Also, it can be easily seen that

|t i + t i+1| = |AiAi+1|, i = 1, 2, 3, 4,

where
t i = ti if ∠MAiTi is positively oriented,

t i = −ti if ∠MAiTi is negatively oriented.

Using vertices A1, A2, A3, A4 instead of T1, T2, T3, T4 this can be expressed as follows:

t i = ti if ∠MAiAi+1 is positively oriented,

t i = −ti if ∠MAiAi+1 is negatively oriented.
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Of course, if ∠MAiAi+1 is ”obtuse” then its supplement is taken. Now, using Fig. 6,
we shall prove that

β1 − β2 + β3 − β4 = 0◦, (3.7)

where

βi = measure of ∠MAiTi, i = 1, 2, 3, 4.

First from triangle PA1A4, since the measure of ∠A3A4T4 = 2β4, we have

2β4 = 2β1 + ϕ. (3.8)

Now, from triangle PA2A3 we see that

ϕ + 2β2 + (180 − 2β3) = 180◦. (3.9)

From (3.8) and (3.9) follows (3.7).

Before we state the following theorem we shall prove that

(t1 − t2 + t3 − t4)ρ2 = −t1t2t3 + t2t3t4 − t3t4t1 + t4t1t2. (3.10)

Starting from (3.7) we can write

tan(β1 + β3) = tan(β2 + β4),

from which, using the relation

ρ

ti
= tanβi , i = 1, 2, 3, 4, (3.11)

we readily get (3.10).

Theorem 3.1 Let A1A2A3A4 be a bicentric quadrilateral whose excircle is C1 and
circumcircle is C2, where C1 and C2 are given by (3.2). Then

t1t3 = t2t4 = ρ2, (3.12)

where

ti = |AiTi|, i = 1, 2, 3, 4.
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Proof. Since either (3.5) or (3.6) is possible we may assume without loss of generality
that (3.5) is valid, namely, that the situation is like that in Fig. 6, where

|A1A2| = t1 − t2, |A2A3| = t2 − t3, |A3A4| = t4 − t3, |A4A1| = t1 − t4.

Since (3.4) holds we have the equality

(t1 − t2 + t3 − t4)ρ =
√

(t1 − t2)(t2 − t3)(t4 − t3)(t1 − t4)

or

(t1 − t2 + t3 − t4)2ρ2 = (t1 − t2)(t2 − t3)(t4 − t3)(t1 − t4). (3.13)

The above equality, using equality (3.10), can be written as

(t1 − t2 + t3 − t4)(−t1t2t3 + t2t3t4 − t3t4t1 + t4t1t2) = (t1 − t2)(t2 − t3)(t4 − t3)(t1 − t4)

or

t2
1t2

3 − 2t1t2t3t4 + t2
2t2

4 = 0,

from which it follows that (t1t3 − t2t4)2 = 0 or

t1t3 = t2t4. (3.14)

Now, from (3.10), putting t4 = t1t3
t2

, we get

ρ2 =
t1t3(t1 + t2)(t2 + t3)

(t1 + t2)(t2 + t3)
= t1t3.

Also it is valid ρ2 = t2t4 since (3.14) is valid. Theorem 3.1 is proved. �

Corollary 3.1.1 Let A1A2A3A4 be any given tangential quadrilateral whose excircle
is C1. Then this quadrilateral will be a bicentric one whose circumcircle is C2 iff (3.12)
holds.

Proof. From (3.10) and (3.12) follows (3.13). �

Theorem 3.2 Let ABCD and PRQS be two bicentric quadrilaterals such that their
excircles are congruent. Then their circumcircles are also congruent iff

t1t2 + t2t3 + t3t4 + t4t1 = u1u2 + u2u3 + u3u4 + u4u1, (3.15)

where ti and ui , i = 1, 2, 3, 4, are the lengths of the consecutive tangents relating to
ABCD and PQRS, respectively.
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Proof. First, let us remark, that from (3.5) and also from (3.6) it follows that

t 1t 2 + t 2t 3 + t 3t 4 + t 4t 1 = −t1t2 − t2t3 − t3t4 − t4t1,

where t i = ti or t i = −ti depending on how the angle MAiTi is oriented. Using the
expression −(t1t2 + t2t3 + t3t4 + t4t1) and the equalities t1t3 = ρ2 and t2t4 = ρ2 given
by (3.12), we find that

−(t1t2 + t2t3 + t3t4 + t4t1) =
t2

1t2
2 + ρ2(t2

1 + t2
2) + ρ4

−t1t2
. (3.16)

Let r be the radius of the circumcircle of ABCD. We have to prove that r is also
the radius of the circumcircle of PQRS iff (3.15) holds. In the proof we shall use the
well-known relations concerning chordal quadrilaterals. These relations are

r2 =
(ad + cd)(ac + bd)(ad + bc)

16J2
, J2 = abcd, (3.17)

where

a = t1 − t2, b = t2 − t3, c = t4 − t3, d = t1 − t4, J = area of ABCD.

From (3.17) it follows that

16r2 = a2 + b2 + c2 + d2 +
abc
d

+
bcd
a

+
cda
b

+
dab
c

,

which, using (3.12), can be written as

16r2ρ2 + 4ρ4 =
[

t2
1t2

2 + ρ2(t2
1 + t2

2) + ρ4

−t1t2
+ 2ρ2

]2

. (3.18)

Analogously, for the bicentric quadrilateral PQRS we have

16r2
1ρ

2 + 4ρ4 =
[

u2
1u2

2 + ρ2(u2
1 + u2

2) + ρ4

−u1u2
+ 2ρ2

]2

,

where r1 is the radius of the circumcircle of PQRS. Thus, iff (3.15) is valid, then r1 = r.
Theorem 3.2 is proved. �

Now, we shall prove that the left-hand side of (3.18) can be written as 4(r2 + ρ2 − z2)2,
namely, that it holds

16r2ρ2 + 4ρ4 = 4(r2 + ρ2 − z2)2.

For this purpose, we shall add ρ4 + 2r2ρ2 − 2ρ2z2 on both sides of Fuss’ relation for a
bicentric quadrilateral

2ρ2(r2 + z2) = (r2 − z2)2.
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So, we can write

2ρ2(r2 + z2) + (ρ4 + 2r2ρ2 − 2ρ2z2) = (r2 − z2)2 + (ρ4 + 2r2ρ2 − 2ρ2z2)

or
4r2ρ2 + ρ4 = (r2 + ρ2 − z2)2.

Thus, the equality (3.18) can be written as

t2
1t2

2 + ρ2(t2
1 + t2

2) + ρ4

−t1t2
= 2(r2 − z2)

or
t2

1t2
2 + ρ2(t2

1 + t2
2) + ρ4

t1t2
= 2(z2 − r2). (3.19)

Since (3.16) holds, we have the following relation

t1t2 + t2t3 + t3t4 + t4t1 = 2(z2 − r2). (3.20)

In some of the following theorems we shall use the relations

tm =
√

(z − r)2 − ρ2, tM =
√

(z + r)2 − ρ2. (3.21)

See Fig. 7. As can be seen, tm = |A3T3| is the length of the shortest tangent that can be
drawn from C2 to C1, and tM = |A1T1| is the length of the largest tangent that can be
drawn from C2 to C1.

By (3.12) it holds
tmtM = ρ2. (3.22)

Theorem 3.3 From (3.22) follows Fuss’ relation given by (1.1).
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Proof. It holds
t2

mt2
M = (r2 − z2)2 − 2ρ2(r2 + z2) + ρ4,

and from (3.22) it follows t2
mt2

M − ρ4 = 0, that is

(r2 − z2)2 − 2ρ2(r2 + z2) = 0.

Theorem 3.3 is proved. �

Thus, in this way we can deduce Fuss’ relation for bicentric quadrilaterals.

Fuss’ relation for bicentric quadrilaterals is closely connected with the relations (3.12)
and (3.20). So, for example, using Fig. 7, it is easy to show that (3.20) holds for

t1 = tM, t2 = ρ, t3 = tm, t4 = ρ.

First, let us remark that from t2t4 = ρ2, since t2 = t4 and (3.12) holds, it follows that
t2 = ρ. So, in this case, we have

t1t2 + t2t3 + t3t4 + t4t1 = 2ρ(tm + tM),

and it is easy to show that

2ρ(tm + tM) = 2(z2 − r2). (3.23)

Namely, since 2tmtM = 2ρ2, we can write

ρ2(tm + tM)2 = ρ2[(z − r)2 + (z + r)2 − 2ρ2] + 2ρ4 = 2ρ2(r2 + z2).

Thus,
[2ρ(tm + tM)]2 = [2(z2 − r2)]2,

since 2ρ2(r2 + z2) = (z2 − r2)2 by Fuss’ relation (1.1).

Also, using Fuss’ relation, it can be easily shown that the following theorem holds.

Theorem 3.4 It holds
(z + r)2tm = (z − r)2tM, (3.24)

tm =
z − r
z + r

ρ, tM =
z + r
z − r

ρ, (3.25)

tm =
z2 − r2 −

√
D

2ρ
, tM =

z2 − r2 +
√

D
2ρ

, (3.26)

where
D = (z2 − r2)2 − 4ρ4. (3.27)
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Proof. The proof that (3.24) holds:

(z + r)4t2
m − (z − r)4t2

M = 4rz[(z2 − r2)2 − 2ρ2(z2 + r2)] = 4rz · 0 = 0.

Concerning (3.25), it is easy to show that

(r2 − z2)2 = 2ρ2(r2 + z2) ⇐⇒
√

(r − z)2 − ρ2 =
r − z
r + z

ρ,

(r2 − z2)2 = 2ρ2(r2 + z2) ⇐⇒
√

(r + z)2 − ρ2 =
r + z
r − z

ρ.

So, from

(r − z)2 − ρ2 =
(

r − z
r + z

)2

ρ2

it follows
(r2 − z2)2 = ρ2

(
(r − z)2 + (r + z)2

)

or
(r2 − z2)2 = 2ρ2(r2 + z2).

Obviously, the converse is also valid. Concerning (3.26), using (3.22) and (3.23), we can
write

tmtM = ρ2, tm + tM =
z2 − r2

ρ
,

from which (3.26) follows. �

Corollary 3.4.1 The following is true:

z2 > r2 + 2ρ2.

Proof. It follows from (3.27). Of course, it also follows from (3.1) since
√

4r2ρ2 + ρ4 >
ρ2. �

Theorem 3.5 It holds

A(t1, −t2, t3, −t4) · H(t1, −t2, t3, −t4) = ρ2, (3.28)

where A(t1,−t2, t3,−t4) and H(t1,−t2, t3,−t4) are the arithmetic and harmonic means
of t1, −t2, t3, −t4.

Proof. (3.12), t1t3 = t2t4 = ρ2, implies t1t2t3t4 = ρ4. If we divide equation (3.10) by
t1t2t3t4, we can write

(t1 − t2 + t3 − t4)ρ2

ρ4
=

−t1t2t3 + t2t3t4 − t3t4t1 + t4t1t2

t1t2t3t4

or
t1 − t2 + t3 − t4

4
· 4

1
t1
− 1

t2
+ 1

t3
− 1

t4

= ρ2.

Theorem 3.5 is proved. �
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Theorem 3.6 Let ABCD be any given bicentric quadrilateral whose excircle is C1 and
circumcircle is C2, where C1 and C2 are given by (3.2). Then

e f = 2(z2 − r2 − 2ρ2), (3.29)

where e = |AC|, f = |BD|. In other words, for every bicentric quadrilateral whose
excircle is C1 and circumcircle is C2, the product of the lengths of its diagonals is the
constant 2(z2 − r2 − 2ρ2).

Proof. Let a = t1 − t2, b = t2 − t3, c = t4 − t3, d = t1 − t4 be the lengths of the sides
of ABCD. Then, by Ptolomy’s theorem,

e f = ac + bd,

and we can write

ac + bd = (t1 − t2)(t4 − t3) + (t2 − t3)(t1 − t4)
= (t1t2 + t2t3 + t3t4 + t4t1) − 2(t1t3 + t2t4)

= 2(z2 − r2) − 2(ρ2 + ρ2) = 2(z2 − r2 − 2ρ2).

It is easy to see that we have the same result if instead of the possibility (3.5) we take
the possibility (3.6). Theorem 3.6 is proved. �

Theorem 3.7 Let r, ρ and z be any given positive numbers such that (1.1) is satisfied,
and let tm and tM be given by (3.21). Then every positive solution (t1, t2, t3, t4) ∈ R

4
+

of the equations

t1t2 + t2t3 + t3t4 + t4t1 = 2(z2 − r2), t1t3 = ρ2, t2t4 = ρ2

is given by
t1 is a positive number such that tm ≤ t1 ≤ tM, (3.30)

t2 =
(z2 − r2)t1 +

√
D

ρ2 + t2
1

, (3.31)

t3 =
ρ2

t1
, (3.32)

t4 =
ρ2

t2
, (3.33)

where
D = (z2 − r2)2t2

1 − ρ2(ρ2 + t2
1)

2. (3.34)
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Proof. The equation t1t2 + t2t3 + t3t4 + t4t1 = 2(z2 − r2), using equations t1t3 = ρ2 and
t2t4 = ρ2, can be written as

(ρ2 + t2
1)t

2
2 − 2(z2 − r2)t1t2 + ρ2(t2

1 + ρ2) = 0, (3.35)

from which it follows that

(t2)1,2 =
(z2 − r2)t1 ±

√
D

ρ2 + t2
1

.

It is unessential which of (t2)1 and (t2)2 will be taken for t2 since

ρ2

(t2)1
=

ρ2(ρ2 + t2
1)

(z2 − r2)t1 +
√

D
=

(z2 − r2)t1 −
√

D
ρ2 + t2

1

= (t2)2.

If we take t2 = (t2)1, then ρ2

t2
= (t2)2, that is, by (3.33), (t2)2 = t4. But if we take

t2 = (t2)2, then ρ2

t2
= (t2)1. Thus, in this case (t2)1 = t4.

Now, since in the expression of t2 in (3.31) appears the term
√

D, we have to prove that
D ≥ 0 for every t1 such that tm ≤ t1 ≤ tM . Of course, for this purpose it suffices to
prove that D = 0 for t1 = tm and t1 = tM .

It is easy to show that

(z2 − r2)2t2
m − ρ2(ρ2 + t2

m)2 = 0 ⇐⇒ (1.1),

(z2 − r2)2t2
M − ρ2(ρ2 + t2

M)2 = 0 ⇐⇒ (1.1),

where (1.1) stands instead of Fuss’ relation given by (1.1). So, for t1 = tm, we can write

(z2 − r2)2t2
m − ρ2(ρ2 + t2

m)2 = (z − r)2[(z2 − r2)2 − 2ρ2(z2 + r2)] = (z − r)2 · 0 = 0.

This completes the proof of Theorem 3.7. �

Although t1 is not given explicitly but by condition tm ≤ t1 ≤ tM, it is easy to check
that for t1, t2, t3, t4 given by (3.30)–(3.33) in the end we get

t1t2 + t2t3 + t3t4 + t4t1 =
(z2 − r2)t1 +

√
D

t1
+

(z2 − r2)t1 −
√

D
t1

= 2(z2 − r2).

Corollary 3.7.1 Let C1 and C2 be circles such that (3.1) and (3.2) holds. Let A1 be any
given point on C2 and let t1 be the length of the tangent A1T1 drawn from C2 to C1.
Then the lengths t2, t3, t4 of the other three tangents drawn from C2 to C1 are given by
(3.31), (3.32) and (3.33).

Here is an example:
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Example 2 Let r = 4, ρ = 3, z = 7.115617418. Then

tm ≈ 0.840875671, tM ≈ 10.70312807, D ≈ 28799.07696.

If we take t1 = 8, then

t2 ≈ 6.119986271, t3 = 1.125, t4 ≈ 1.470591534.

The corresponding quadrilateral A1A2A3A4 is shown in Fig. 8.

It can be checked that

t1t2 + t2t3 + t3t4 + t4t1 ≈ 69.26402247 = 2(z2 − r2).

Also, it can be checked that

β1 ≈ 20.55604522◦, β2 ≈ 26.11396343◦,

β3 ≈ 69.44395478◦, β4 ≈ 63.88603657◦,

β1 − β2 + β3 − β4 = 0◦,

where βi = arctan ρ
ti

, i = 1, 2, 3, 4.

If in this figure we write A2 where is A4 and A4 where is A2, then the angles MA1T1

and MA3T3 will be negatively oriented and in this case will be

−β1 + β2 − β3 + β4 = 0◦.

Remark 3 As can be seen, by proving Theorem 3.7, we in fact give another proof
of Poncelet’s closure theorem for bicentric quadrilaterals, when the excircle instead of
the incircle is under consideration. In this proof, we use very simple and elementary
mathematical facts. Therefore, this proof may be interesting in itself.
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