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Integral Eisenstein cocycles on GLn, II: Shintani’s method
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Abstract. We define a cocycle on GLn.Q/ using Shintani’s method. This construction is
closely related to earlier work of Solomon and Hill, but differs in that the cocycle property is
achieved through the introduction of an auxiliary perturbation vector Q. As a corollary of our
result we obtain a new proof of a theorem of Diaz y Diaz and Friedman on signed fundamental
domains, and give a cohomological reformulation of Shintani’s proof of the Klingen–Siegel
rationality theorem on partial zeta functions of totally real fields.

Next we relate the Shintani cocycle to the Sczech cocycle by showing that the two differ
by the sum of an explicit coboundary and a simple “polar” cocycle. This generalizes a result of
Sczech and Solomon in the case n D 2.

Finally, we introduce an integral version of our cocycle by smoothing at an auxiliary
prime `. This integral refinement has strong arithmetic consequences. We showed in previous
work that certain specializations of the smoothed class yield the p-adic L-functions of totally
real fields. Furthermore, combining our cohomological construction with a theorem of Spiess,
one deduces that that the order of vanishing of these p-adic L-functions is at least as large as
the expected one.
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1. Introduction

In this paper, we study a certain “Eisenstein cocycle" on GLn.Q/ defined using
Shintani’s method. Our construction follows previous works of Solomon, Hu, Hill,
Spiess, and Steele in this direction ([23], [15], [14], [26], [28]).

We study three main themes in this paper. First, we define an .n� 1/-cocycle on
GLn.Q/ valued in a certain space of power series denoted R..z//hd. The basic idea
of defining a cocycle using Shintani’s method is well-known; the value of the cocycle
on a tuple of matrices is the Shintani–Solomon generating series associated to the
simplicial cone whose generators are the images of a fixed vector under the action of
these matrices. The difficulty in defining a cocycle stems from two issues: choosing
which boundary faces to include in the definition of the cone, and dealing with
degenerate situations when the generators of the cone do not lie in general position.
Hill’s method is to embed Rn into a certain ordered field with n indeterminates, and
to perturb the generators of the cone using these indeterminates so that the resulting
vectors are always in general position. The papers [28] and [26] use Hill’s method.
Our method is related, but somewhat different. We choose an auxiliary irrational
vectorQ 2 Rn and include a face of the simplicial cone if perturbing the face by this
vector brings it into the interior of the cone. We learned during the writing of this
paper that this perturbation idea was studied much earlier by Colmez in unpublished
work for the purpose of constructing Shintani domains [8]. Colmez’s technique was
used by Diaz y Diaz and Friedman in [12]. However the application of this method
to the cocycle property appears to be novel.

Using formulas of Shintani and Solomon, we prove that the cocycle we construct
specializes under the cap product with certain homology classes to yield the special
values of partial zeta functions of totally real fields of degree n at nonpositive
integers. This is a cohomological reformulation of Shintani’s calculation of these
special values and his resulting proof of the Klingen–Siegel theorem on their
rationality.

In 1993, Sczech introduced in [20] an Eisenstein cocycle on GLn.Q/ that enabled
him to give another proof of the Klingen–Siegel theorem. Our second main result
is that the cocycles defined using Shintani’s method and Sczech’s method are in fact
cohomologous. The fact that such a result should hold has long been suspected by
experts in the field; all previous attempts were restricted to the case n D 2 (see for
instance [21], [24, §7] or [14, §5]). One technicality is that the cocycles are naturally
defined with values in different modules, so we first define a common module where
the cocycles can be compared, and then we provide an explicit coboundary relating
them.

The third and final theme explored in this paper is a smoothing process that allows
for the definition of an integral version of the Shintani cocycle. The smoothing
method was introduced in our earlier paper [5], where we defined an integral version
of the Eisenstein cocycle constructed by Sczech. The integrality property of the
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smoothed cocycles has strong arithmetic consequences. We showed in [5] that one
can use the smoothed Sczech–Eisenstein cocycle to construct the p-adicL-functions
of totally real fields and furthermore to study the analytic behavior of these p-adicL-
functions at s D 0. In particular, we showed using work of Spiess [25] that the order
of vanishing of these p-adic L-functions at s D 0 is at least equal to the expected
one, as conjectured by Gross in [13]. The formal nature of our proofs implies that
these arithmetic results could be deduced entirely from the integral version of the
Shintani cocycle constructed in this paper. In future work, we will explore further
the leading terms of these p-adic L-functions at s D 0 using our cohomological
method [10].

We conclude the introduction by stating our results in greater detail and
indicating the direction of the proofs. Sections 4 and 5 both rely on Sections 2 and 3
but are independent from each other. Only Section 5 uses results from the earlier
paper [CD].

Q-perturbation, cocycle condition and fundamental domains. Fix an integer
n � 2, and let � D GLn.Q/. Let K denote the abelian group of functions on Rn
generated by the characteristic functions of rational open simplicial cones, i.e. sets
of the form R>0v1 C R>0v2 C � � � C R>0vr with linearly independent vi 2 Qn.

Let RnIrr � Rn denote the set of vectors with the property that their n components
are linearly independent over Q. Let Q denote the set of equivalence classes of RnIrr
under multiplication by R>0.

Given an n-tuple of matrices A D .A1; : : : ; An/ 2 �n, we let �i 2 Qn denote the
leftmost column of Ai , i.e. the image under Ai of the first standard basis vector. (In
fact replacing this basis vector by any nonzero vector in Qn would suffice.) Fixing
Q 2 RnIrr, we define an element ˆSh.A;Q/ 2 K as follows. If the �i are linearly
dependent, we simply let ˆSh.A;Q/ D 0. If the �i are linearly independent, we
define ˆSh.A;Q/ 2 K to be the characteristic function of the simplicial cone C D
C.�1; : : : ; �n/ and some of its boundary faces, multiplied by sgn.det.�1; : : : ; �n//. A
boundary face is included if translation of an element of that face by a small positive
multiple of Q moves the element into the interior of C . The property Q 2 RnIrr
ensures that Q does not lie in any face of the cone, and hence translation by a small
multiple of Q moves any element of a face into either the interior or exterior of the
cone. The definition of ˆSh.A;Q/ depends on Q only up to its image in Q.

Our first key result is the following cocycle property of ˆSh (see Theorems 2.1
and 2.6). The function

nX
iD0

.�1/iˆSh.A0; : : : ; OAi ; : : : ; An;Q/ (1.1)

lies in the subgroup L � K generated by characteristic functions of wedges, i.e. sets
of the form Rv1 C R>0v2 C � � � C R>0vr for some r � 1 and linearly independent
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vi 2 Qn. We conclude that the function ˆSh defines a homogeneous .n� 1/-cocycle
on � valued in the space N of functions Q! K=L.

Along the way we note that if the �i are all in the positive orthant of Rn, then
in fact the function (1.1) vanishes. As a result we obtain another proof of the main
theorem of [12], which gives an explicit signed fundamental domain for the action
of the group of totally positive units in a totally real field of degree n on the positive
orthant. In the language of [26], we show that the specialization of ˆSh to the unit
group is a Shintani cocycle (see Theorem 2.5 below).

Using this result and Shintani’s explicit formulas for the special values of zeta
functions associated to simplicial cones, we recover the following classical result
originally proved by Klingen and Siegel. Let F be a totally real field, and let a and f
be relatively prime integral ideals of F . The partial zeta function of F associated to
the narrow ray class of a modulo f is defined by

�f.a; s/ D
X
b�fa

1

Nbs
; Re.s/ > 1: (1.2)

Here the sum ranges over integral ideals b � F equivalent to a in the narrow ray
class group modulo f, which we denote Gf. The function �f.a; s/ has a meromorphic
continuation to C, with only a simple pole at s D 1.

Theorem 1. The values �f.a;�k/ for integers k � 0 are rational.

We prove Theorem 1 by showing that

�f.a;�k/ D hˆSh;Zki (1.3)

where Zk 2 Hn�1.�;N_/ is a certain homology class depending on a; f, and k, and
the indicated pairing is the cap product

Hn�1.�;N / �Hn�1.�;N_/ �! R; N_ D Hom.N ;R/: (1.4)

See Theorem 3.10 below for a precise statement. Combined with a rationality
property of our cocycle (Theorem 3.9) that implies that the cap product hˆSh;Zki
lies in Q, we deduce the desired result.

Our proof of Theorem 1 is simply a cohomological reformulation of Shintani’s
original argument. However, our construction has the benefit that we give an explicit
signed fundamental domain. This latter feature is useful for computations and served
as a motivation for [12] as well.

Comparison with the Sczech cocycle. Sczech’s proof of Theorem 1 is deduced
from an identity similar to (1.3), but involving a different cocycle. It leads to
explicit formulas in terms of Bernoulli numbers that resemble those of Shintani in
[22]. A natural question that emerges is whether a direct comparison of the two
constructions is possible. Our next result, stated precisely in Theorem 4.1, is a
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proof that the cocycle on � defined in Sections 2 and 3 using Shintani’s method
is cohomologous (after projecting to the C1-eigenspace for the action of f˙1g on
Q) to the cocycle defined by Sczech, up to a simple and minor error term. Rather
than describing the details of Sczech’s construction in this introduction, we content
ourselves with explaining the combinatorial mechanism enabling the proof, with an
informal discussion in the language of [19, §2.2].

For n vectors �1; : : : ; �n 2 Cn, define a rational function of a variable x 2 Cn by

f .�1; : : : ; �n/.x/ D
det.�1; : : : ; �n/
hx; �1i � � � hx; �ni

:

Given an n-tuple of matricesA D .A1; : : : ; An/ 2 �n, denote byAij the j th column
of the matrix Ai . The function f satisfies a cocycle property (see (4.2)) that implies
that the assignment A 7! ˛.A/ WD f .A11; A21; : : : ; An1/ defines a homogeneous
.n� 1/-cocycle on � valued in the space of functions on Zariski open subsets of Cn.
The rational function ˛.A/ is not defined on the hyperplanes hx;Ai1i D 0.

Alternatively we consider, for each x 2 Cn � f0g, the index wi D wi .A; x/

giving the leftmost column of Ai not orthogonal to x. The function ˇ.A/.x/ D
f .A1w1 ; : : : ; Anwn/.x/ is then defined on Cn � f0g, and the assignment A 7! ˇ.A/

can also be viewed as a homogeneous .n � 1/-cocycle on � .
Using an explicit computation, we show that the function ˛ corresponds to our

Shintani cocycle (Proposition 4.10), whereas the function ˇ yields Sczech’s cocycle
(Proposition 4.9). A coboundary relating ˛ and ˇ is then given as follows. Let
A D .A1; : : : ; An�1/ 2 �

n�1, and define for i D 1; : : : ; n � 1:

hi .A/ D

(
f .A1w1 ; : : : ; A.i�1/wi�1 ; Ai1; Aiwi ; A.iC1/1; : : : ; A.n�1/1/ if wi > 1
0 if wi D 1:

Let h D
Pn�1
iD1.�1/

ihi : We show that ˇ � ˛ D dh. In the case n D 2, this recovers
Sczech’s formula [19, Page 371].

Smoothing and applications to classical and p-adic L-functions. In Section 5,
we fix a prime ` and we introduce a smoothed version ˆSh;` of the Shintani cocycle,
essentially by taking a difference betweenˆSh and a version of the same shifted by a
matrix of determinant `. The smoothed cocycle is defined on an arithmetic subgroup
�` � � and shown to satisfy an integrality property (Theorem 5.7).

Through the connection of the Shintani cocycle to zeta values given by (1.3), this
integrality property translates as in [CD] into corresponding results about special
values of zeta functions. For the interest of the reader, we have included the
statements of these arithmetic results in this introduction. For the proofs we refer
the reader to [5], where these applications were already presented.

Our first arithmetic application of the smoothed cocycle is the following integral
refinement of Theorem 1, originally due to Pi. Cassou-Noguès [4] and Deligne–
Ribet [11].
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Theorem 2. Let c be an integral ideal of F relatively prime to f and let ` D Nc. The
smoothed zeta function

�f;c.a; s/ D �f.ac; s/ � Nc1�s�f.a; s/

assumes values in ZŒ1=`� at nonpositive integers s.

Cassou–Noguès’ proof of Theorem 2 is a refinement of Shintani’s method under
the assumption that OF =c is cyclic. The proof of Theorem 2 that follows from the
constructions in this paper is essentially a cohomological reformulation of Cassou–
Noguès’ argument. For simplicity we assume further that ` D Nc is prime. One
can define a modified version of the homology class Zk denoted Zk;`, such that
�f;c.a;�k/ D hˆSh;`;Zk;`i. A result from [5] restated in Theorem 5.7 below implies
that the cap product hˆSh;`;Zk;`i lies in ZŒ1=`�, thereby completing the proof of
Theorem 2.

The final arithmetic application of our results regards the study of the p-
adic L-functions associated to abelian characters of the totally real field F . Let
 WGal.F =F / �! Q� be a totally even finite order character. Fix embeddings
Q ,! C and Q ,! Qp , so that  can be viewed as taking values in C or Qp .
Let !WGal.F =F / �! �p�1 � Q� denote� the Teichmüller character. Using the
integrality properties of our cocycle ˆSh;`, one recovers the following theorem of
Cassou-Noguès [4], Barsky [1] and Deligne–Ribet [11].

Theorem 3. There is a unique meromorphic p-adicL-functionLp. ; s/WZp �! Cp
satisfying the interpolation property

Lp. ; 1 � k/ D L
�. !�k; 1 � k/

for integers k � 1, where L� denotes the classical L-function with Euler factors at
the primes dividing p removed. The function Lp is analytic if  ¤ 1. If  D 1,
there is at most a simple pole at s D 1 and no other poles.

Now consider the totally odd character � D  !�1, and let r� denote the number
of primes p of F above p such that �.p/ D 1. In [13], Gross proposed the following:

Conjecture 1 (Gross). We have

ordsD0Lp. ; s/ D r�:

Combining our cohomological construction of the p-adic L-function with
Spiess’s formalism, one obtains the following partial result towards Gross’s con-
jecture:

Theorem 4. We have
ordsD0Lp. ; s/ � r�:

�As usual, replace �p�1 by f˙1g when p D 2.
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In the case p > 2, the result of Theorem 4 was already known from Wiles’ proof
of the Iwasawa Main Conjecture [30]. Our method contrasts with that of Wiles in
that it is purely analytic; we calculate the kth derivative of Lc;p.�!; s/ at s D 0 and
show that it equals the cap product of a cohomology class derived from ˆSh;` with a
certain homology class denoted Zlogk : Spiess’ theorem that the classes Zlogk vanish
for k < r� then concludes the proof. Our method applies equally well when p D 2.

Spiess proved Theorem 4 as well using his formalism and his alternate construc-
tion of a Shintani cocycle [26]. Note that our cocycle ˆSh is “universal" in the sense
that it is defined on the group � D GLn.Q/, whereas the cocycles defined by Spiess
are restricted to subgroups arising from unit groups in totally real number fields.
(See Section 3.1 below, where we describe how our universal cocycle ˆSh can be
specialized to yield cocycles defined on unit groups.)

We should stress that while our proofs of Theorems 1, 2 and 3 are merely
cohomological reformulations of the works of Shintani [22] and Cassou–Noguès [4],
the proof of Theorem 4 relies essentially on the present cohomological construction
and Spiess’ theorems on cohomological p-adic L-functions. In upcoming work we
explore further the application of the cohomological method towards the leading
terms of p-adic L-functions at s D 0 and their relationship to Gross–Stark units
[10].

Acknowledgements. It is a pleasure to thank Pierre Colmez, Michael Spiess, and
Glenn Stevens for helpful discussions and to acknowledge the influence of their
papers [6], [26], and [27] on this work. The first author thanks Alin Bostan and
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these students and the University of Arizona for an exciting week in which some of
the ideas present in this work were fostered.

2. The Shintani cocycle

2.1. Colmez perturbation. Consider linearly independent vectors v1; : : : ; vn 2
Rm. The open cone generated by the vi is the set

C.v1; : : : ; vn/ D R>0v1 C R>0v2 C � � � C R>0vn:

We denote the characteristic function of this open cone by 1C.v1;:::;vn/. By
convention, when n D 0, we define C.;/ D f0g. Let KR denote the abelian group
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of functions Rm ! Z generated by the characteristic functions of such open cones.
Fix now a subspace V � Rm spanned by arbitrary vectors v1; : : : ; vn 2 Rm, and

an auxiliary vector Q 2 Rm. We define a function cQ.v1; : : : ; vn/ 2 KR as follows.
If the vi are linearly dependent, then cQ.v1; : : : ; vn/ D 0. If the vi are linearly
independent, we impose the further condition that Q 2 V but that Q is not in the R-
linear span of any subset of n � 1 of the vi . The function cQ.v1; : : : ; vn/ is defined
to be the characteristic function of CQ.v1; : : : ; vn/, which is the disjoint union of
the open cone C.v1; : : : ; vn/ and some of its boundary faces (of all dimensions,
including 0). A boundary face of the open cone C is included in CQ if translation of
an element of the face by a small positive multiple of Q sends that element into the
interior of C . Formally, we have:

cQ.v1; : : : ; vn/.w/

D

(
lim�!0C 1C.v1;:::;vn/.w C �Q/ if the vi are linearly independent,
0 otherwise.

(2.1)

The limit in (2.1) is easily seen to exist and is given explicitly as follows. If w 62 V ,
then cQ.v1; : : : ; vn/.w/ D 0. On the other hand if

w D

nX
iD1

wivi ; Q D

nX
iD1

qivi (all qi ¤ 0/;

then

cQ.v1; : : : ; vn/.w/ D

(
1 if wi � 0 and wi D 0) qi > 0 for i D 1; : : : ; n;
0 otherwise:

(2.2)
Let us give one more characterization of this “Q-perturbation process" that will

be useful for future calculations. For simplicity we suppose m D n and that the
vectors vi are linearly independent. We denote by � the n�nmatrix whose columns
are the vectors vi : For each subset I � f1; : : : ; ng, we have the open cone CI D
C.vi W i 2 I /. The weight of this cone (equal to 0 or 1) in the disjoint union CQ
is given as follows. Let d D jI j. The d -dimensional subspace containing the cone
CI can be expressed as the intersection of the n � d codimension 1 hyperplanes
determined by v�i D 0, for i 2 I D f1; : : : ; ng � I . Here fv�i g is the dual basis to
the vi . Under the usual inner product on Rn, the v�i are the columns of the matrix
��t . Each hyperplane v�i D 0 divides its complement into a plus part and minus
part, namely the half-space containing the cone C.v1; : : : ; vn/ and the half-space
not containing the cone (as an inequality, hw; v�i i > 0 or < 0). The weight of CI is
equal to 1 if Q lies in the totally positive region defined by these hyperplanes, i.e. if
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hQ; v�i i > 0 for all i 2 I : Otherwise, the weight of CI is 0. In summary,

weight.CI / D
Y
i2I

1C sign.Q��t /i
2

: (2.3)

Note that this formula is valid for d D n as well, with the standard convention that
empty products are equal to 1.

2.2. Cocycle relation. We now derive a cocycle relation satisfied by the functions
cQ. Let v1; : : : ; vn 2 Rm be linearly independent vectors, with n � 1. A set of the
form

L D Rv1 C R>0v2 C � � � C R>0vn (2.4)

is called a wedge. The characteristic function 1L of L is an element of KR since

L D C.v1; : : : ; vn/ t C.v2; : : : ; vn/ t C.�v1; v2; : : : ; vn/:

Let LR D LR.Rm/ � KR be the subgroup generated by the functions 1L for all
wedges L.

Theorem 2.1. Let n � 1, and let v0; : : : ; vn 2 Rm be nonzero vectors spanning a
subspace V of dimension at most n. Let Q 2 V be a vector not contained in the
span of any subset of n � 1 of the vi . Let B denote a fixed ordered basis of V and
define for each i the orientation

OB. Ovi / WD OB.v0; : : : ; Ovi ; : : : ; vn/ D sign det.v0; : : : ; Ovi ; : : : ; vn/ 2 f0;˙1g;

where the written matrix gives the representation of the vectors vj in terms of the
basis B , for j ¤ i . Then

nX
iD0

.�1/iOB. Ovi /cQ.v0; : : : ; Ovi ; : : : ; vn/ � 0 .mod LR/: (2.5)

Furthermore, if each vi lies in the totally positive orthant .R>0/m, then in fact

nX
iD0

.�1/iOB. Ovi /cQ.v0; : : : ; Ovi ; : : : ; vn/ D 0:

Proof. We prove the result by induction on n. For the base case n D 1, the argument
for the “general position" case below gives the desired result; alternatively one can
check the result in this case by hand.

For the inductive step, note first that the result is trivially true by the definition of
cQ unless dimV D n. We therefore suppose this holds and consider two cases.
Case 1. The vi are in general position in V , i.e. any subset of fv0; : : : ; vng of size n
spans V . For any w 2 V , it then follows from our assumption on Q that for � > 0
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small enough, the set fv0; : : : ; vn; w C �Qg is in general position in V . In view of
the definition of cQ given in (2.1), Proposition 2 of [14] therefore implies that the
left side of (2.5) is a constant function on V taking the value d.v0; : : : ; vn/ defined
as follows. Let �i for i D 0; : : : ; n be nonzero constants such that

Pn
iD0 �ivi D 0.

The �i are well-defined up to a simultaneous scalar multiplication. Then

d.v0; : : : ; vn/ D

(
.�1/iOB. Ovi / if the �i all have the same sign,
0 otherwise.

(2.6)

One readily checks that right side of (2.6) is independent of i . Now, the characteristic
function of V lies in LR, giving the desired result. Furthermore, if the vi lie in the
totally positive orthant .R>0/m, then the �i cannot all have the same sign and hence
d.v0; : : : ; vn/ D 0. This completes the proof in the case where the vi are in general
position.

Case 2. The vi are not in general position. Without loss of generality, assume that
v0; : : : ; vn�1 are linearly dependent. Let V 0 denote the .n � 1/-dimensional space
spanned by these n vectors. Denote by � 0WV ! V 0 and � WV ! R the projections
according to the direct sum decomposition V D V 0 ˚ Rvn. We claim that for
i D 0; : : : ; n � 1 and w 2 V , we have

cQ.v0; : : : ; Ovi ; : : : ; vn/.w/ D c� 0.Q/.v0; : : : ; Ovi ; : : : ; vn�1/.�
0.w// � gQ.w/; (2.7)

where

gQ.w/ D

(
1 if �.w/ � 0 and �.w/ D 0) �.Q/ > 0;

0 otherwise:

First note that if v0; : : : ; Ovi ; : : : ; vn are linearly dependent, then under our conditions
we necessarily have that v0; : : : ; Ovi ; : : : ; vn�1 are linearly dependent, and both sides
of (2.7) are zero.

Therefore suppose that the vectors v0; : : : ; Ovi ; : : : ; vn are linearly independent, in
which case v0; : : : ; Ovi ; : : : ; vn�1 are clearly linearly independent as well, and hence
span V 0. Furthermore � 0.Q/ 2 V 0 satisfies the condition that it is not contained in
the span of any subset of n � 2 of these vectors, or else Q would lie in the span of
n� 1 of the original vectors v0; : : : ; vn; hence the right side of (2.7) is well-defined.
Equation (2.7) now follows directly from the interpretation of the function cQ given
in (2.2).

To deal with the orientations note that if B 0 is any other basis of V , then

OB. Ovi / D OB.B
0/ �OB0. Ovi /: (2.8)

We therefore choose for convenience a basis B 0 for V whose last element is the
vector vn.
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Using (2.7) and (2.8) and the fact that cQ.v0; : : : ; vn�1/ D 0 since v0; : : : ; vn�1
are linearly dependent, we calculate

nX
iD0

.�1/iOB. Ovi /cQ.v0; : : : ; Ovi ; : : : ; vn/.w/

D OB.B
0/

n�1X
iD0

.�1/iOB0. Ovi /cQ.v0; : : : ; Ovi ; : : : ; vn/.w/

D OB.B
0/`Q.w/gQ.w/;

where

`Q.w/ D

n�1X
iD0

.�1/iOB0. Ovi /c� 0.Q/.v0; : : : ; Ovi ; : : : ; vn�1/.�
0.w//:

Now if we let B 00 be the basis of V 0 given by the image of the first n� 1 elements of
B 0 under � 0, it is clear that

OB0. Ovi / D OB00.v0; : : : ; Ovi ; : : : ; vn�1/:

Therefore the function `Q can be written

`Q.w/ D

n�1X
iD0

.�1/iOB00.v0; : : : ; Ovi ; : : : ; vn�1/c� 0.Q/.v0; : : : ; Ovi ; : : : ; vn�1/.�
0.w//:

This is the exact form for which we can use the inductive hypothesis to conclude that
`Q 2 LR.V

0/ and `Q D 0 if each vi lies in the totally positive orthant. It is readily
checked that this implies that `QgQ 2 LR.V / as desired (and `QgQ D 0 if each vi
lies in the totally positive orthant).

2.3. Signed fundamental domains. In this section we show that Theorem 2.1 can
be combined with a result of Colmez to deduce a theorem of Diaz y Diaz and
Friedman on the existence of signed Shintani domains. We use this result in the
proof of Theorem 3.10 in order to relate our cocycle to the special values of partial
zeta functions.

Consider the totally positive orthant .R>0/n � Rn, which forms a group under
the operation � of componentwise multiplication. Let D D fx 2 .R>0/n W
x1x2 � � � xn D 1g. Let U � D denote a subgroup that is discrete and free of rank
n�1. The goal of this section is to determine an explicit fundamental domain for the
action ofU on the totally positive orthant in terms of an ordered basis fu1; : : : ; un�1g
for U .
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Define the orientation

wu WD sign det.log.uij //n�1i;jD1/ D ˙1; (2.9)

where uij denotes the j th coordinate of ui . For each permutation � 2 Sn�1 let

vi;� D u�.1/ � � �u�.i�1/ 2 U; i D 1; : : : ; n

(so by convention v1;� D .1; 1; : : : ; 1/ for all � ). Define

w� D .�1/
n�1wu sign.�/ sign.det.vi;� /niD1/ 2 f0;˙1g:

We choose for our perturbation vector the coordinate basis vector en D
.0; 0; : : : ; 0; 1/, and assume that en satisfies the property that it does not lie in the
R-linear span of any .n � 1/ of elements of U . Note that the action of U preserves
the ray R>0en:
Theorem 2.2 (Colmez, [6], Lemme 2.2). If w� D 1 for all � 2 Sn�1, thenG

�2Sn�1

Cen.v1;� ; : : : ; vn;� / (2.10)

is a fundamental domain for the action of U on the totally positive orthant .R>0/n.
In other words, we haveX

u2U

X
�2Sn�1

cen.v1;� ; : : : ; vn;� /.u � x/ D 1

for all x 2 .R>0/n.

Remark 2.3. Note that each of the vectors vi;� lies in the positive orthant,
so each open cone C.vi1;� ; : : : ; vir ;� / is contained in the positive orthant when
r � 1. Furthermore, en lies along a coordinate axis and is not contained in
C.v1;� ; : : : ; vn;� /, hence 0 62 Cen.v1;� ; : : : ; vn;� /. Therefore CQ.v1;� ; : : : ; vn;� / �
.R>0/n.

The following generalization was recently proved by Diaz y Diaz and Friedman
using topological degree theory. We will show that the cocycle property of cQ proved
in Theorem 2.1 allows one to deduce their theorem from the earlier result of Colmez.
Note that our proof of the theorem relies upon Colmez’s theorem, whereas the proof
of Diaz y Diaz and Friedman recovers it.

Definition 2.4. A signed fundamental domain for the action of U on .R>0/n is by
definition a formal linear combinationD D

P
i aiCi of open cones with ai 2 Z such

that
P
u2U

P
i ai1Ci .u�x/ D 1 for all x 2 .R>0/n. We call 1D WD

P
i ai1Ci 2 KR

the characteristic function of D.

Note that when each ai D 1 and the Ci are disjoint, the set tiCi is a fundamental
domain in the usual sense.
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Theorem 2.5 (Diaz y Diaz–Friedman, [12], Theorem 1). The formal linear combi-
nation X

�2Sn�1

w�Cen.v1;� ; : : : ; vn;� /

is a signed fundamental domain for the action of U on .R>0/n, i.e.X
u2U

X
�2Sn�1

w�cen.v1;� ; : : : ; vn;� /.u � x/ D 1 (2.11)

for all x 2 .R>0/n.

Proof. Colmez proved the existence of a finite index subgroup V � U such that the
condition w� D 1 for all � holds for some basis of V (see [6], Lemme 2.1). Fix such
a subgroup V: Our technique is to reduce the desired result for U to the result for V ,
which is given by Colmez’s theorem.

Endow the abelian group KR with an action of U by

.uf /.x/ D f .u�1 � x/: (2.12)

The key point of our proof is the construction of a cohomology class Œ�U � 2
Hn�1.U;KR/ as follows. Given v1; : : : ; vn 2 U , let

�U .v1; : : : ; vn/ D sign.det.vi /niD1/cen.v1; : : : ; vn/ 2 KR: (2.13)

The U -invariance of �U follows from the definition of cen given in (2.1) along with
the above-noted property that the action of U preserves R>0en: The fact that �U
satisfies the cocycle property

nX
iD0

.�1/i�U .v0; : : : ; Ovi ; : : : ; vn/ D 0

is given by Theorem 2.1, since the vi lie in the positive orthant. We let Œ�U � 2
Hn�1.U;KR/ be the cohomology class represented by the homogeneous cocycle
�U .

The basis u1; : : : ; un�1 of U gives an explicit element ˛U 2 Hn�1.U;Z/ Š Z
as follows. We represent homology classes by the standard projective resolution
C �.U / D ZŒU �C1� of Z, and let ˛U be the class represented by the cycle

˛.u1; : : : ; un�1/ D .�1/
n�1wu

X
�2Sn�1

sign.�/Œ.v1;� ; : : : ; vn;� /� 2 ZŒU n�: (2.14)

It is a standard calculation that d˛.u1; : : : ; un�1/ D 0 and that the cohomology
class ˛U represented by ˛.u1; : : : ; un�1/ depends only on U and not the chosen
basis u1; : : : ; un�1 (see [20, Lemma 5]).
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The image of .Œ�U �; ˛U / under the cap product pairing

Hn�1.U;KR/ �Hn�1.U;Z/ �! KR;U WD H0.U;KR/

is by definition the image of the function
P
�2Sn�1

w�cQ.v1;� ; : : : ; vn;� / in KR;U .
Let J denote the group of functions .R>0/n �! Z, which is endowed with an

action of U as in (2.12). Denote by †U W KR;U ! J U the map defined by

.†Uf /.x/ D
X
u2U

f .u � x/: (2.15)

Note that the sum (2.15) is locally finite by the following standard compactness
argument. The action of U preserves the product of the coordinates of a vector,
and applying log to the coordinates sends the surface fx1 � � � xn D constantg to a
hyperplane. In this hyperplane, the image of a cone is bounded, and the action of
U is translation by a lattice. Given a point x, only finitely many lattice points can
translate x into the bounded region corresponding to a cone.

Now †U .�U \ ˛U / 2 J U is by definition the function on the left side of (2.11),
namely X

u2U

X
�2Sn�1

w�cen.v1;� ; : : : ; vn;� /.u � x/:

It remains to analyze this picture when U is replaced by its finite index subgroup
V chosen at the outset of the proof. General properties of group cohomology (see
[Br, pp. 112–114]) yield a commutative diagram:

Hn�1.V;KR/ �Hn�1.V;Z/
\ //

cores
��

KR;V

��

†V // J V

†U=V
��

Hn�1.U;KR/ �Hn�1.U;Z/

res

OO

\ // KR;U
†U // J U :

Here †U=V W J V ! J U is given by

.†U=V f /.x/ D
X

u2U=V

f .u � x/:

The desired result now follows from the fact that †V .�V \ ˛V / D 1 WD 1.R>0/n
by Colmez’s theorem, along with

cores.˛V / D ŒU W V � � ˛U ; (2.16)

res�U D �V ; (2.17)

†U=V .1/ D ŒU W V � � 1: (2.18)

Equation (2.16) is proven in [3, Sect. III, Prop. 9.5], whereas (2.17) and (2.18) are
obvious.
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2.4. The Shintani cocycle on GLn.Q/. Recall the notation � D GLn.Q/. In this
section we define a Shintani cocycle ˆSh on � . This cocycle will be directly related
to the cocycles �U defined in the previous section; however, since our cocycle will
be defined on the full group � rather than the simpler groups U � D in the positive
orthant, we will need to consider the quotient KR=LR rather than KR (cf. definition
(2.4) and the appearance of LR in Theorem 2.1). The relationship between ˆSh and
the �U in our cases of interest will be stated precisely in Section 3.1 below.

Let RnIrr denote the set of elements in Rn (viewed as row vectors) whose
components are linearly independent over Q, i.e. the set of vectors Q such that
Q � x ¤ 0 for nonzero x 2 Qn. The set RnIrr is a right �-set by the action of right
multiplication; we turn this into a left action by multiplication on the right by the
transpose (i.e.  �Q WD Q t ). Note that any Q 2 RnIrr satisfies the property that it
does not lie in the R-linear span of any n � 1 vectors in Qn � Rn. The elements of
RnIrr will therefore serve as our set of auxiliary perturbation vectors as employed in
Section 2.1.� We let Q D RnIrr=R>0, the set of equivalence class of elements of RnIrr
under multiplication by positive reals.

Let K � KR denote the subgroup generated by the characteristic functions of
rational open cones, i.e. by the characteristic functions of cones C.v1; : : : ; vn/ with
each vi 2 Qn. Let L D LR\K with LR as in (2.4). The abelian group K is naturally
endowed with a left �-module structure via

 � '.x/ D sign.det //'.�1x/;

and L is a �-submodule of K.
Let N denote the abelian group of maps Q �! K=L. This space is endowed

with a �-action given by .f /.Q/ D f .�1Q/. We now define a homogeneous
cocycle

ˆSh 2 Z
n�1.�;N /:

For A1; : : : ; An 2 � , let �i denote the first column of Ai . Given Q 2 Q, define

ˆSh.A1; : : : ; An/.Q/ D sign.det.�1; : : : ; �n//cQ.�1; : : : ; �n/ (2.19)

with cQ as in (2.1).

Theorem 2.6. We have ˆSh 2 Z
n�1.�;N /:

�To orient the reader who may be familiar with the notation of [8] or [12] in which one takes
Q D en D .0; 0; : : : ; 0; 1/ as in Section 2.3, one goes from this vector to an element of our RnIrr
by applying a change of basis given by the image in Rn of a basis of a totally real field F of degree n.
Our notation allows for rational cones C and irrational perturbation vectors Q rather than the reverse.
This is convenient for comparison with Sczech’s cocycle, in which one also chooses a vector Q 2 RnIrr.
See Section 3.1 and in particular (3.3) for more details.
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Proof. The fact that ˆSh is �-invariant follows directly from the definitions. In K;
the cocycle property

nX
iD0

.�1/iˆSh.A0; : : : ; OAi ; : : : ; An/.Q/ � 0 .mod L/

follows from Theorem 2.1 using for B the standard basis of Rn:

Denote by ŒˆSh� 2 Hn�1.�;N / the cohomology class represented by the
homogeneous cocycle ˆSh.

3. Applications to zeta functions

3.1. Totally real fields. Let F be a totally real field of degree n, and denote by
J1; : : : ; Jn W F ! R the n real embeddings ofF . Write J D .J1; : : : ; Jn/ W F ! Rn.
We denote the action of F � on Rn via composition with J and componentwise
multiplication by .x; v/ 7! x � v. Let U denote a subgroup of finite index in the
group of totally positive units in O�F . We can apply the discussion of Section 2.3 on
fundamental domains to the group J.U / � D.

Note that en D .0; 0; : : : ; 0; 1/ satisfies the property that it does not lie in the
R-linear span of any n � 1 elements of the form J.u/ for u 2 F �. Indeed, given
u1; : : : ; un�1 2 F �, there exists an x 2 F � such that TrF=Q.xui / D 0 for all
i D 1; : : : ; n � 1. Dot product with J.x/ defines an R-linear functional on Rn that
vanishes on the J.ui / but not on en, proving the claim.

In this section we explain the relationship between the class ŒˆSh� and the class
Œ�U � defined in Section 2.3 (where we write �U for �J.U /). Choosing a Z-basis
w D .w1; w2; : : : ; wn/ of OF yields an embedding �w WF � ! � given by

.w1u;w2u; : : : ; wnu/ D .w1; w2; : : : ; wn/�w.u/: (3.1)

Pullback by �w (i.e. restriction) yields a class ��wˆSh 2 H
n�1.U;N /.

Denote by J.w/ 2 GLn.R/ the matrix given by J.w/ij D Ji .wj /. Note that if
we let diag.J.u// be the diagonal matrix with diagonal entries Ji .u/, then

�w.u/ D J.w/
�1 diag.J.u//J.w/: (3.2)

Let
Q D .0; 0; : : : ; 1/J.w/�t : (3.3)

The vectorQ is the image under Jn of the dual basis tow under the trace pairing F �
F ! Q, .x; y/ 7! TrF=Q.xy/. In particular, Q is an element of RnIrr. Furthermore,
(3.2) and (3.3) yield

Q�w.x/
t
D Jn.x/Q
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for x 2 F �, which implies that the image of Q in Q is invariant under the action of
U . We can therefore viewQ as an element ofH 0.U;ZŒQ�/. In conjunction with the
canonical map N �Q ! K=L given by .f;Q/ 7! f .Q/, the cup product gives a
map

Hn�1.U;N / �H 0.U;ZŒQ�/! Hn�1.U;K=L/
yielding an element ��w ŒˆSh� [Q 2 H

n�1.U;K=L/.
Now consider the map induced by J.w/, denoted

J.w/� W KR �! KR;

given by .J.w/�f /.x/ D f .J.w/x/. Our desired relation is

J.w/�Œ�U � D �
�
w ŒˆSh� [Q

in Hn�1.U;KR=LR/: In fact, this relationship holds on the level of cocycles as
follows. For any x 2 F �, we define a modified cocycle ˆSh;x 2 Zn�1.�;N /
by letting  D �w.x/�1 and setting

ˆSh;x.A1; : : : ; An/ D ˆSh.A1; : : : ; An/: (3.4)

It is a standard fact in group cohomology that the cohomology class represented by
ˆSh;x is independent of x and hence equal to ŒˆSh� (see [20, Lemma 4]). We have
the following equality of cocycles:

J.w/��U D �
�
wˆSh;w1 [Q

in Zn�1.U;KR=LR/. In concrete terms, this says for u D .u1; : : : ; un/:

�U .u/.J.w/x/ D ˆSh;w1.�w.u/;Q/.x/: (3.5)

In Section 3.6 this relationship will be used along with Theorem 2.5 to relate the
class ŒˆSh� to special values of zeta functions attached to the field F . Over the next
few sections we first we recall Shintani’s results on cone zeta functions.

3.2. Some bookkeeping. We will be interested in sums over the points lying in
the intersection of open simplicial cones with certain lattices in Rn. In this section
we introduce a convenient way of enumerating these points. Let V D Qn=Zn, and
consider for v 2 V the associated lattice v C Zn � Rn.

Let C be a rational open cone. By scaling the generators of C , we can find R-
linearly independent vectors �1; : : : ; �r 2 Zn such that C D R>0�1C � � � CR>0�r :
Let P DP.�1; : : : ; �r/ denote the half-open parallelpiped generated by the �i :

P D fx1�1 C � � � C xr�r W 0 < x1; : : : ; xr � 1g ; (3.6)

with the understanding that P.;/ D f0g in the case r D 0. Then

C \ .v C Zn/ D
G

a2P\.vCZn/

.aC Z�0�1 C � � � C Z�0�r/; (3.7)

where the disjointness of the union follows from the linear independence of the �i .
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Now let C be a rational open cone of maximal dimension r D n in Rn. Let
Q 2 Q and consider the set CQ defined in Section 2.1, consisting of the disjoint
union C and some of its boundary faces of all dimensions. We would like to
enumerate the points in CQ \ .v C Zn/.

For each subset I � f1; : : : ; ng, the boundary face CI D C.�i W i 2

I / is assigned a weight via the Q-perturbation process denoted weight.CI / 2
f0; 1g and given by (2.3). Associated to each cone CI is the parallelpiped
PI DP.�i W i 2 I /. We have

CQ \ .v C Zn/ D
G

I�f1;:::;ng
a2PI\.vCZn/

weight.CI /.aC
X
i2I

Z�0�i /; (3.8)

where our notation means that the set .a C
P

Z�0�i / should be included if
weight.CI / D 1 and not included if weight.CI / D 0.

Let � 2 Mn.Z/ \ � denote the matrix whose columns are the �i . For each
a 2 PI \ .v C Zn/ that occurs as I ranges over all subsets of f1; : : : ; ng, we can
associate the class x D a � v 2 Zn=�Zn. Conversely, given a class x 2 Zn=�Zn,
there will be at least one a giving rise to that class.

To be more precise, let J D J.x/ denote the set of indices j for which .��1.vC
x//j 2 Z. The number of points a giving rise to the class x is 2#J . Let J D
f1; : : : ; ng � J . For each I � J , we can write down a unique point aI 2 PI such
that the image of aI � v in Zn=�Zn is equal to x. We define aI by letting ��1.aI /
be congruent to ��1.v C x/ modulo Zn, and further requiring ��1.aI /i 2 .0; 1/ if
i 62 J , and

��1.aI /i WD

(
0 i 2 J \ I D I

1 i 2 J \ I:
(3.9)

We can then rewrite (3.8) as

CQ \ .v C Zn/ D
G

x2Zn=�Zn

I�J.x/

weight.CI /.aI C
X
i2I

Z�0�i /: (3.10)

This decomposition will be used in Sections 4.2 and 5.2.

3.3. Cone generating functions. Let C be a rational open cone in Rn and let v 2
Qn. Let x1; : : : ; xn be variables and let g.C; v/ be the generating series for the set
of integer points in C � v:

g.C; v/.x/ D
X

m2.C�v/\Zn
xm 2 QŒŒx; x�1��;

where as usual xm denotes xm11 � � � x
mn
n . If� 2 Zn, then g.C; vC�/ D x��g.C; v/:
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The series g.C; v/ is actually the power series expansion of a rational function.
In fact, the decomposition (3.7) gives rise to the identity

g.C; v/.x/ D

P
a2.P�v/\Zn x

a

.1 � x�1/ � � � .1 � x�r /
2 Q.x/; (3.11)

where �i are integral generators of the cone C , and P D P.�1; : : : ; �r/ is the
half-open parallelpiped defined in (3.6).

Write c for the characteristic function of C and define g.c; v/ D g.C; v/. The
following fundamental algebraic result was proved independently by Khovanskii and
Pukhilov [17] and Lawrence [18] (cf. [2, Theorem 2.4]).

Proposition 3.1. There is a unique map g W K � Qn �! Q.x/ that is Q-linear
in the first variable such that g.c; v/ D g.C; v/ for all rational open cones C and
g.c; v/ D 0 if c 2 L.

Thus we may view g as a pairing

g W K=L �Qn
�! Q.x/:

Let Q..z// be the field of fractions of the power series ring QŒŒz��. In our
applications, we will consider images of the functions g.C; v/ under the mapping
Q.x/! Q..z// defined by xi 7! ezi . Define

h.C; v/.z/ D ev�zg.C; v/.ez1 ; : : : ; ezn/ 2 Q..z//:

With �1; : : : ; �r and P as above, we have

h.C; v/.z/ D

P
a2P\.vCZn/ e

a�z

.1 � e�1�z/ � � � .1 � e�r �z/
:

From the corresponding properties of the functions g.C; v/, it follows immediately
that h may be viewed as a pairing

h W K=L �Qn=Zn �! Q..z//

that is linear in the first variable. We call h the Solomon–Hu pairing owing to its first
appearance in the works [23, 15].

3.4. Special values of Shintani zeta functions. We now recall results relating the
generating function g.C; v/ introduced above to special values of complex analytic
Shintani zeta functions, whose definition we now recall.

Let M � Mn.R/ be the subset of matrices such that the entries of each column
are linearly independent over Q (i.e. for each nonzero row vector x 2 Qn and
M 2 M, the vector xM has no component equal to 0). Let D � SLn.R/ be
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the subgroup of n � n real diagonal matrices with determinant 1. Given M 2M,
define a polynomial fM 2 RŒx1; : : : ; xn� by

fM .x1; : : : ; xn/ D N..x1; : : : ; xn/M/

D .xM/1.xM/2 � � � .xM/n: (3.12)

Note that fM depends only on the image of the matrix M in M=D.
View the elements of the rational open cone C D C.w1; : : : ; wr/ � Rn as

column vectors. Choose the wi to have integer coordinates. We consider a matrix
M 2M such that .C;M/ satisfies the following positivity condition:

M tw � .R>0/n for all w 2 C: (3.13)

This positivity condition will be needed when defining analytic Shintani zeta
functions. When dealing with their algebraic incarnations, i.e. the cone generating
functions h.C; v/ introduced in the previous section, it is not required. This added
flexibility in the algebraic setting is crucial for the cohomological constructions to
be described in the following sections. With C and M as above and a vector v 2 V ,
define the Shintani zeta function

�.C;M; v; s/ D
X

x2C\vCZn

1

fM .x/s
:

Using (3.13), it is easy to see that this series is absolutely convergent for s 2 C with
Re.s/ > 1. Letting P D P.w1; : : : ; wr/ be the parallelpiped defined in (3.6) and
W D .w1; : : : ; wr/ the n � r matrix whose columns are the generators of the cone
C , we define

Z.C;M; a; s/ D
X

x2.Z�0/r

1

fM .aCWx/s

for a 2P \ .v C Zn/. We obtain the finite sum decomposition

�.C;M; v; s/ D
X

a2P\vCZn
Z.C;M; a; s/:

Shintani [22] proved that each Z.C;M; a; s/, and hence �.C;M; v; s/ itself, admits
a meromorphic continuation to C.

Shintani also gave a formula for the values of these zeta functions at nonpositive
integers. Observe that if k is a nonnegative integer, then fM .x/k is .kŠ/n times the
coefficient of N.z/k in the Taylor series expansion of ezM

tx . Summing, we obtain
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the nonsense identity chain

“�.C;M; v;�k/ D
X

x2C\.vCZn/

fM .x/
k

D .kŠ/n coeff

0@ X
x2C\.vCZn/

ezM
tx;N.z/k

1A
D .kŠ/n coeff

�
h.C; v/.zM t /;N.z/k

�
”:

Almost nothing in the above identity chain is actually defined and in particular
the given sums do not converge. Further, h.C; v/.zM t / is not holomorphic on
a punctured neighborhood of z D .0; : : : ; 0/ if n > 1, making the notion of
coefficient undefined. Nonetheless, via an algebraic trick—really, an algebraic
version of the trick used by Shintani in his proof of the analytic continuation
of �.C;M; v; s/—we generalize the notion of coefficient to a class of functions
including the h.C; v/.zM t /. Remarkably, with this generalized notion of coefficient,
the identity

�.C;M; v;�k/ D .kŠ/n coeff
�
h.C; v/.zM t /;N.z/k

�
(3.14)

holds. We now define Shintani’s operator and state his theorem giving a rigorous
statement of (3.14).

Let K be a subfield of C. For 1 � j � n, we write

Zj D .zj z1; : : : ; zj zj�1; zj ; zj zjC1; : : : ; zj zn/: (3.15)

The following lemma is elementary.

Lemma 3.2. Let g 2 KŒŒz��, let p 2 KŒz� be homogeneous of degree d with
coeff.p; zdj / ¤ 0, and let G D g=p. Then G.Zj / 2 z�dj KŒŒz��.

Call a homogeneous polynomial p 2 KŒz� of degree d powerful if the power
monomials in p all have nonzero coefficients, i.e., if coeff.p; zdj / ¤ 0 for all j . The
powerful polynomials of interest to us arise as follows. Call a linear form L.z/ D

`1z1 C � � � C `nzn dense if `j ¤ 0 for all j . If L1; : : : ; Lr are dense linear forms,
then p D L1 � � �Lr is powerful.

Definition 3.3. Let K..z//hd � K..z// be the subalgebra consisting of G 2 K..z//
that can be written in the form G D g=p for a power series g 2 KŒŒz�� and a
powerful homogeneous polynomial p 2 KŒz�.

Lemma 3.4. Suppose C is a rational open simplicial cone in Rn, M 2 M
and v 2 Qn. Let Q.fmij g/ be the field generated by the entries of M . Then
h.C; v/.zM t / 2 Q.fmij g/..z//hd.
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Proof. Write C D C.w1; : : : ; wr/ and let a 2 P \ .v C Zn/. Then a 2 Qn, so
ezM

ta 2 KŒŒz��. For each j D 1; : : : ; r , set Lj .z/ D zM twj . Then we can write
1 � ezM

twj D Lj .z/gj .z/ with gj 2 KŒŒz���. Setting fa D ezM
tag�11 � � �g

�1
r and

p D L1 � � �Lr , we have

h.C; v/.zM t / D
X

a2P\.vCZn/

fa=p:

It remains to show that p is powerful. Since M 2 M and wj 2 Qn for all j , it
follows that each Lj is dense. Therefore p is powerful as desired.

By Lemma 3.2, if G 2 K..z//hd, then coeff.G.Zj /; z
m/ makes sense for any j

and any m 2 Zn. This leads to the following definition.

Definition 3.5. For j D 1; : : : ; n, define operators �.k/j W K..z//
hd ! K by

�
.k/
j G D coeff.G.Zj /;N.Zj /k/; (3.16)

where Zj is given in (3.15). Define the Shintani operator �.k/ W K..z//hd ! K by

�.k/ D
.kŠ/n

n

nX
jD1

�
.k/
j : (3.17)

Remark 3.6. If g 2 KŒŒz��, then �.k/g is simply .kŠ/n times the coefficient of
.z1 � � � zn/

k in g. Thus, the operator�.k/ extends the coefficient extraction operation
from KŒŒz�� to K..z//hd.

The Shintani operator shares the following properties with the operation of taking
the .z1 � � � zn/k-coefficient of a regular power series. The proof is an elementary
computation.
Lemma 3.7. Let h 2 K..z//hd. Then

� For d1; : : : ; dn 2 K, we have

�.k/h.d1z1; : : : ; dnzn/ D .d1 � � � dn/
k�.k/h.z1; : : : ; zn/:

� For any permutation � , we have

�.k/h.z�.1/; : : : ; z�.n// D �
.k/h.z1; : : : ; zn/:

Finally, we may state the following theorem of Shintani:
Theorem 3.8 ([22, Proposition 1]). Let C be a rational open cone, v 2 V ,
and M 2M satisfying (3.13). The function �.C;M; v; s/ has a meromorphic
continuation to C and satisfies

�.C;M; v;�k/ D �.k/h.C; v/.zM t / for k 2 Z�0:

We observe that by Lemma 3.7, the coefficient �kh.C; v/.zM t / depends only
on the image of M in M=D.
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3.5. The power series-valued Shintani cocycle. In this section we define the
Shintani cocycle in the form that will be most useful for our desired applications; in
particular, the cocycle will take values in a module F for which it can be compared
to the Eisenstein cocycle defined by Sczech in [20] and studied in [5].

The set M defined in Section 3.4 is naturally a left �-set via the action of left
multiplication. Let F denote the real vector space of functions

f WM �Q � V �! R..z//hd

satisfying the following distribution relation for each nonzero integer �:

f .M;Q; v/ D sgn.�/n
X
�wDv

f .�M; ��1Q;w/: (3.18)

Define a left �-action on F as follows. Given  2 � , choose a nonzero scalar
multiple A D � with � 2 Z such that A 2Mn.Z/. For f 2 F , define

.f /.M;Q; v/ D
X

r2Zn=AZn
sgn.detA/f .AtM;A�1Q;A�1.r C v//: (3.19)

The distribution relation (3.18) implies that (3.19) does not depend on the auxiliary
choice of �. Note that the action of � on F factors through PGLn.Q/. The
Solomon–Hu pairing satisfies the identity

h.C; v/.zM t / D h.C; v/.zM t /

for any rational cone C:
We can use ˆSh to define a cocycle ‰Sh 2 Z

n�1.�;F/ by

‰Sh.A;M;Q; v/ WD h.ˆSh.A/.Q/; v/.zM
t /: (3.20)

Here and in the sequel we simply write‰Sh.A;M;Q; v/ for‰Sh.A1; : : : ; An/.M;Q; v/

with A D .A1; : : : ; An/ 2 �
n. Our cocycle ‰Sh satisfies the following rationality

result.

Theorem 3.9. The value �.k/‰Sh.A;M;Q; v/ lies in the field K generated over Q
by the coefficients of the polynomial fM .x/.

Proof. We will show that�.k/.h.C; v/.zM t // lies inK for any rational cone C . By
the definition of fM .x/, any automorphism of C fixing fM .x/ permutes the columns
of M up to scaling each column by a factor �i such that

Qn
iD1 �i D 1: Therefore it

suffices to prove that our value is invariant under each of these operations, namely
permuting the columns or scaling the columns by factors whose product is 1. Now,
in the tuple zM t , permuting the columns M has the same effect as permuting the
variables zi ; and scaling the i th column ofM by �i has the same effect as scaling zi
by �i . The desired result then follows from Lemma 3.7.
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3.6. Special values of zeta functions. Let F be a totally real field, and let a and f
be relatively prime integral ideals of F . The goal of the remainder of this section is
to express the special values �f.a;�k/ for integers k � 0 in terms of the cocycle
‰Sh. We invoke the notation of Section 3.1; in particular we fix an embedding
J W F ,! Rn.

Let R D ZŒM=D�Q�V � denote the free abelian group on the set M=D�Q�V ,
which is naturally endowed with a left �-action by the action on the sets M=D;Q;
and V . There is a cycle Zf.a/ 2 Hn�1.�;R/ associated to our totally real field
F and integral ideals a; f. The cycle consists of the data of elements A 2 ZŒ�n�;
M 2M=D, Q 2 Q, and v 2 V , defined as follows.

Fix a Z-module basis w D .w1; : : : ; wn/ for a�1f. Let f�1; : : : ; �n�1g denote a
basis of the groupU of totally positive units ofF congruent to 1 modulo f. Following
(2.14), define

A.�1; : : : ; �n�1/ D .�1/n�1w�
X

�2Sn�1

sign.�/Œ.�w.f1;� /; : : : ; �w.fn;� //� 2 ZŒ�n�:

(3.21)
Here �w is the right regular representation of U on w defined in (3.1), and w� is the
orientation associated to J.�/ as in (2.9).

Let M 2M=D be represented by the matrix

N.a/1=n.Jj .wi //ni;jD1 D N.a/1=nJ.w/t : (3.22)

Note that fM 2 QŒx1; : : : ; xn� is the homogeneous polynomial of degree n given by
the norm:

fM .x1; : : : ; xn/ D N.a/ � N.w1x1 C � � � C wnxn/: (3.23)

Let Q be the image under the embedding Jn W F ,! R of the dual basis to w under
the trace pairing on F , as in (3.3) :

Q D .0; : : : ; 0; 1/J.w/�t D .Jn.w
�
1 /; : : : ; Jn.w

�
n//; (3.24)

where Tr.wiw�j / D ıij . Define the column vector

v D .Tr.w�1 /; : : : ;Tr.w�n//; so that 1 D v1w1 C v2w2 C � � � C vnwn: (3.25)

Dot product with .w1; : : : ; wn/ provides a bijection v C Zn  ! 1C a�1f:
We now define Zf.a/ 2 Hn�1.�;R/ to be the homology class represented by the

homogeneous .n � 1/-cycle

QZ D A˝ Œ.M;Q; v/� 2 ZŒ�n�˝R:

The fact that QZ is a cycle follows from [20, Lemma 5] as in (2.14) using the fact that
the elements M , Q, and v are invariant under the action of �w.U /.
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For each integer k � 0, the canonical �-invariant map F ˝ R ! R given by
f ˝ Œ.M;Q; v/� 7! �.k/f .M;Q; v/ is well-defined by Lemma 3.7, and induces via
cap product a pairing

h ; ik W H
n�1.�;F/ �Hn�1.�;R/ �! R:

Here R has the trivial �-action.�

Theorem 3.10. We have �F;f.a;�k/ D h‰Sh;Zf.a/ik 2 Q:
The rationality of �F;f.a;�k/ is a celebrated theorem of Klingen and Siegel (see

[16] for a nice survey of the history of various investigations on these special values).
The proof we have outlined here is a cohomological reformulation of Shintani’s

original argument, with the added benefit that our definition of Zf.a/ gives an explicit
signed fundamental domain.

Proof. LetU denote the group of totally positive units of F congruent to 1 modulo f,
and letD D

P
i aiCi denote a signed fundamental domain for the action ofU on the

totally positive orthant of Rn (where as in Section 3.1, u 2 U acts by componentwise
multiplication with J.u/). Then for Re.s/� 0,

�F;f.a; s/ D
X

b�OF
b�fa

1

Nbs
D

X
fy21Ca�1f; y�0g=U

1

.NaNy/s
.a�1b D .y//

D

X
y21Ca�1f
J.y/2D

1

.NaNy/s
: (3.26)

Here we use the shorthand
P
J.y/2D for

P
i ai

P
J.y/2Ci

. Now Theorem 2.5 implies
that, using the notation of (2.13) and (2.14), the function �U .˛.�1; : : : ; �n�1// is the
characteristic function 1D of such a signed fundamental domain D for the action
of U on .R>0/n. (Recall from Definition 2.4 that if D D

P
aiCi is a signed

fundamental domain then 1D WD
P
ai1Ci .) Therefore (3.5) implies that

ˆSh;w1.A;Q/ D 1J.w/�1D:

Note that for an element x 2 F , the vector v D J.w/�1J.x/ 2 Qn satisfies
x D w �v, where w D .w1; : : : ; wn/. Therefore J.w/�1D consists of rational cones
and

h‰Sh;Zf.a/ik D �
.k/‰Sh.A;M;Q; v/

D �.k/h.ˆSh;w1.A;Q/; v/.zM t /

D �.k/h.1J.w/�1D; v/.zM
t /

D �.J.w/�1D;M; v;�k/ (3.27)

by Theorem 3.8.
�To make contact with the notation of the introduction, note that for each integer k we obtain a map

�k W R ! N_, i.e. a pairing N � R ! R, by .ˆ; Œ.M;Q; v/�/ 7! �.k/h.ˆ.Q/; v/.zM t /. The
class denoted Zk in the introduction is the image of Zf.a/ under the map on homology induced by �k .
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Here ˆSh;w1 was defined in (3.4), and may be substituted for ˆSh since it represents
the same cohomology class. Note also that (3.13) is satisfied for each pair
.J.w/�1Ci ;M/ by the definition of M in (3.22) and the fact that Ci � .R>0/n
(which in turn was explained in Remark 2.3). By definition, we have for Re.s/ large
enough:

�.J.w/�1D;M; v; s/ D
X

x2J.w/�1D\vCZn

1

fM .x/s

D

X
y21Ca�1f
J.y/2D

1

.NaNy/s
; (3.28)

where the last equation uses the substitution y D w �x and (3.23). Comparing (3.26),
(3.27), and (3.28) yields the desired equality �F;f.a;�k/ D h‰Sh;Zf;aik .

Finally, the rationality of h‰Sh;Zf.a/ik D �.k/‰Sh.A;M;Q; v/ follows from
Theorem 3.9, since fM .x/ has rational coefficients.

4. Comparison with the Sczech cocycle

In this section we prove that the Shintani cocycle ‰Sh defined in Section 3.5 is
cohomologous to the one defined by Sczech in [20]. We begin by recalling the
definition of Sczech’s cocycle. The reader is referred to [5] or [20] for a lengthier
discussion of Sczech’s construction.

4.1. The Sczech cocycle. For n vectors �1; : : : ; �n 2 Cn, define a rational function
of a variable x 2 Cn by

f .�1; : : : ; �n/.x/ D
det.�1; : : : ; �n/
hx; �1i � � � hx; �ni

: (4.1)

The function f satisfies the cocycle relation (see [20, Lemma 1, pg. 586])

nX
iD0

.�1/if .�0; : : : ; O�i ; : : : ; �n/ D 0: (4.2)

Consider A D .A1; : : : ; An/ 2 �
n and x 2 Zn � f0g. For i D 1; : : : ; n, let $i D

$i .A; x/ denote the leftmost column of Ai that is not orthogonal to x. Let v 2 V D
Qn=Zn. Sczech considers the sumX

x2Zn�f0g

e.hx; vi/f .$1; : : : ;$n/.x/; (4.3)

where e.u/ WD e2�iu.
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Although the definition of$i ensures that each summand in (4.3) is well-defined, the
sum itself is not absolutely convergent. To specify a method of summation, Sczech
introduces a vector Q 2 Q and defines the Q-summation

Q‰Z.A;Q; v/ D .2�i/
�n

X
x2Zn�f0g

e.hx; vi/f .$1; : : : ;$n/.x/jQ

WD .2�i/�n lim
t!1

X
x2Zn�f0g
jQ.x/j<t

e.hx; vi/f .$1; : : : ;$n/.x/: (4.4)

Here the vector Q gives rise to the function Q.x/ D hx;Qi, and the summation
over the region jQ.x/j < t is absolutely convergent for each t .

More generally, given a homogeneous polynomial P 2 CŒx1; : : : ; xn�, Sczech
defines

Q‰Z.A; P;Q; v/

D .2�i/�n�degP
X

x2Zn�f0g

e.hx; vi/P.�@x1 ;�@x2 ; : : : ;�@xn/.f .$1; : : : ;$n//.x/jQ:

(4.5)

Sczech shows that the function Q‰Z is a cocycle on � valued in the module QF defined
in Section 5.3 below. In order to make a comparison with our Shintani cocycle
‰Sh 2 Z

n�1.�;F/, however, we consider now an associated cocycle valued in the
module F defined in Section 3.5. We prove in Proposition 4.9 below that there exists
a power-series valued cocycle ‰Z 2 Z

n�1.�;F/ such that for each integer k � 0,
we have

�.k/‰Z.A;M;Q; v/ D Q‰Z.A; f
k
M ;Q; v/: (4.6)

Our main theorem in this section is:

Theorem 4.1. Define ‰CSh 2 Z
n�1.�;F/ by

‰CSh.A;M;Q; v/ D
1

2
.‰Sh.A;M;Q; v/C‰Sh.A;M;�Q; v//

and let ‰P 2 Z
n�1.�;F/ be the “polar cocycle" defined by

‰P.A;M;Q; v/ D
.�1/nC1 det.�/Qn

jD1 zM
t�j

; (4.7)

where � D .�1; : : : ; �n/ is the collection of the leftmost columns of the tupleA 2 �n:
Then we have the following equality of classes in Hn�1.�;F/ :

Œ‰Z� D Œ‰
C
Sh�C Œ‰P�: (4.8)
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Remark 4.2. It is proven in [20, Theorem 3] that the cohomology class Œ‰P� is
nontrivial. However, it clearly vanishes under application of the Shintani operator
�.k/ and therefore does not intervene in arithmetic applications.

Remark 4.3. In [20], Sczech considers a matrix of m vectors Qi 2 Q and the Q
summation (4.5) with Q.x/ D

Q
Qi .x/. However, the resulting cocycle is simply

the average of the individual cocycles obtained from eachQi . (This is not clear from
the original definition, but follows from Sczech’s explicit formulas for his cocycle.)
Therefore it is sufficient to consider just one vector Q.

Remark 4.4. In view of Theorem 4.1 and (4.6), the evaluation of partial zeta
functions of totally real fields using Sczech’s cocycle given in [20, Theorem 1]
follows also from our Theorem 3.10. In fact, we obtain a slightly stronger result
in that we obtain the evaluation using each individual vector Qi D Ji .w

�/,
whereas Sczech obtains the result using the matrix of all n such vectors; it would
be interesting to prove this stronger result directly from the definition of Sczech’s
cocycle via Q-summation, rather than passing through the Shintani cocycle and
Theorem 4.1.

4.2. A generalization of Sczech’s construction. Let k be a positive integer, and let
A D .A1; : : : ; Ak/ 2 �

k . For each tuple w 2 f1; : : : ; ngk , let B.A;w/ � Zn � f0g
denote the set of vectors x such that the leftmost column of Ai not orthogonal to x
is the wi th, for i D 1; : : : ; k. In other words,

B.A;w/ D

k\
iD1

fx 2 Zn W hx;Aij i D 0 for j < wi ; hx;Aiwi i ¤ 0g:

Here Aij denotes the j th column of the matrix Ai . Then

Zn � f0g D
G

w2f1;:::;ngk

B.A;w/:

Sczech’s sum (4.4) can be written with k D n as:

Q‰Z.A;Q; v/ D
X
w

X
x2B.A;w/

e.hx; vi/f .A1w1 ; : : : ; Anwn/.x/jQ:

We now generalize this expression by replacing the columns Aiwi with certain other
columns of the matrices Ai .

Write Sk D f1; : : : ; kg and for simplicity let S D Sn. Given A D

.A1; : : : ; Ak/ 2 �
k and an element t D ..a1; b1/; .a2; b2/; : : : ; .an; bn// 2 .Sk �

S/n, define
�.A; t/ D .Aa1b1 ; Aa2b2 ; : : : ; Aanbn/:

In other words, �.A; t/ is an n � n matrix whose i th column is the bi th column of
Aai .
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For any function g W Sk ! .Sk � S/
n, we would like to consider the sum

 .g/.A;Q; v/ D
X
w

X
x2B.A;w/

e.hx; vi/f .�.A; g.w///.x/jQ: (4.9)

For example, Q‰Z D  .ˇ/ where ˇ.w/ D ..1; w1/; .2; w2/; : : : ; .n; wn//: The
difficulty with (4.9) in general, however, is that the denominators in the expression
defining f may vanish; it is therefore necessary to introduce an auxiliary variable
u 2 Cn and to consider the function

 .g/.A;Q; v; u/ D
X
w

X
x2B.A;w/

e.hx; vi/f .�.A; g.w///.x � u/jQ: (4.10)

By Sczech’s analysis [20, Theorem 2], this Q-summation converges for all u 2 Cn
such that the map x 7! f .�.A; g.w///.x � u/ is defined on B.A;w/, i.e., such that
the denominator of the right hand side of (4.1) is nonzero. Thus it converges for u in
a dense open subset of Cn that consists of the complement of a countable union of
hyperplanes. In fact, this convergence is uniform for u in sufficiently small compact
subsets of Cn.

This formalism allows for the construction of homogeneous cochains inC k�1.�;F/
as follows.

Proposition 4.5. For any function g W Sk ! .Sk�S/
n andA D .A1; : : : Ak/ 2 �k ,

there is a unique power series

‰.g/.A;Q; v/ 2 Q..z//

such that
 .g/.A;Q; v; u/ D .2�i/n‰.g/.A;Q; v/.2�iu/ (4.11)

for any u 2 Cn for which (4.10) is defined. Furthermore, for any M 2M we have

‰.g/.A;Q; v/.zM t / 2 R..z//hd;

and the assignment .A;M;Q; v/ 7! ‰.g/.A;Q; v/.zM t / is a homogeneous
cochain in C k�1.�;F/.

The following lemma is the technical heart of the proof of Proposition 4.5 and is
proven by reducing to computations in [20].

Lemma 4.6. Let H � Qn be a vector subspace and let L D H \ Zn. Let � D
.�1; : : : ; �n/ 2Mn.Z/ \ � . Then for every v 2 Qn,

G.u/ WD
X
x2L

e.hx; vi/f .�1; : : : ; �n/.x � u/jQ

belongs to .2�i/nQ..2�iu//.
If M D .mij / 2M, then G.uM t / 2 .2�i/nQ.fmij g/..2�iu//hd.
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Remark 4.7. As with (4.10), the Q-summation defining G.u/ converges for u in
a dense open subset of Cn that consists of the complement of a countable union of
hyperplanes. The convergence is uniform for u in sufficiently small compact sets.

Proof. Set x0 D x� , u0 D u� , and Q0 D ��1Q. Then

G.u/ D
X
x2L

e.hx; vi/ det.�/
hx � u; �1i � � � hx � u; �ni

ˇ̌̌
Q

D

X
x02L�

e.hx0; ��1vi/ det.�/
.x01 � u

0
1/.x

0
n � u

0
n/

ˇ̌̌
Q0
:

Suppose first that H D Qn, so that L D Zn. Then L� is a finite-index sublattice of
L. Since the nontrivial characters of L=L� are x 7! e.hx; ��1yi/ for y 2 L�=�L�,
we have the Fourier expansion

1L� .x0/ D
1

j det � j

X
y2L�=�L�

e.hx0; ��1yi/:

(L� is the dual lattice of L, with its elements naturally viewed as column vectors.)
Therefore,

G.u/ D s�
X

y2L�=�L�

X
x02L

e.hx0; ��1.v C y/i/

.x01 � u
0
1/ � � � .x

0
n � u

0
n/

ˇ̌̌
Q0
;

where s� D sgn.det �/: Letting p D u0 � x0, we obtain

G.u/ D s�
X

y2L�=�L�

C1.u
0; ��1.v C y/;Q0/

where, adopting notation from [20, (3)],

C1.u; v;Q/ D
X

p2Zn�Cu

e.hu � p; vi/

p1 � � �pn

ˇ̌̌
Q
:

The fact that G.u/ belongs to .2�i/nQ..2�iu// now follows from Sczech’s
evaluation of C1.u; v;Q/ in elementary terms given in [20, Theorem 2].

Now suppose r WD dimH < n. Choose a matrix � D .�1; : : : ; �r/ 2 Mn�r.Z/
whose column space is H?. Then L� D .H \ Zn/� has finite index in

K WD H� \ Zn D fx 2 Zn W hx; �1i D � � � hx; �ri D 0g:

Inserting the character relations as above, we have

G.u/ D s�
X

y2K�=�L�

X
x02K

e.hx0; ��1.v C y/i/

.x01 � u
0
1/ � � � .x

0
n � u

0
n/

ˇ̌̌
Q0
:
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Computing as in [20, page 599], we obtain

G.u/ D s�
X

y2K�=�L�

C1.�; u
0; ��1.v C y/;Q0/;

where

C1.�; u; v;Q/ D

Z 1

0

� � �

Z 1

0

C1.u; t1�1 C � � � tr�r C v;Q/dt1 � � � dtr :

By the proof of [20, Lemma 7], we have

C1.�; u
0; ��1.vCy/;Q0/

nY
iD1

.1� e.u0i // 2 .2�i/
nQŒŒ2�iu0�� D .2�i/nQŒŒ2�iu��:

for all y. Thus G.u/ 2 .2�i/nQ..2�iu//.
To prove the last statement of the lemma, let M D .mij / 2 M. Then

e.uM t�j / � 1 D 2�i.uM t�j /H.u/ for an invertible power series H.u/ 2
Q.fmij g/ŒŒ2�iu��. Since M 2 M, no component of M t�j is equal to zero.
Therefore, uM t�j 2 Q.fmij g/Œu� is a dense linear form (see the paragraph following
Lemma 3.2 for the terminology). The desired result then follows from the proof of
Lemma 3.4.

Proof of Proposition 4.5. Each B.A;w/ has the form L �
S
i Mi where L is a

sublattice of Zn and the Mi are finitely many distinct sublattices of L with positive
codimension. The existence of the functions ‰.g;A;Q; v/ now follows from
inclusion-exclusion and Lemma 4.6, as does the fact that ‰.g/.A;Q; v/.zM t /

belongs to R..z//hd when M 2M.
To see that .A;M;Q; v/ 7! ‰.g/.A;Q; v/.zM t / is homogeneous .k � 1/-

cochain, we first observe that for anyC 2 � , we have �.CA; g.w// D C�.A; g.w//.
Furthermore, it is easy to see that B.CA;w/ D B.A;w/C�1, and a straightforward
change of variables then shows that

 .g/.CA;Q; v; uM t / D  .g/.A; C�1Q;C�1v; uM tC/:

4.3. Recovering the Sczech and Shintani cocycles. We apply the formalism of
the previous section to the following functions Sn ! .S � S/n:

˛.w/ D ..1; 1/; .2; 1/; : : : ; .n; 1//;

ˇ.w/ D ..1; w1/; .2; w2/; : : : ; .n; wn//:

As we now show, the power series ‰.˛/ and ‰.ˇ/ associated to these functions are
the Shintani and Sczech cocycles, respectively (up to an error term given by the polar
cocycle in the first instance).
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First we prove a lemma that evaluates the Shintani operator on a regular power
series twisted by M 2 M. Let fM be the polynomial defined in (3.12). Let
� 2 Mn.Z/ and define coefficients P kr .�/ indexed by tuples r D .r1; : : : ; rn/ of
nonnegative integers by the formula

fM .z�
t /k D

X
r

P kr .�/

rŠ
z
r1
1 � � � z

rn
n ; (4.12)

where rŠ WD r1Š � � � rnŠ: When � D 1; we simply write P kr D P
k
r .1/:

Lemma 4.8. Let
F.z/ D

X
r

Frz
r
2 KŒŒz1; : : : ; zn��;

where r ranges over n-tuples of nonnegative integers. Let M 2M. Then

�.k/F.zM t / D
X
r

FrP
k
r :

Proof. We have
�.k/.F.zM t // D

X
r

Fr�
.k/..zM t /r/:

As noted in Remark 3.6, �.k/ evaluated on a regular power series equals .kŠ/n

times the coefficient of zk1 � � � z
k
n . Meanwhile P kr is rŠ times the coefficient of zr in

.zM/k1 � � � .zM/kn. The desired result then follows (with s D .k; k; : : : ; k/) from the
following general reciprocity law for any tuples r and s such that

P
r D

P
s D m.

If we let
Cr;s.M/ D sŠ � .coefficient of zs in .zM/r/;

then
Cr;s.M/ D Cs;r.M

t /: (4.13)

To see this, note that

Cr;s.M/ D
1

mŠ

�
@

@z1

�s1
� � �

�
@

@zn

�sn � @

@y1

�r1
� � �

�
@

@yn

�rn
.zMy/m

ˇ̌̌̌
zDyD.0;:::;0/

:

This expression is clearly invariant upon switching r and s and replacing M by
M t .

Proposition 4.9. Let ˇ.w/ D ..1; w1/; .2; w2/; : : : ; .n; wn//: Define

‰Z.A;M;Q; v/ D ‰.ˇ/.A;Q; v/.zM
t /: (4.14)

Then ‰Z satisfies (4.6).

One can show directly from the definition (4.14) that ‰Z 2 Z
n�1.�;F/, but this

follows also from our proof of Theorem 4.1 so we omit the details.
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Proof. By the definition of ˇ, the function  .ˇ/.A;Q; v; u/ is well-defined for all
u in an open neighborhood of 0 in Cn. Therefore F D ‰.ˇ/.A;Q; v/ is a regular
power series, i.e. F.z/ 2 RŒŒz1; : : : ; zn��. Hence if we write F D

P
r Frz

r and
f kM .z/ D

P
r P

k
r z

r=rŠ as in (4.12), then Lemma 4.8 implies that

�.k/F.zM t / D
X
r

FrP
k
r : (4.15)

On the other hand, by [20, Theorem 2] the series

F.u/ D .2�i/�n
X

x2Zn�f0g

e.hx; vi/f .$1; : : : ;$n/
�
x �

u

2�i

�
jQ;

as well as those formed by taking partial derivatives of the general term, converge
uniformly on a sufficiently small compact neighborhood of u D 0 in Cn: Therefore
term by term differentiation is valid for F , and after applying f kM .@u1 ; : : : ; @un/ and
plugging in u D 0 we obtainX
r

FrP
k
r (4.16)

D .2�i/�n.kC1/
X

x2Zn�f0g

e.hx; vi/f kM .�@x1 ;�@x2 ; : : : ;�@xn/.f .$1; : : : ;$n//.x/jQ:

The right side of (4.16) is the definition of Q‰Z.A; f
k
M ;Q; v/, so combining (4.15)

and (4.16) gives the desired equality

�.k/F.zM t / D Q‰Z.A; f
k
M ;Q; v/:

Proposition 4.10. Let ˛.w/ D ..1; 1/; .2; 1/; : : : ; .n; 1//. Then

‰CSh.A;M;Q; v/C‰P.A;M;Q; v/ D ‰.˛/.A;Q; v/.zM
t /:

Proof. Attached toA and ˛ is the square matrix � D .�1; : : : ; �n/ D .A11; : : : ; An1/.
Arguing as in the first paragraph of the proof of Lemma 4.6, we have

 .˛/.A;Q; v; u/ D s�
X

y2Zn=�Zn

X
x02Zn�f0g

e.hx0; ��1.v C y/i/

.x01 � u
0
1/ : : : .x

0
n � u

0
n/
jQ0 : (4.17)

For any given y 2 Zn; the inner sum is identified in Sczech’s notation [20, (3)] as

.�1/n
X

x2Zn�f0g

e.hx; ��1.v C y/i/

.x1 � u
0
1/ : : : .xn � u

0
n/
jQ0D

�1

u01 : : : u
0
n

C C1.u
0; ��1.v C y/;Q0/:

(4.18)
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To express this last quantity in elementary terms, we write v0 D ��1.vC y/ and
let J D J.y/ denote the set of indices j 2 f1; : : : ; ng with v0j 2 Z: We then invoke
[20, Theorem 2] to obtain for u 2 .C � Z/n :

C1.u; v
0;Q0/ D

1

2
.H .u; v0;Q0/C .�1/nH .�u;�v0;Q0//

D
1

2
.H .u; v0;Q0/CH .u; v0;�Q0//; (4.19)

where H .u; v0;Q0/ D .�2�i/n
Y
j2J

 
e.uj /

1 � e.uj /
C
1C signQ0j

2

!Y
j…J

e.uj fv
0
j g/

1 � e.uj /
:

Fix a subset I0 � J , select the factor
.1CsignQ0

j
/

2
for j 2 I0, and expand the product

for H .u; v0;Q0/ accordingly. Writing I D I0 one obtains

H .u; v0;Q0/ D.�2�i/n
X
I0�J

Y
j2I0

.1C signQ0j /

2

Y
j2J�I0

e.uj /

1 � e.uj /

Y
j…J

e.uj fv
0
j g/

1 � e.uj /

D .�2�i/n
X
I�J

weight.CI /
e.u � ��1aI /Q
j2I 1 � e.uj /

: (4.20)

The last line follows from the formula (2.3) for weight.CI / and the definition (3.9)
of the point aI 2PI : Collecting (4.17), (4.18), (4.19) and (4.20) we arrive at

 .˛/.A;Q; v; u/

D
.�1/nC1 det �

N.u�/
C .2�i/ns�

X
y2Zn=�Zn
I�J.y/

weightC.CI /
e.u � aI /Q

j2I 1 � e..u�/j /
; (4.21)

where weightC.CI / is the average of the weights for Q and �Q: The identity (4.21)
holds for all u 2 Cn as long as the vector u� has no component in Z:

Unwinding the argument of Section 3.2 to go from (3.8) to (3.10), we obtain

 .˛/.A;Q; v; u/

D
.�1/nC1 det �

N.u�/
C .2�i/ns�

X
I�f1;:::;ng

weightC.CI /
X

a2PI\.vCZn/

e.u � a/Q
j2I 1 � e..u�/j /

D
.�1/nC1 det �

N.u�/
C .2�i/ns�

X
I�f1;:::;ng

weightC.CI /h.CI ; v/.2�iu/

D
.�1/nC1 det �

N.u�/
C .2�i/n h.ˆCSh.A/.Q/; v/.2�iu/; (4.22)

where the superscript “+" again denotes the average of the contributions of Q and
�Q: This implies the desired equality between power series using the definitions of
‰Sh; ‰P, and ‰.˛/ given in (3.20), (4.7), and (4.11) respectively.
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4.4. An explicit coboundary. Recall the notation Sk D f1; : : : ; kg, S D Sn.
Extending by linearity, we can define ‰.g/ for any map gWSk ! ZŒ.Sk � S/n�.
In fact, more is true; if we denote by @WZŒ.Sk � S/nC1� ! ZŒ.Sk � S/n� the usual
differential

@.Œt0; : : : ; tn�/ D

nX
iD0

.�1/i Œt0; : : : ; Oti ; : : : ; tn�;

then ‰.g/ is well-defined for any map gWSk ! ZŒ.Sk � S/n�= Image.@/. This
follows from the cocycle relation (4.2), which implies that f .�.A; t// D 0 for t 2
Image.@/:

We will show that the map ˇ�˛WSn ! ZŒ.S �S/n�= Image.@/ is a coboundary
in the following sense. For i D 1; : : : ; n, let Oei W Sn�1 ! S be the unique increasing
map whose image does not contain i . Given

h W Sn�1 ! ZŒ.Sn�1 � S/n�; (4.23)

define dh W Sn ! ZŒ.S � S/n� by

.dh/.w1; : : : ; wn/ D

nX
iD1

.�1/i . Oei � id/.h. Owi //: (4.24)

We will show that there exists an h such that ˇ � ˛ D dh .mod Image.@//. Let
us indicate why this completes the proof of Theorem 4.1. For any h as in (4.23),
Proposition 4.5 yields a homogeneous cochain ‰.h/ 2 C n�2.�;F/. It is easily
checked from (4.24) that d.‰.h// D ‰.dh/. Therefore, combining Propositions 4.9
and 4.10, we obtain

‰Z �‰
C
Sh �‰P D ‰.ˇ/ �‰.˛/ D d‰.h/

as desired. It remains to define the appropriate function h.

Proposition 4.11. For i D 1; : : : ; n � 1, define hi WSn�1 ! ZŒ.Sn�1 � S/n� by

hi .w/ D

(
Œ.1; w1/; : : : ; .i � 1;wi�1/; .i; 1/; .i; wi /; .i C 1; 1/; : : : ; .n � 1; 1/�; wi > 1

0; wi D 1;

where w D .w1; : : : ; wn�1/. Let h D
Pn�1
iD1.�1/

ihi : Then ˇ � ˛ � dh

.mod Image.@//.

Remark 4.12. For n D 2, the map h is given by h.1/ D 0 and h.2/ D

�Œ.1; 1/; .1; 2/�. This is the formula stated by Sczech [19, Page 371].

Proof. One shows by induction on m that for m D 1; : : : ; n, 
˛ C

m�1X
iD1

dhi

!
.w1; : : : ; wn/
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is equal to

Œ.1; w1/; : : : ; .m � 1;wm�1/; .m; 1/; : : : ; .n; 1/�

C

m�1X
iD1

.�1/iCm�1Œ.1; w1/; : : : ; 1.i; wi /; : : : ; .m � 1;wm�1/;

.m; 1/; .m;wm/; .mC 1; 1/; : : : ; .n; 1/�:

For m D n, this yields

.˛Cdh/.w1; : : : ; wn/

D Œ.1; w1/; : : : ; .n � 1;wn�1/; .n; 1/�

C

n�1X
iD1

.�1/iCn�1Œ.1; w1/; : : : ; 1.i; wi /; : : : ; .n � 1;wn�1/; .n; 1/; .n; wn/�

� Œ.1; w1/; : : : ; .n; wn/� .mod Image.@//

as desired.

5. Integral Shintani cocycle

In this section we introduce an auxiliary prime ` and enact a smoothing process on
our cocycle ‰Sh to define a cocycle ‰Sh;` on a certain congruence subgroup of � .
The smoothed cocycle ‰Sh;` satisfies an integrality property refining the rationality
result stated in Theorem 3.9. This refinement is stated in Theorem 5.7 below. The
key technical result allowing the proof of Theorem 5.7 is the explicit formula for
‰Sh;` given in Theorem 5.4. We provide the details of the proof of Theorem 5.4
here; the deduction of Theorem 5.7 is given in [5, §2.7].

The arithmetic applications regarding classical and p-adic L-functions of totally
real fields stated in the Introduction as Theorems 2, 3, and 4 follow mutatis mutandis
as in [5] from Theorem 5.7. See §3-5 of loc. cit. for the proofs.

5.1. Definition of the smoothing. Fix a prime `. Let Z.`/ D ZŒ1=p; p ¤ `� denote
the localization of Z at the prime ideal .`/. Let

�` D �0.`Z.`// D fA 2 GLn.Z.`// W ` j Aj1 for j > 1g:

Let �` D diag.`; 1; 1; : : : ; 1/: Note that if A 2 �`, then �`A��1` 2 GLn.Z.`//:
For any ‰ 2 Zn�1.�;F/, define a smoothed homogeneous cocycle ‰` 2

Zn�1.�`;F/ by

‰`.A;M;Q; v/ WD ‰.�`A�
�1
` ; ��1` M;�`Q;�`v/ � `‰.A;M;Q; v/ (5.1)
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for A D .A1; : : : ; An/ 2 �
n
`

. The following is a straightforward computation using
the fact that ‰ is a cocycle for � .

Proposition 5.1. We have ‰` 2 Zn�1.�`;F/.

5.2. An explicit formula. We will now give an explicit formula for�.k/ ı‰Sh;` for
an integer k � 0 in terms of Dedekind sums. For each integer k � 0, the Bernoulli
polynomial bk.x/ is defined by the generating function

text

et � 1
D

1X
kD0

bk.x/
tk

kŠ
: (5.2)

The following elementary lemma gives an explicit formula for the terms appearing
in the definition of h.C; v/.

Lemma 5.2. Consider the cone C D C.�i1 ; : : : ; �ir / whose generators are a subset
of the columns of the matrix � 2 � . Then

ez�a

.1 � ez��i1 / � � � .1 � ez��ir /

D .�1/r
1X

mjD0

r-tuples

rY
jD1

bmj .�
�1.a/ij /

mj Š
.z�ij /

mj�1
Y
i 62fij g

e.z�i /.�
�1.a/i /: (5.3)

Define the periodic Bernoulli function Bk.x/ D bk.fxg/, where fxg 2 Œ0; 1/
denotes the fractional part of x. The functions Bk are continuous for k ¤ 1, i.e.
bk.0/ D bk.1/. The function B1 is not continuous at integers since b1.0/ D �1=2
and b1.1/ D 1=2. One can choose between these values by means of an auxiliary
Q 2 Q as follows.

Definition 5.3. Let e D .e1; : : : ; en/ be a vector of positive integers, Q 2 Q, and
v 2 V : Let

J D f1 � j � n W ej D 1 and vj 2 Zg: (5.4)

Define

Be.v;Q/ D

0@Y
j2J

�sgn.Qj /
2

1AY
j…J

Bej .vj /:

Note that this is Be.v;�Q/ in the notation of [5].

Let � 2Mn.Z/ have nonzero determinant. Define the Dedekind sum

D.�; e;Q; v/ D
X

x2Zn=�Zn
Be.��1.x C v/; ��1Q/: (5.5)
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Suppose that � has the property that �` WD �`�=` 2 Mn.Z/. (This says that the
bottom n � 1 rows of � are divisible by `.) Write e D

P
ei . Define the ł-smoothed

Dedekind sum

Dł.�; e;Q; v/ D D.�`; e; �`Q;�`v/ � ł1�nCeD.�; e;Q; v/ (5.6)

We can now give a formula for �.k/ ı ‰Sh;` in terms of the smoothed Dedekind
sum D`. Let A D .A1; : : : ; An/ 2 �

n
`

, and let Q� denote the matrix consisting of
the first columns of the Ai . Assume that det Q� ¤ 0; and choose a scalar multiple
� D � Q� with � an integer coprime to ` such that � 2 Mn.Z/. Note that since each
Ai 2 �`, it follows that �` D �`�=` 2Mn.Z/ as well.

Theorem 5.4. We have

�.k/‰Sh;`.A;M;Q; v/ D .�1/
nsgn.det �/

X
r

P kr .�/

`r.r C 1/Š
D`.�; r C 1;Q; v/;

where rC1 WD .r1C1; : : : ; rnC1/; and the coefficients P kr .�/ are defined in (4.12).

The proof of Theorem 5.4 is involved and technical; the reader is invited to
move on to the statement of Theorem 5.7 and the rest of the paper, returning to
our discussion here as necessary.

The proof of Theorem 5.4 will be broken into three parts:
� Showing that the terms from (5.3) arising from indices mj D 0 cancel under

the smoothing operation; in particular, ‰Sh;` takes values in RŒŒz1; : : : ; zn��:
� Calculating the remaining terms and thereby giving a formula for ‰Sh;` in

terms of the Dedekind sums D`.
� Applying Lemma 4.8, which relates the values of �.k/ on a power series in

RŒŒz1; : : : ; zn�� to the coefficients appearing in (4.12).

Lemma 5.5. In the evaluation of ‰Sh;`.A;M;Q; v/ using .5:3/, the terms arising
from tuples m with any component mj D 0 in ‰.�`A��1` ; ��1

`
M;�`Q;�`v/ and

`‰.A;M;Q; v/ cancel. In particular, ‰Sh;`.A;M;Q; v/ 2 RŒŒz1; : : : ; zn��:

Proof. This is the manifestation of Cassou–Noguès’ trick in our context. Up to the
factor sgn det � , the value of ‰Sh.A;M;Q; v/ is the right side of (5.3) summed over
various cones C D C.�i1 ; : : : ; �ir / and all a 2P \ .vCZn/, with the subsets fij g
chosen according the Q-perturbation rule, P the parallelpiped associated to C , and
z replaced by zM t :X
C

X
a2P\vCZn

.�1/r
1X

mjD0

r-tuples

rY
jD1

Bmj .�
�1.a/ij /

mj Š
.zM t�ij /

mj�1
Y
i 62fij g

e.zM
t�i /.�

�1.a/i /:

(5.7)
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Let us now fix a cone C and consider the corresponding contribution of �`C to the
value‰Sh.�`A;�

�1
`
M;�`Q;�`v/: (Note that C will be included using perturbation

via Q if and only if �`C will be included using perturbation via �`Q.) In applying
(5.3), we use the generators �`�ij for the cone �`C . By applying the change of
variables a 7! ��1

`
a, we obtain the exact same expression as (5.7) except with Zn

in the second index replaced by 1
`
Z˚ Zn�1:X

C

X
a2P\vC. 1

`
Z˚Zn�1/

.same/: (5.8)

Fix a tuple m D .m1; : : : ; mr/ appearing in the sum (5.7) such that at least one
mj is equal to zero. Fix such an index j and a point a 2 P \ v C Zn. For
each equivalence class b mod `, there is a unique point of the form a C k�ij =` in
P\vC .1

`
Z˚Zn�1/ for an integer k � b .mod `/. Now, the summand associated

to each of these points in (5.8) is equal to the summand of the associated point a in
(5.7), and in particular is independent of k. To see this, note that

��1.aC k�ij =`/ D �
�1.a/C .0; : : : ; 0; k=`; 0; : : : ; 0/;

with k=` in the ij th component. Hence the only term possibly depending on k is
Bmj .�

�1.a/ij /, but B0.x/ D 1 is a constant. The ` terms a C k�ij =` in (5.8)
therefore cancel with the term a in (5.7), in view of the factor ` in the definition
(5.1).

Lemma 5.6. We have

‰Sh;`.A;M;Q; v/ D .�1/
nsgn det.�/

X
r

`�r � D`.�; r C 1;Q; v/
.zM t�/r

.r C 1/Š
;

where r ranges over all n-tuples r D .r1; : : : ; rn/ of nonnegative integers.

Proof. We will require the decomposition (3.10) for CQ\ .vCZn/, whose notation
we now recall. For each x 2 Zn=�Zn, let J D J.x/ denote the set of indices j such
that ��1.vC x/j 2 Z. For each I � J , consider the cone CI D C.�i W i 2 I / with
associated parallelpiped PI . The point x and subset I yield a point aI 2PI such
that aI � v � x .mod �Zn/, defined by (3.9).

We evaluate ‰Sh.A;M;Q; v/ by employing the decomposition (3.10) and
applying (5.3). By Lemma 5.5, we need only consider terms from (5.3) arising
from mj � 1. We write r D .r1; : : : ; rn/ D .m1 � 1; : : : ; mn � 1/. Suppressing for
the moment the factor of sgn det.�/ in the definition (2.19) of ˆSh, we obtain that
for a vector of nonnegative integers r and a class x 2 Zn=�Zn, the contribution of
the cone CI to the coefficient of

Qn
iD1.zM

t�i /
ri in ‰Sh.A;M;Q; v/ for I � J is 0

unless ri D 0 for i 62 I , and in that case equals

weight.CI /.�1/#I
Y
i 62J

BriC1.�
�1.v C x/i /

.ri C 1/Š

Y
i2J\I

briC1.1/

.ri C 1/Š
: (5.9)
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Therefore, let Jr D J \ fi W ri D 0g. The expression (5.9) summed over all I � Jr
can be written

.�1/n
X

x2Zn=�Zn

Y
i 62Jr

BriC1.�
�1.v C x/i /

.ri C 1/Š
2�#Jr

X
I�Jr

weight.CI /.�2/n�#I :

(5.10)
The inner sum in (5.10) is easily computed using (2.3):X

I�Jr

.�2/#I
Y
i2I

1C sign.Q��t /i
2

D .�1/#Jr
Y
j2Jr

sign.Q��t /j :

Therefore, we end up with the following formula for the coefficient of
Qn
iD1.zM

t�i /
ri

arising from terms with each mi D ri C 1 � 1:

X
x2Zn=�Zn

Y
i 62Jr

BriC1.�
�1.v C x/i /

.ri C 1/Š

Y
j2Jr

�sgn.Q��t /j
2

D

X
x2Zn=�Zn

BrC1.��1.x C v/; ��1Q/
.r C 1/Š

: (5.11)

Evaluating the same expression with .A;M;Q; v/ replaced by .�`A��1` ; ��1
`
M;�`Q;�`v/

and using the definition of ‰Sh;` gives the desired result.

Theorem 5.4 now follows from Lemma 5.6 and Lemma 4.8 applied with

F D .�1/nsgn det.�/
X
r

`�r � D`.�; r C 1;Q; v/
zr

.r C 1/Š

and M replaced by � tM .

In [5], we show that Theorem 5.4 implies the following integrality property of
‰Sh;` (see Theorem 4 and §2.7 of loc. cit.).

Theorem 5.7. Suppose thatM and v satisfy fM .vC 1
`
Z˚Zn�1/ � ZŒ1

`
�: Then for

every nonnegative integer k, we have �.k/‰Sh;`.A;M;Q; v/ 2 ZŒ1
`
�.

Theorem 5.7 can be used to prove Theorems 2 and 3 from the introduction;
furthermore Spiess’ cohomological formalism for p-adic L-functions can then be
used with our construction to deduce Theorem 4. We refer the reader to [5, §3–5]
for the proofs.

5.3. A generalized cocycle. We conclude the paper by defining a generalization
of the power series ‰Sh;`. We discuss this generalization here because it was stated
without proof in [5, Proposition 2.4].
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Let P D RŒz1; : : : ; zn�, viewed as a �-module via .P /.z/ D P.z/: The fact
that the power series ‰Sh;` is regular (by Lemma 5.6) implies that its domain of
definition can be expanded from matrices M and their associated polynomials fM
to arbitrary polynomials P 2 P . Let QF denote the R-vector space of functions
f WP �Q � V �! R that are linear in the first variable and satisfy the distribution
relation

f .P;Q; v/ D sgn.�/n
X
�wDv

f .�degPP; ��1Q;w/ (5.12)

for each nonzero integer � when P is homogeneous. The space QF has a �-action
given by (3.19), with M replaced by P .

Following (4.12), define for P 2 P and any matrix � 2 Mn.R/ coefficients
Pr.�/ by

P.z� t / D
X
r

Pr.�/

rŠ
z
r1
1 � � � z

rn
n : (5.13)

Fixing � D 1, these coefficients define an operator�.P /WRŒŒz1; : : : ; zn��! R given
by

�.P /

 X
r

Frz
r

!
D

X
r

FrPr.1/:

Proposition 5.8. The function

Q‰Sh;`.A; P;Q; v/ WD �
.P /‰Sh;`.A; 1;Q; v/ (5.14)

D .�1/nsgn.det �/
X
r

Pr.�/

`r.r C 1/Š
D`.�; r C 1;Q; v/ (5.15)

is a homogeneous cocycle for �` valued in QF , i.e. Q‰Sh;` 2 Z
n�1.�`; QF/:

Proof. The cocycle condition
Pn
iD0.�1/

i Q‰Sh;`.A0; : : : ; OAi ; : : : ; An/ D 0 follows
from that for ‰Sh;`. The fact that Q‰Sh;` is invariant under �` follows from the
equivalent statement for ‰Sh;` and the fact that for any matrix  2 Mn.R/ and any
F 2 RŒŒz1; : : : ; zn��, we have

�.
tP/F.z/ D �.P /F.z/: (5.16)

Equation (5.16) is a mild generalization of Lemma 4.8 that again follows from (4.13).
The equality between (5.14) and (5.15) follows from Lemma 5.6 and (5.16) applied
to  D � .
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