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1. Introduction

Throughout the previous decade, Heegaard Floer theory has been a very useful and
calculable machine in low-dimensional topology. It includes invariants for closed
three- and four-manifolds, as well as for knots and links. Similarly, manifolds with
boundary, singular knots, and contact structures can be studied as well. One of the
most effective computational tools in Heegaard Floer theory is the integral surgery
formula (Theorem 1.1 of [18]), which converts the Heegaard Floer complex for a
nullhomologous knot K in a closed, oriented 3-manifold Y into the Heegaard Floer
homology of Dehn surgeries on K.

Given a Heegaard splitting of Y along a surface †, Heegaard Floer homology is
defined to be the Lagrangian Floer homology of certain tori in the symmetric product
of †. The Heegaard Floer homology of Y splits as a direct sum over the set of Spinc

structures on Y . Different flavors of Heegaard Floer homology twist the differential
by a count of the intersection number of a holomorphic disk with a codimension-two
submanifold of the symmetric product determined by some choice of basepoint(s) on
the surface.

While many new results in low-dimensional topology have come from calculations
of these groups, one flavor, HF 1, has the simplest structure. Still, it has many useful
applications. For example, studying the absolute grading on HF 1 allows one to
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define a powerful invariant, the correction term d (Definition 4.1 in [11]). This has
had numerous applications, including a lower bound for the four-ball genus of a knot
(Theorem 1.5 in [19]). Furthermore, in [11], Ozsváth and Szabó use properties of
HF 1 to find new restrictions on intersection forms for four-manifolds.

In fact, HF 1 has been calculated for three-manifolds with b1 at most 2 in Theo-
rem 10.1 of [14]. In this case, it is completely determined by the integral cohomology
ring. Also, Mark [7] has obtained results in this direction, gaining information about
HF 1 from a complex C 1� .Y / with differential given completely by the cup product
structure. If one calculates HF 1 with the U variable formally completed (or in other
words, coefficients in ZŒŒU; U �1�), it is shown in Section 2 of [6] that these groups
vanish for any non-torsion Spinc structure s. Therefore, we are only concerned with
torsion Spinc structures in this paper.

In Theorem 10.12 of [14], it is shown that for each torsion Spinc structure s there
exists a coefficient system such that the Heegaard Floer homology with twisted co-
efficients, HF 1.Y; s/, is isomorphic to ZŒU; U �1� as ZŒU; U �1� ˝Z ZŒH 1.Y I Z/�-
modules, where H 1.Y I Z/ acts trivially on ZŒU; U �1�. There is therefore a universal
coefficients spectral sequence with E2 term ƒ�.H 1.Y I Z// ˝Z ZŒU; U �1� converg-
ing to HF 1.Y; s/. We refer the reader to Proposition 16 of [7] for more details on
the construction of this spectral sequence.

We do need to recall how the gradings work in this spectral sequence. More
specifically, the universal coefficients spectral sequence identifies E2

i;�, for i even,
with ƒ�.H 1.Y I Z//. Since multiplication by U induces an isomorphism between
E2

i;� and E2
i�2;�, we see that E2

i;� vanishes for odd i . This implies that dk W Ek
i;j !

Ek
iCk�1;j �k

automatically vanishes if k is even. Therefore, the E2 and E3 pages are
isomorphic. Furthermore, in Conjecture 4.10 of [12], Ozsváth and Szabó propose
that the rest of the behavior of the spectral sequence is easily computed from the
integral cohomology ring on Y . In order to state their conjecture more precisely, we
first need a definition.

Definition 1.1. For a closed, oriented three-manifold, the integral triple cup product
form, �Y , is the three-form on H 1.Y I Z/ given by

�Y .a ^ b ^ c/ D ha Y b Y c; ŒY �i:

Conjecture 1.2 (Ozsváth–Szabó). The differential d3 W ƒj .H 1.Y I Z// ˝ U i !
ƒj �3.H 1.Y I Z// ˝ U i�1 is given by

d3.˛ ˝ U i / D ��Y
.˛/ ˝ U i�1: (1)

In other words, d3 is essentially contraction by the integral triple cup product form.
Furthermore, all higher differentials vanish. (For notational purposes, we will omit
the U ’s in the domain and range).
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Note that if this conjecture is true, knowing the integral triple cup product form on
Y allows a complete calculation of HF 1.Y; s/. The goal of this paper is to present
a few partial results in this direction. This work will be used in [5] to completely
calculate HF 1.Y; sI Z=2Z/. From now on all of our coefficients for Heegaard Floer
homology will be F D Z=2Z. For compatibly with F -coefficients, we will take
integral triple cup products and then reduce mod 2, as opposed to taking the triple cup
products in H �.Y I F/. Therefore, when referring to Conjecture 1.2, we will mean
with mod 2 coefficients in this sense.

Theorem 1.3. HF 1.Y; s/ is completely determined by the integral cohomology ring.
In other words, if H �.Y1I Z/ Š H �.Y2I Z/ as graded rings and s1 and s2 are torsion
Spinc structures on Y1 and Y2 respectively, then HF 1.Y1; s1/ and HF 1.Y2; s2/

are isomorphic as relatively-graded F ŒU; U �1�-modules.

Theorem 1.4. If b1.Y / D 3, then Conjecture 1.2 holds.

Theorem 1.5. For b1.Y / D 4, HF 1.Y; s/ agrees with the prediction for the homol-
ogy given by Conjecture 1.2.

Remark 1.6. The analogues of the above theorems were previously known in mono-
pole Floer homology (see Chapter IX in [4]).

We now outline the arguments given for the proofs in this paper. In order to
calculate HF 1.Y; s/ in general, we prove that it suffices to consider any manifold
which can be obtained from Y by a sequence of nonzero surgeries on nullhomologous
knots. This is done by showing that such a sequence of surgeries does not affect the
integral triple cup product form or HF 1. Furthermore, we show that we only need to
calculate HF 1 in the case of H1.Y I Z/ Š Zn, by showing that in each torsion Spinc

structure, HF 1.Y; s/ behaves as HF 1 of a manifold which is some “version” of Y

with H1 torsion-free. Since these torsionless versions will have a different number
of torsion Spinc structures, as an abuse of notation, we will say that two three-
manifolds Y and Y 0 have the same HF 1 if for all torsion sY and sY 0 , HF 1.Y; sY /

is isomorphic to HF 1.Y 0; sY 0/.
We then use a theorem of Cochran, Gerges, and Orr [1] which constructs an

explicit class of “model manifolds”. Their results show that any Y with torsion-free
first homology can be related to a model manifold by a sequence of ˙1-surgeries on
nullhomologous knots. Therefore, we will have that Y and the model manifold have
the same HF 1. For b1 D 3 and 4, we will explicitly write down these models and
calculate HF 1 simply based on knowledge of HF 1.T 3; s0/ (calculated in [11])
and the integer surgery formula for knots of [18].

Acknowledgements. I would like to thank Ciprian Manolescu for his knowledge
and patience as an advisor, as well as for sharing with me his construction of homo-
logically split surgery presentations. I would also like to thank Liam Watson for his
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encouragement to work on this problem and his aid in drawing Heegaard diagrams.
Finally, I thank Kevin Ventullo for his help with commutative algebra.

2. Eliminating torsion

The goal of this section is to reduce the general calculation of HF 1.Y; s/ to the
case where H1.Y I Z/ is torsion-free. The idea is to construct a sufficiently nice
surgery presentation for Y and then argue that we can remove each knot surgery that
is not contributing to b1.Y / without changing either the integral triple cup product
form or HF 1. The notion of isomorphism for the integral triple cup product form
(�Y Š �Y 0) is an isomorphism � W H 1.Y I Z/ ! H 1.Y 0I Z/ such that

�.�Y .a ^ b ^ c// D �Y 0.�.a/ ^ �.b/ ^ �.c//:

Let’s do an example to see the idea of removing torsion from H1.

Example 2.1. Fix a closed, oriented three-manifold Y and consider Y #S3
n .K/ for

some K and n ¤ 0. Notice that the integral triple cup product form of Y #S3
n .K/ is

isomorphic to that of Y . Similarly, the connect-sum formula for HF 1 (Theorem 6.2
in [14]) and the calculation of HF 1 for rational homology spheres (Theorem 10.1
in [14]) give HF 1.Y #S3

n .K/; sY #sK/ Š HF 1.Y; sY / for any choice of Spinc

structures on Y and S3
n .K/. Thus, to calculate HF 1 for Y #S3

n .K/ it suffices to
study Y instead. We have now, for our calculations, removed S3

n .K/ from Y #S3
n .K/,

and thus removed a factor of Z=nZ from H1.

We want to generalize this procedure in order to remove all of the torsion in H1.

Proposition 2.2. Perform n-surgery on a nullhomologous knot K in Y for some
nonzero integer n. The resulting manifold, Yn.K/, and Y have isomorphic integral
triple cup product forms.

Proof. We simply use the result of Cochran, Gerges, and Orr on rational surgery
equivalence (Theorem 5.1 of [1]), which states that two three-manifolds will have
isomorphic integral triple cup product forms if and only if there is a sequence of non-
longitudinal surgeries on rationally nullhomologous knots relating the two. �

The following proposition is made as an observation in Section 4.1 of [12].

Proposition 2.3 (Ozsváth–Szabó). Fix a torsion Spinc structure s on Y and a nonzero
integer n. Let sK be a torsion Spinc structure on Yn.K/ which agreeswith s on Y �K.
Then we have that HF 1.Y; s/ and HF 1.Yn.K/; sK/ are isomorphic.
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We will give a proof of this in Section 4.
To remove the torsion from H1, we need a sufficiently nice surgery presentation

to try to generalize the argument from Example 2.1. However, since a surgery pre-
sentation might not consist of all pairwise-split components, we have to find the next
best thing. The idea is to represent Y by surgery on a link in S3 where the compo-
nents have pairwise linking number 0. Such a link is called homologically split. The
following lemma tells us that we can do this if we are willing to slightly change the
manifold. The proof can be found at the end of this paper.

Lemma 2.4 (Manolescu). Let Y be a closed, oriented 3-manifold. There exist finitely
many nonzero integers, m1; : : : ; mk , such that there exists a homologically split
surgery presentation for Y #L.m1; 1/# : : : #L.mk; 1/.

Proposition 2.5. For all Y , there exists a three-manifold M given by 0-surgery on
a homologically split link such that Y and M have the same HF 1 and isomorphic
triple cup product forms. In particular, H1.M I Z/ is torsion-free.

Proof. By applying Lemma 2.4, we may connect-sum Y with the necessary lens
spaces such that the resulting manifold is presented by S3

ƒ.L/, where L is a homo-
logically split link. We know that connect sums with lens spaces do not change HF 1
or the integral triple cup product form. Since each nonzero surgery in the presenta-
tion will now be performed on a nullhomologous knot, Proposition 2.2 (respectively
Proposition 2.3) shows that the triple cup product form (respectively HF 1) of the
3-manifold obtained by surgery on the sublink of L consisting of components that are
0-framed will be isomorphic to the triple cup product form (respectively HF 1) for
S3

ƒ.L/. If we take M to be surgery on the 0-framed components of L, then H1.M/

will clearly be torsion-free since the linking matrix for this presentation will be the 0
matrix. Therefore, this is the desired manifold. �

This is the method of removing torsion from H1.Y I Z/. Observe that a manifold
with torsion-free H1 has a unique torsion Spinc structure.

3. Model manifolds

Following [1], we will call two 3-manifolds, Y1 and Y2, surgery equivalent if there
is a finite sequence of ˙1-surgeries on nullhomologous knots, beginning in Y1 and
terminating at Y2.

We can rephrase the work of the previous section by saying that if Y1 and Y2 are
surgery equivalent, then they have isomorphic triple cup product forms and the same
HF 1.



880 T. Lidman CMH

Theorem 3.1 (Cochran–Gerges–Orr (Corollary 3.5 of [1])). Let H1.Y1I Z/ Š Zn.
Suppose that Y1 and Y2 have isomorphic integral triple cup product forms. Then Y1

and Y2 are surgery equivalent.

It is important to note that this is not necessarily true if H1 has torsion. A coun-
terexample can be exhibited by taking Y1 as #3

iD1L.5; 1/ and Y2 as 5-surgery on each
component of the Borromean rings (Example 3.15 of [1]).

Since both Y1 and Y2 have b1 D 0, we know they must have the same HF 1.
Therefore, HF 1 cannot quite detect the subtlety seen by singular cohomology with
certain coefficient rings, as Y1 and Y2 can be distinguished by their triple cup product
forms over Z=5Z. However, for the rest of the paper, we will always assume our
triple cup product forms are integral.

Proof of Theorem 1.3. Theorem 3.1 and Proposition 2.5 prove that the integral triple
cup product form determines HF 1. A little more work allows the statement for
the integral cohomology ring. If the integral cohomology rings of Y1 and Y2 are
isomorphic (grading preserving), then the integral triple cup product form of Y1 is
isomorphic to either that of Y2 or �Y2. Note that if we apply Proposition 2.5 to
both Y1 and Y2, then the resulting manifolds, M1 and M2, will also have isomorphic
cohomology rings. Furthermore, we have not affected the integral triple cup product
forms or HF 1. Thus, we may assume Y1 and Y2 do not have torsion in H1. If Y1

and Y2 have isomorphic triple cup product forms, then we are clearly done by the
theorem. On the other hand, if Y1 and �Y2 have isomorphic triple cup product forms,
then we apply Corollary 3.8 of [1] to see that Y2 is surgery equivalent to �Y2. This
completes the proof. �

In the case of b1 D 3 or b1 D 4, we can explicitly see what the set of surgery equiv-
alence classes is that we are dealing with. The following is calculated in Example 3.3
in [1].

Theorem 3.2 (Cochran–Gerges–Orr). For each Y with H1.Y I Z/ Š Z3, there exists
a unique n � 0 such that Y is surgery equivalent to the manifold Mn with Kirby
diagram shown in Figure 1.

We will call the component that spirals n times Zn. It is useful to note that
M0 D #3

iD1S2 � S1 and M1 D T 3. Calculating HF 1 for each Mn is what suffices
to prove Theorem 1.4. Furthermore, it turns out that calculating b1 D 3 combined
with the following proposition is sufficient to understand b1 D 4 as well.

Proposition 3.3 (Cochran–Gerges–Orr (Corollary 3.7 of [1])). If H1.Y / Š Z4, then
Y is surgery equivalent to Mn#S2 � S1 for some n � 0.
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Zn
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0

Figure 1. Surgery presentation of Mn.

In fact, there is an explicit way to produce a 3-manifold with H1.Y / Š Zn in
each surgery equivalence class by a construction similar to the Mn (see Corollary 3.5
in [1]).

4. Review of the surgery formula

In this section we review the integer surgery formula for knots, Theorem 1.1 of
[18], with the perspective and notation of [6]. We will assume the reader has some
familiarity with the constructions of Heegaard Floer homology for three-manifolds
and knots ([15] and [14] respectively). For convenience, we will assume that Y is an
integer homology sphere; this is solely for the purpose of having one Spinc structure
to keep track of. This construction will apply for any torsion Spinc structure on
any three-manifold with the appropriate bookkeeping. Finally, we will assume all
diagrams are admissible and stabilized as needed.

Let K be a nullhomologous knot in Y and fix s0 to be the torsion Spinc structure
on Y . Knowledge of the knot Floer complex will be used to calculate the Heegaard
Floer homology of surgeries on K.

Let .†; ˛; ˇ; z; w/ be a doubly-pointed Heegaard diagram for K in Y . Note that
.†; ˛; ˇ; z/ and .†; ˛; ˇ; w/ are each singly-pointed diagrams for Y , and thus no
longer contain any information about the knot. Recall that K determines a Z-valued
Alexander grading A on the elements of T˛ \ Tˇ satisfying

A.x/ � A.y/ D nz.�/ � nw.�/ (2)

for � 2 �2.x; y/, which can canonically be made absolute (see Section 3.3 of [13]).
Similarly, since s0 is torsion, for any pointed Heegaard diagram for Y , there is an
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absolute Q-valued Maslov grading M satisfying

M.x/ � M.y/ D �.�/ � 2np.y/; (3)

where p is the chosen basepoint and again � 2 �2.x; y/ (this is due to Theorem 7.1
in [16]). Recall that multiplication by U lowers A by 1 and M by 2.

We can now define a CFK-like complex with differential twisted by theAlexander
grading. For notation, let x _ y D maxfx; yg.

Definition 4.1. Fix s 2 Z. As is the chain complex over F ŒU; U �1� freely-generated
by T˛ \ Tˇ . This is equipped with the differential

@s.x/ D
X

y2T˛\Tˇ

X
�2�2.x;y/

�.�/D1

#.M.�/=R/ � U .A.x/�s/_0�.A.y/�s/_0Cnw.�/y (4)

for x 2 T˛ \ Tˇ .

While this complex first arises in Theorem 1.1 of [18], the explicit formulation
for @s can be found in Section 4.2 of [6]. This is also where the reader can find an
explicit description of the relative Z-grading and a proof that .@s/2 D 0.

We will use CFp to denote the chain complex (or sometimes just the chain group)
CF 1.†; ˛; ˇ; p/ for some basepoint p on † and @ for its differential. Note that
CFw and CFz correspond to AC1 and A�1 respectively. We now describe chain
maps relating As , CF z , and CF w given by

As

��K
s

����
��

��
�� �K

s

����
��

��
��

CF z
D�K

�� CF w .

First, the diagonal maps are the inclusions

�K
s .x/ D U .A.x/�s/_0x; ��K

s .x/ D U .s�A.x//_0x:

After stabilizing the diagram if necessary, the diagram .†; ˛; ˇ; z/ can be transformed
into .†; ˛; ˇ; w/ by a sequence of basepoint-avoiding isotopies and handleslides,
since they both represent Y . Choose such a sequence of moves and let the destabi-
lization, D�K , denote the induced chain homotopy equivalence of CF 1 as described
by the proof of Theorem 1.1 in [15].

It turns out that the choice of Heegaard moves does not affect D�K on the level of
homology as long as the path that z follows to w is fixed (see Remark 4.15 in [6]). We
will ignore the concern of paths as one can insist on using a good set of trajectories
(Definition 6.27 in [6]) to eliminate this concern. We define the destabilization DK

to be the identity map. The reason for this is that we can relate the Heegaard diagram
.†; ˛; ˇ; w/ to itself by performing no isotopies or handleslides.
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Proposition 4.2. The inclusion maps, �˙K
s , are quasi-isomorphisms which preserve

the relative Maslov grading. Furthermore, D�K is a quasi-isomorphism and its
induced map on homology preserves absolute gradings.

Proof. The inclusions are quasi-isomorphisms because they are bijective chain maps.
That they preserve the relative grading is shown in Section 7.1 of [6].

The map D�K is known to be a quasi-isomorphism which preserves relative grad-
ings (Theorem 1.1 of [15]). Theorem 7.1 of [16] proves that the absolute grading on
Heegaard Floer homology is solely an invariant of a given three-manifold and torsion
Spinc structure. Furthermore, D�K induces a relatively-graded quasi-isomorphism
between the subcomplexes, CF �, which are generated by elements with only non-
negative powers of U (Theorem 11.1 of [15]). Similarly, HF � inherits this absolute
grading. The key observation is that HF � always has an element of maximal grad-
ing, because multiplication by U lowers the grading in F ŒU � by 2; however, we know
the value of this maximal grading is independent of Heegaard diagram. If D�K did
not preserve the absolute grading, then the induced map on HF � could not be a
relatively-graded isomorphism. �

Remark 4.3. This is the key point where we are making use of the infinity flavor.
In general, the � maps will not be quasi-isomorphisms for other flavors of Heegaard
Floer homology. On the other hand, D�K is always a quasi-isomorphism, regardless
of flavor.

Following [6], let ˆ�K
s D D�K B ��K

s and ˆK
s D DK B �K

s D �K
s .

Remark 4.4. Lemma 7.12 in [6] shows that ˆ�K
0 and ˆK

0 shift the gradings by the
same amount. Therefore, ˆ�K

0 C ˆK
0 is a homogeneous map.

We are ready to define the integer surgery formula for knots.

Definition 4.5. For each s 2 Z, let Bs D CF w . Consider the chain map

‰K
n W

Y
s2Z

As �!
Y
s2Z

Bs; .s; x/ 7�! .s; ˆK
s .x// C .s C n; ˆ�K

s .x//:

The mapping cone of ‰K
n , C.‰K

n /, is called the surgery formula.

Remark 4.6. There exists a correspondence between the mod n equivalence classes
of Z and the Spinc structures on Yn.K/ (see Section 2 of [18] for more details). When
n D 0, the unique torsion Spinc structure on Y0.K/ corresponds to s D 0.

We therefore use C.‰K
n ; Œs�/ to represent the subcomplex generated by the As0

and Bs0 with s0 � s (mod n/.
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Remark 4.7. If n ¤ 0, then each C.‰K
n ; Œs�/ admits a relative Z-grading. If n D 0,

then C.‰K
0 ; Œ0�/ also admits a relative Z-grading. This is explicitly described in

Section 7 of [6].

Theorem 4.8 (Ozsváth–Szabó (Theorem 1.1 of [18])). Fix an integer n. If n D 0,
thenwe assume that s D 0 aswell. Themapping cone C.‰K

n ; Œs�/ is quasi-isomorphic
to CF 1.Yn.K/; s/, where s corresponds to Œs� as described in Remark 4.6.

The wary reader will note that Theorem 4.8 is not proved for the infinity flavor
in [18]; furthermore, the argument there does not quite work for HF 1. In order to
actually prove Theorem 4.8 for HF 1, one must complete with respect to the variable
U ; in other words, the proof requires working with F ŒŒU; U �1�-coefficients instead.
This is in fact what is done in Theorem 1.1 of [6] to prove a more general version of
this theorem for links. The reason is that in order to prove that the integer surgery
formula calculates the Heegaard Floer homology of surgery on a knot, one must sum
over infinitely many cobordism maps with increasing powers of U , which may be all
nonzero in CF 1; therefore, one must work over F ŒŒU; U �1� to make sense of these
sums.

However, we would like to show that for torsion Spinc structures on the surgered
manifold, it suffices to use the surgery formula with F ŒU; U �1�-coefficients. We
define CF1, HF1, and C.‰K

n ; Œs�/ to be the analogous constructions with F ŒŒU; U �1�-
coefficients instead.

Lemma 4.9. As an F ŒU; U �1�-module, F ŒŒU; U �1� is flat.

Proof. All of the following steps can be found in a standard commutative algebra
text (see, for example, [8]). The field of fractions of F ŒU; U �1� is F.U / (the rational
functions in one variable over F ). Since localization is exact, F.U / is flat over
F ŒU; U �1�. Furthermore, F.U / is a subfield of F ŒŒU; U �1�. Note that every field is
flat over a subfield since it is a vector space over the subfield. Therefore, F ŒŒU; U �1�

is flat over F ŒU; U �1� by transitivity of flatness. �

Lemma 4.10. We have that H�.C.‰K
n ; Œs�// is isomorphic to HF 1.Yn.K/; s/ as

long as s is 0 when n D 0. In particular, Theorem 4.8 is true as stated.

Proof. The first thing we point out is that for any Y and torsion s0, HF 1.Y; s0/

is always a finitely generated, free F ŒU; U �1�-module. This is because for torsion
Spinc structures, U lowers the relative Z-grading on CF 1.Y; s0/ by 2.

Since F ŒŒU; U �1� is flat over F ŒU; U �1�, we have that

HF 1.Yn.K/; s/ ˝FŒU;U �1� F ŒŒU; U �1� Š HF1.Yn.K/; s/:

Because both HF 1 and HF1 are free and finitely generated over their respective
base rings, it is now clear how to recover HF 1 from HF1.
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Let us consider the case n ¤ 0. In order to do this, we look ahead in this
section at the specifics of the proof of Proposition 2.3. This in fact gives a direct
proof that H�.C.‰K

n ; Œs�// and HF 1.Y; s0/ are isomorphic; note that this iso-
morphism goes to Y , the non-surgered manifold. Repeating the proof with
F ŒŒU; U �1�-coefficients shows that H�.C.‰K

n ; Œs�// Š HF1.Y; s0/. By applying
Theorem 4.8 for F ŒŒU; U �1�-coefficients (the case which is proved in [6]), we see
that HF1.Y; s0/ Š HF1.Yn.K/; s/. Since we can recover HF 1 from HF1, we
have HF 1.Y; s0/ Š HF 1.Yn.K/; s/. We can therefore pass through these various
isomorphisms to obtain that

H�.C.‰K
n ; Œs�// Š HF 1.Y; s0/ Š HF 1.Yn.K/; s/;

which is what we needed to show.
The case when n D 0 is easier. Since C.‰K

n ; Œ0�/ is finitely generated (its chain
group is A0 ˚ CFw ), we have that

C.‰K
n ; Œ0�/ ˝FŒU;U �1� F ŒŒU; U �1� Š C.‰K

n ; Œ0�/:

By Theorem 4.8 for F ŒŒU; U �1�-coefficients and Lemma 4.9,

H�.C.‰K
n ; Œ0�// ˝FŒU;U �1� F ŒŒU; U �1� Š H�.C.‰K

n ; Œ0�//

Š HF1.Y0.K/; s/

Š HF 1.Y0.K/; s/ ˝FŒU;U �1� F ŒŒU; U �1�:

By the same grading arguments used previously, now applied to Remark 4.4, we have
that H�.C.‰K

0 ; Œ0�// is free and finitely generated. This allows us to recover the
desired isomorphism. �

In light of this technical interlude, we are content to work with F ŒU; U �1�-
coefficients for the rest of the paper.

To give some practice with the integer surgeries formula, we will use it to prove
Proposition 2.3. We remark that the technique here will be useful in the sequel [5].

Proof of Proposition 2.3. Again, for notational convenience, we assume that Y is an
integer homology sphere. Furthermore, we work with n > 0; the proof for n < 0 is
essentially the same. Fix a Spinc structure, sK , that agrees with s0 on Y � K. The
idea is to show that for some s, H�.As/ Š HF 1.Yn.K/; sK/. Since Proposition 4.2
implies that H�.As/ is isomorphic to HF 1.Y; s0/, this will complete the proof.

Fix an s whose mod n equivalence class corresponds to sK . Recall that Theo-
rem 4.8 tells us H�.C.‰K

n ; Œs�// Š HF 1.Yn.K/; sK/. Consider the subcomplex of
C.‰K

n ; Œs�/ given by

C>s D
Y
s0>s

s0�s (mod n/

As0 ˚
Y
s0>s

s0�s (mod n/

Bs0 :
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We claim that this complex is acyclic. Equip C>s with the filtration F>.x/ D �s0
for x 2 As0 or x 2 Bs0 . The only components of the differential that do not lower
the filtration level are @s0 , @, and ˆK . Therefore, the associated graded splits as a
product of complexes of the form

.As0 ; @s0/
ˆK

���! .Bs0 ; @/:

By Proposition 4.2, these are all acyclic. Therefore, C>s is acyclic as well.
Construct the subcomplex

C<s D
Y

s0�s�n
s0�s (mod n/

As0 ˚
Y
s0�s

s0�s (mod n/

Bs0 :

Note that if we take C.‰K
n ; Œs�/ and remove C<s and C>s , we are left solely with

As , since there can be only one integer in the interval .s � n; s� that corresponds to
sK . Thus, the proof will be complete if we can show that C<s is also acyclic. This
follows by the same argument as before, except now we use the filtration

F<.x/ D
´

s0 if x 2 As0 ;

s0 � n if x 2 Bs0 :

This time the associated graded splits into the complexes

.As0 ; @s0/
ˆ�K

����! .Bs0Cn; @/:

Again, by Proposition 4.2, these are acyclic. Thus, C<s is acyclic. �

For the remainder of the paper we will only be working with 0-surgery on K in
Y with H1 torsion-free; more specifically we will restrict to the unique torsion Spinc

structure on Y0.K/, s, which agrees with the unique torsion Spinc structure on Y ,
s0, on Y � K. Most importantly, we will restrict the surgery formula to ignore all
nontorsion Spinc structures. In other words, we will study the mapping cone of ‰K ,
where

‰K D ˆK
0 C ˆ�K

0 W A0 �! CFw :

Note that our constructions for the surgery formula must be restricted to be com-
patible with s0; in other words we are restricting A0 and CFw to be generated
only by the elements of T˛ \ Tˇ that correspond to s0. Note that we are now do-
ing away with the Bs notation, since there is only one copy of CFw to keep track
of. Furthermore, we will eliminate the s index from the ˆ and � maps. We let
H�.CFp/ D Kp and H�.A0/ D Kz;w . It is important to note that from the surgery
formula, HF 1.Y0.K/; s/ is a free F ŒU; U �1�-module with

rk HF 1.Y0.K/; s/ D rk Kw C rk Kz;w � 2 rk.‰K� /: (5)
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We will further abuse notation; from now on, the symbol for any of the chain maps
defined previously will refer to the induced map on homology, unless otherwise
specified.

5. Example: T 3

Recall that we are interested in calculating the Heegaard Floer homology of the
manifolds Mn given in Figure 1. The main goal of this section is to understand the
simplest nontrivial example, M1 D T 3. From Figure 1, we can represent Mn by
0-surgery on the knot Zn in S2 � S1#S2 � S1 and can therefore apply the surgery
formula. For M1, this in fact gives 0-surgery on the Borromean rings, which is
T 3. The Heegaard Floer homology of T 3 has already been calculated to have rank
6 in Proposition 1.9 of [11]. Analyzing this result via the surgery formula will
allow us to deduce valuable information for the remaining Mn. But first, let us
specialize to the case of b1 D 3 for the universal coefficients spectral sequence with
E3 page ƒ�.H 1.Y I Z// ˝ ZŒU; U �1� converging to HF 1.Y; s/ mentioned in the
introduction.

Let’s study the differentials dk W Ek
i;j ! Ek

iCk�1;j �k
. Since each E2

i;j is a copy

of ƒj .H 1.Y I Z/, the E2 page is supported entirely in the region 0 � j � b1.Y /.
Therefore, for b1 D 3 the spectral sequence must collapse after d3. In fact, the only
possibly nontrivial component of d3 maps from ƒ3.H 1/ to ƒ0.H 1/, each of which
has rank 1. Therefore, to calculate d3 for b1 D 3, it suffices to find HF 1. If HF 1
has rank 8, then d3 � 0, and if HF 1 has rank 6, then d3.�1 ^ �2 ^ �3/ D 1.

Before dealing with M1, we note that M0 D #3
iD1S2 �S1 has rk HF 1.M0/ D 8

by the connect-sum formula. Thus, this corresponds to d3 being identically 0 in
Equation (1). For T 3, Conjecture 1.2 predicts that the map d3 W ƒ3.H 1/ ! ƒ0.H 1/

should be nonzero, which agrees with rk HF 1.T 3; s0/ D 6. We now want to use
this fact to understand the map D�Z1 in detail. We will ignore the underlying choice
of Heegaard diagram for Z1, since this will not show up in our calculations.

The best way to understand the calculation is via matrix representations, so we
must pick out the right bases for Kz;w , Kz , and Kw .

Let’s fix our knot K. Define the map ‚K W CFz ! CFw by ‚K.x/ D U AK.x/x.

Proposition 5.1. ‚K B ��K D �K .

Proof. Add the powers of U together. �

This proposition shows that ‚K must be a chain map and, like the inclusion maps,
this is a quasi-isomorphism.

Lemma 5.2. ‚K preserves absolute Maslov gradings.
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Proof. We study ˆK C ˆ�K D .‚K C D�K/ B ��K on the chain level. We know
that the invertible map ��K preserves relative gradings by Proposition 4.2. Applying
Remark 4.4 and factoring out ��K shows ‚K C D�K must be a homogeneous
map that preserves gradings. However, D�K preserves the absolute grading by
Proposition 4.2. Therefore, ‚K must preserve absolute gradings as well. �

As before, we will now use ‚K to denote the induced map on homology. Observe
that Kz;w Š Kz Š Kw Š F ŒU; U �1� ˝ H �.T 2/, by applying the connect-sum
formula to S2 � S1#S2 � S1. We can choose ordered F -bases .x1; x2/ for .Kz/0

and .y1; y2/ for .Kz/1. The key point about this choice is that the pairs live in
adjacent Maslov gradings. This clearly gives an ordered F ŒU; U �1�-basis for the
entire module. Furthermore, we use ‚K to push this basis over to Kw to obtain a
basis with the same properties. By Proposition 4.2, D�K is represented by a matrix
(we keep the same ordering between the bases) of the form0

BB@
a b 0 0

c d 0 0

0 0 e f

0 0 g h

1
CCA ; a; b; c; d; e; f; g; h 2 F :

Choose a basis for Kz;w such that ��K can be represented by the identity. The
next thing that we would like to understand is the matrix representation of �K .

Lemma 5.3. With respect to these bases, �K is represented by the identity.

Proof. Because the representation for ��K is the identity, Proposition 5.1 guarantees
�K and ‚K will be represented by the same matrix. However, we know that ‚K is
represented by the identity by construction. �

We now specialize to the case of K D Z1. Consider the collection of matrices

X D

8̂̂<
ˆ̂:

0
BB@

1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCA ;

0
BB@

1 0 0 0

1 1 0 0

0 0 1 0

0 0 0 1

1
CCA ;

0
BB@

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

1
CCA ;

0
BB@

1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1

1
CCA ;

0
BB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 1

1
CCA ;

0
BB@

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1
CCA

9>>=
>>;

Proposition 5.4. The map D�Z1 is represented by a matrix in X .
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Proof. Note that the rank of ˆZ1 C ˆ�Z1 must be precisely 1. This follows from
Equation (5) as HF 1.T 3; s0/ has rank 6 and both Kw and Kz;w have rank 4. Since
ˆZ1 C ˆ�Z1 is represented by0

BB@
a C 1 b 0 0

c d C 1 0 0

0 0 e C 1 f

0 0 g h C 1

1
CCA ;

exactly three of the two-by-two blocks must be identically 0 and the other must have
rank 1. It is easy to check that each of the matrices in X have this property. Either�

a b
c d

�
or

�
e f
g h

�
must be the identity. Without loss of generality, we assume

�
e f
g h

�
D�

1 0
0 1

�
. Now, the possible blocks

�
a b
c d

� 2 GL2.F/ that don’t appear in matrices in
X are

�
1 0
0 1

�
;
�

0 1
1 1

�
, and

�
1 1
1 0

�
. Direct calculation shows that ˆZ1 C ˆ�Z1 would

have either rank 0 or rank 2 in any of these cases, which would be a contradiction.
Repeating the arguments with the top-left and bottom-right blocks switched discounts
all of the other matrices not in X . �

Remark 5.5. We note that Proposition 5.4 does not apply to every knot in S2 �
S1#S2 � S1. Doing 0-surgery on the split unknot, Z0, to get #3

iD1S2 � S1 , which
has rank 8, shows that ˆZ0 D ˆ�Z0 . This in fact means that after this choice of
bases, D�Z0 must be the identity.

After choosing bases analogously, it remains to analyze D�Zn to yield the cal-
culation for Mn (n � 2). To do this, we rephrase the computation as an iteration of
what we’ve done for T 3 using a technique we call composing knots.

6. Composing knots and the calculation for Mn

Recall that given a Heegaard diagram .†; ˛; ˇ/, any two points on †�˛�ˇ determine
a knot, K, in Y . Now, suppose there are instead 3 distinct points, z, u, and w. Then
the pairs of basepoints, .z; u/; .u; w/; .z; w/, determine three knots. We want to
consider Heegaard diagrams containing this information. We will ignore concerns
with orientations, since these will not arise in our setting. Finally, knots will always
be nullhomologous.

Definition 6.1. A Heegaard diagram for .K; K1; K2/ in Y is a Heegaard diagram
for Y , .†; ˛; ˇ/, equipped with 3 distinct basepoints z, u, and w, in † � ˛ � ˇ, such
that .z; u/, .u; w/, and .z; w/ determine K1, K2, and K respectively.

Proposition 6.2. Consider a Heegaard diagram for .K; K1; K2/. We have that
D�K D D�K2 B D�K1 .
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Proof. The map D�K1 is induced by a sequence of Heegaard moves taking .†; ˛; ˇ; z/

to .†; ˛; ˇ; u/ and D�K2 comes from a sequence of moves from .†; ˛; ˇ; u/ to
.†; ˛; ˇ; w/. Therefore, the composition of isotopies and handleslides goes from
.†; ˛; ˇ; z/ to .†; ˛; ˇ; w/ and gives us a choice of D�K . �

Remark 6.3. In this setup, the concatenation of a good set of trajectories from z to
u and from u to w gives a good set of trajectories from z to w, so there are still no
concerns with our choice of paths.

Thus, since most of the complexity in the knot surgery formula for HF 1 comes
from the map D�K , having a Heegaard diagram for .K; K1; K2/ and an understanding
of each D�Ki should make the computation more manageable. This is the approach
we will use for the rest of the Mn. However, we must first establish that such things
exist and more importantly, derive a way of relating this information to the Mn.

Lemma 6.4. Suppose K1 and K2 are knots in Y where K1 \ K2 is an embedded
connected interval. Then if K is the knot obtained from .K1 [ K2/ � K1 \ K2 (see
Figure 2), there exists a Heegaard diagram for .K; K1; K2/.

K1 � K2 K1 \ K2 K2 � K1

Figure 2. Each simple cycle corresponds to a knot.

Proof. The idea follows the construction of Heegaard diagrams for knots in [17].
Begin with a self-indexing Morse function, h W S3 ! Œ0; 3�, with exactly two critical
points. Note that traversing a flow from index 0 to index 3 and then another flow in
“reverse” gives a knot. Thus, three flow lines give three knots in a natural way as
before (see Figure 3).

Choose a small neighborhood, U , of three flow lines between the two points.
Identify a neighborhood of K1 [ K2 in Y , N , with U such that each knot gets
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3

�� �� ��
0

Figure 3. Three flow lines forming three knots.

mapped to the union of two of the three flows. We will now use h to refer to the
induced Morse function on N , with index 0 and index 3 critical points, p and q.
Extend h to a Morse function f on all of Y such that it is still self-indexing. If there
were no other index 0 or index 3 critical points, then we could construct the desired
Heegaard diagram simply by choosing the three basepoints to be where the three flow
lines pass through the Heegaard surface, f �1.3=2/. The idea is to cancel any critical
points of index 0 or 3 outside of N , without affecting f jN .

If such critical points exist, we rescale the Morse function in a neighborhood of p

and q so as to not affect the critical points, but make h.p/ D �� and h.q/ D 3C� (and
thus the same for f ). Now, remove the balls ff > 3C�=2g and ff < ��=2g around
the index 0 and index 3 critical points from N , to obtain a cobordism W W S2 ! S2. In
the terminology of [9], this is a self-indexing Morse function on the triad .W; S2; S2/.
Since each manifold in the triad is connected, we know that for each index 0 critical
point, there is a corresponding index 1 with a single flow line traveling to the index 0.
This pair can be canceled such that the Morse function will not be changed outside of a
neighborhood of the flow line between them. We want to see that by perhaps choosing
a smaller neighborhood, N 0, of the knots inside of N , this flow line does not hit N 0.
This must be the case because if no such neighborhood existed, by compactness, this
flow line would have to intersect K1 or K2. But these are flows of f themselves, so
the two lines cannot intersect.

Hence, we can alter f to remove the index 0/1 pair without affecting f jN 0 . By
repeating this argument and an analogous one for index 2/3 pairs, we can remove all of
the critical points of index 0 and 3 in W in this fashion. This says, after rescaling the
function on the neighborhoods of p and q back to their original values, the new Morse
function is self-indexing on Y with exactly one index 0 and one index 3 critical point,
and furthermore, still agrees with h when restricted to a small enough neighborhood
of the knots. This is exactly what we want to give the desired Heegaard diagram.

�

Consider the link in the Kirby diagram for Mn, Figure 1. Since Zn is the knot
which we will apply the surgery formula to, we would like a way to decompose Zn

and apply Lemma 6.4.
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Proposition 6.5. For each n, there exists a Heegaard diagram for .Zn; Z1; Zn�1/

in S2 � S1#S2 � S1.

Proof. Let us first study Figure 4. Here we have attached an arc to Zn at two points
(the large black dots). This creates two additional knots as follows. Note that one
can travel two different paths from the bottom attachment point to the top attachment
point; we may either wind in an upward spiral once around the two vertical strands
or follow the path that begins by winding downward n � 1 times. Beginning at
the top attachment point, following the attaching arc to the bottom point, and finally
traversing one of the two winding paths back to the top point gives either Z1 or Zn�1.
We are now in the position to apply Lemma 6.4 to Zn, Z1, and Zn�1. �

Z1

Zn�1

Zn 0

0

Figure 4. Splitting of Zn into Zn�1 and Z1.

When applying the surgery formula for T 3, it was critical to use the map ‚K to
make all of the inclusions consistently identity matrices. The following lemma will
allow us to do this in general.

Lemma 6.6. Consider a Heegaard diagram for .K; K1; K2/. Then ‚K D ‚K2 B
‚K1 .

Proof. Consider the Alexander gradings for the three knots in the diagram.

AK.x/ � AK.y/ D nz.�/ � nw.�/

D nz.�/ � nu.�/ C nu.�/ � nw.�/

D AK1
.x/ � AK1

.y/ C AK2
.x/ � AK2

.y/
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for each � 2 �2.x; y/. Therefore, the relative Alexander grading for K is the sum of
the relative Alexander gradings for K1 and K2. Thus, the absolute Alexander grading
for K is the sum of the absolute Alexander gradings for K1 and K2 plus an additional
constant. Therefore, ‚K D U ` � ‚K2 B ‚K1 , for some ` 2 Z. By Proposition 5.2,
the ‚ maps preserve absolute Maslov gradings, so we know that ` D 0. �

Fix a Heegaard diagram as given by Proposition 6.5. We now will choose the
proper bases as in the T 3 example. Figure 5 will provide a useful visual reference
for the upcoming proposition.

Kz;w

��Zn

��

�Zn

��

Kz;u

��Z1����������
�Z1

		��
��

��
��

�
Ku;w

��Zn�1

����
��

��
��

�

�Zn�1 ����������

Kz
D�Z1

��

D�Zn



Ku
D�Zn�1

�� Kw

Figure 5. The setup that appears in Proposition 6.7.

Proposition 6.7. Following Section 5, choose bases for Kz;u, Kz , and Ku, such
that the inclusions and ‚Z1 are given by the identity and the map D�Z1 is a matrix
in X . Now, choose bases for Kw and Ku;w such that the inclusions and ‚Zn�1 are
the identity. There exists a basis for Kz;w such that ��Zn , �Zn , and ‚Zn are given
by the identity.

Proof. Clearly we can fix a basis for Kz;w such that ��Zn is the identity. Now, we
combine the fact that �Zn D ‚Zn B ��Zn with ‚Zn D ‚Zn�1 B ‚Z1 D I , to get
the required result. �

Remark 6.8. These constructions could be generalized to any number of basepoints
(and the corresponding larger number of induced knots), but we only need three
basepoints for our purposes.

Although D�Zn�1 is not necessarily represented by an element of X in this
diagram, we do know that it comes in the form of A ˚ B for A; B 2 GL2.F/, since
D�Zn�1 preserves absolute gradings.

Remark 6.9. While the individual matrix representations may seem to depend on
the choice of Heegaard diagram, if D�K D I , this is independent of the diagram as
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long as the bases are chosen such that �K D ‚K D I . A similar statement based on
the work of Section 5 can be made about D�K being in X regardless of diagram.

We are now ready for the calculation of the maps D�Zn for all n.

Theorem 6.10. Begin with a diagram for .Z2nC1; Z1; Z2n/. After a choice of bases
given by Proposition 6.7 we have that D�Z2n is the identity and D�Z2nC1 is a matrix
in X for all n � 0.

Proof. For n D 0, we know that the map D�Z0 must be the identity in order to
have rk HF 1.#3

iD1S2 � S1/ D 8. Similarly, from our computation for T 3, we have
seen that D�Z1 is in X . Thus, the base case is established. For the induction step,
note that as soon as D�Z2n is the identity, we can compose with D�Z1 to get that
D�Z2nC1 is of type X . Thus, we only need to find D�Z2n .

By hypothesis, D�Z2n�1 2 X . The first case we consider is if D�Z1 and
D�Z2n�1 were to be represented by two different elements of X when consider-
ing bases chosen for .Z2n; Z1; Z2n�1/. If this were to happen, then the product of
the matrices, which gives a representative for ˆ�Z2n , has the property that its sum
with the identity, ˆZ2n , has rank at least 2. However, this is impossible by the rank
bounds coming from the spectral sequence. Therefore, both D�Z2n�1 and D�Z1

are represented by the same matrix. But, every element of X squares to the identity.
D�Z2n must then be the identity. �

Proof of Theorem 1.4. We apply Theorem 6.10 to see that the rank of ˆ�Z2n CˆZ2n

is equal to that of ˆ�Z0 C ˆZ0 . Therefore, HF 1.M2n; s0/ and HF 1.M0; s0/

are isomorphic by Equation (5). Similarly, we see that ˆ�Z2nC1 C ˆZ2nC1 and
ˆ�Z1 C ˆZ1 have the same rank. Thus, HF 1.M2nC1; s0/ Š HF 1.M1; s0/. But,
this shows exactly that d3 must satisfy x1 ^ x2 ^ x3 7! hx1 Y x2 Y x3; ŒY �i (mod 2/

by the discussion at the beginning of Section 5. �

7. Calculations for b1 D 4

Recall from Proposition 3.3 that if b1.Y / D 4, then Y has integral triple cup product
form isomorphic to that of Mn#S2 � S1 for some n. We then choose a basis for
H 1.Y I Z/, fx1; x2; x3; x4g, with the property that ��Y

.x1 ^ x2 ^ x3/ D n and
��Y

.xi ^ xj ^ x4/ D 0 for all i and j .

Theorem 7.1. Let s be torsion. If n is even, HF 1.Y; s/ has rank 16. For n odd,
HF 1.Y; s/ has rank 12.

Proof. As before, we simply need to calculate HF 1 for Mn#S2�S1. By the connect
sum formula, HF 1.Y; s/ Š HF 1.Mn; s0/ ˝ .F ŒU; U �1�/2. Therefore, applying
the work of the previous section gives the result. �
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Proof of Theorem 1.5. To see that the homology agrees with the differential coming
from the conjecture, we just need to study the predicted differential d3. If n is even,
then we have the result, since both homologies are rank 16, as d3 � 0.

Now consider the case where n is odd. Note that d3 is identically 0 on each
ƒi .H 1.Y I Z// except for x1 ^ x2 ^ x3 and x1 ^ x2 ^ x3 ^ x4. Therefore, the kernel
of d3 has rank 14 and the rank of d3 is 2. This gives the desired rank of 12. �

8. Proof of the existence of homologically split surgery presentations

This section has been reproduced with the permission of Ciprian Manolescu.

We start with a discussion of some results from algebra. A lattice is a free Z-
module of finite rank, together with a nondegenerate symmetric bilinear form taking
values in Z. A lattice S is called odd if there exists t 2 S with t � t 2 Z being odd.
By S1 ˚ S2 we denote the orthogonal direct sum of two lattices.

The bilinear form of a lattice S determines an embedding of S into S� D
Hom.S; Z/. The factor group AS D S�=S is a finite Abelian group. It comes
naturally equipped with a bilinear form

bS W AS � AS ! Q=Z; bS .t1 C S; t2 C S/ D t1 � t2 C Z;

called the discriminant-bilinear form of S .
The following results are taken from the literature; see [3], [2], [20], [10]:

Theorem 8.1 (Kneser–Puppe, Durfee). Two lattices S1 and S2 have isomorphic
discriminant-bilinear forms if and only if there exist unimodular lattices L1, L2 such
that S1 ˚ L1 Š S2 ˚ L2.

Theorem 8.2 (Milnor). Let S be an indefinite, unimodular, odd lattice. Then S Š
mh1i ˚ nh�1i for some m; n � 1.

We say that two lattices S1; S2 are stably equivalent if there exist nonnegative
integers m1; n1; m2; n2 such that the stabilized lattices

S 0
1 D S1 ˚ m1h1i ˚ n1h�1i;

S 0
2 D S2 ˚ m2h1i ˚ n2h�1i

are isomorphic.
Note that for any lattice S , the direct sum S ˚ h1i ˚ h�1i is indefinite and odd.

Therefore, an immediate consequence of Theorems 8.1 and 8.2 is:

Corollary 8.3. Two lattices are stably equivalent if and only if they have isomorphic
discriminant-bilinear forms.
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Observe that we can restate Theorem 8.2 by saying that all unimodular lattices are
stably diagonalizable. This is not the case for general lattices. Indeed, Corollary 8.3
shows that a lattice is stably diagonalizable if and only if its discriminant-bilinear form
comes from a diagonal lattice. Wall [21] classified nonsingular bilinear forms on finite
Abelian groups and showed that any such form can appear as a discriminant-bilinear
form of a lattice; see also Proposition 1.8.1 of [10]. The classification contains non-
diagonal forms. As a consequence, for example, the lattice of rank two given by the
matrix

H2 D
�

0 2

2 0

�

is not stably diagonalizable.
Following the classification scheme for discriminant-bilinear forms (see Proposi-

tion 1.8.2 of [10]), we see that given any discriminant-bilinear form AS , there exists
AL coming from a (not necessarily unimodular) diagonal lattice, L, such that AS ˚AL

is isomorphic to AL0 , where L0 is also a diagonal lattice. Applying Corollary 8.3 we
obtain the following result:

Proposition 8.4. For any lattice S , there exists a diagonal lattice L (not necessarily
unimodular), such that S ˚ L is diagonalizable.

For example, H2 ˚ h2i is isomorphic to h2i ˚ h2i ˚ h�2i.

Remark 8.5. Any degenerate symmetric bilinear form over Z can be expressed as a
direct sum of a non-degenerate form and some zeros. Hence, the result of Proposi-
tion 8.4 applies to all symmetric bilinear forms (not necessarily non-degenerate).

Proof of Lemma 2.4. Let Y be a 3-manifold. We represent it by surgery on S3 along
a framed link, with linking matrix S . Handleslides and stabilizations correspond to
elementary operations (integral changes of basis and direct sums with h˙1i) on the
bilinear form of S . Since a connect sum with L.m; 1/ can be presented by m-surgery
on a split unknot, this corresponds to a direct sum of the linking matrix of Y with the
diagonal lattice hmi. Proposition 8.4 and Remark 8.5 complete the proof. �
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