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Moduli spaces of hyperbolic 3-manifolds and dynamics
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Abstract. The space AH.M/ of marked hyperbolic 3-manifold homotopy equivalent to a
compact 3-manifold with boundary M sits inside the PSL2.C/-character variety X.M/ of
�1.M/. We study the dynamics of the action of Out.�1.M// on both AH.M/ andX.M/. The
nature of the dynamics reflects the topology of M .

The quotient AI.M/ D AH.M/=Out.�1.M// may naturally be thought of as the moduli
space of unmarked hyperbolic 3-manifolds homotopy equivalent toM and its topology reflects
the dynamics of the action.
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1. Introduction

For a compact, orientable, hyperbolizable 3-manifold M with boundary, the defor-
mation space AH.M/ of marked hyperbolic 3-manifolds homotopy equivalent to
M is a familiar object of study. This deformation space sits naturally inside the
PSL2.C/-character variety X.M/ and the outer automorphism group Out.�1.M//

acts by homeomorphisms on both AH.M/ and X.M/. The action of Out.�1.M//

on AH.M/ and X.M/ has largely been studied in the case when M is an interval
bundle over a closed surface (see, for example, [8], [22], [49], [18]) or a handlebody
(see, for example, [43], [54]). In this paper, we initiate a study of this action for
general hyperbolizable 3-manifolds.

We also study the topological quotient

AI.M/ D AH.M/=Out.�1.M//

which we may think of as the moduli space of unmarked hyperbolic 3-manifolds
homotopy equivalent to M . The space AH.M/ is a rather pathological topological
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object itself, often failing to even be locally connected (see Bromberg [12] and Magid
[35]). However, since AH.M/ is a closed subset of an open submanifold of the
character variety, it does retain many nice topological properties. We will see that the
topology of AI.M/ can be significantly more pathological.

The first hint that the dynamics of Out.�1.M// on AH.M/ are complicated was
Thurston’s [51] proof that if M is homeomorphic to S � I , then there are infinite
order elements of Out.�1.M//which have fixed points inAH.M/. (These elements
are pseudo-Anosov mapping classes.) One may further show that AI.S � I / is not
even T1, see [18] for a closely related result. Recall that a topological space is T1 if
all its points are closed. On the other hand, we show that in all other cases AI.M/

is T1.

Theorem 1.1. Let M be a compact hyperbolizable 3-manifold with non-abelian
fundamental group. Then the moduli space AI.M/ is T1 if and only if M is not an
untwisted interval bundle.

We next show that Out.�1.M// does not act properly discontinuously onAH.M/

if M contains a primitive essential annulus. A properly embedded annulus in M is
a primitive essential annulus if it cannot be properly isotoped into the boundary of
M and its core curve generates a maximal abelian subgroup of �1.M/. In particular,
if M has compressible boundary and no toroidal boundary components, then M
contains a primitive essential annulus (see Corollary 7.5).

Theorem 1.2. LetM be a compact hyperbolizable 3-manifold with non-abelian fun-
damental group. IfM contains a primitive essential annulus then Out.�1.M// does
not act properly discontinuously on AH.M/. Moreover, if M contains a primitive
essential annulus, then AI.M/ is not Hausdorff.

On the other hand, if M is acylindrical, i.e. has incompressible boundary and
contains no essential annuli, then Out.�1.M// is finite (see Johannson [29], Propo-
sition 27.1), so Out.�1.M// acts properly discontinuously on AH.M/ and X.M/.
It is easy to see that Out.�1.M// fails to act properly discontinuously on X.M/ if
M is not acylindrical, since it will contain infinite order elements with fixed points
in X.M/.

If M is a compact hyperbolizable 3-manifold which is not acylindrical, but does
not contain any primitive essential annuli, then Out.�1.M// is infinite. However,
if, in addition, M has no toroidal boundary components, we show that Out.�1.M//

acts properly discontinuously on an open neighborhood of AH.M/ in X.M/. In
particular, we see that AI.M/ is Hausdorff in this case.

Theorem 1.3. IfM is a compact hyperbolizable 3-manifold with no primitive essen-
tial annuli whose boundary has no toroidal boundary components, then there exists
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an open Out.�1.M//-invariant neighborhoodW.M/ ofAH.M/ inX.M/ such that
Out.�1.M// acts properly discontinuously onW.M/. In particular,AI.M/ is Haus-
dorff.

If M is a compact hyperbolizable 3-manifold with no primitive essential annuli
whose boundary has no toroidal boundary components, then Out.�1.M// is virtu-
ally abelian (see the discussion in Sections 5 and 9). However, we note that the
conclusion of Theorem 1.3 relies crucially on the topology of M , not just the group
theory of Out.�1.M//. In particular, if M is a compact hyperbolizable 3-manifold
M with incompressible boundary, such that every component of its characteristic sub-
manifold is a solid torus, then Out.�1.M// is always virtually abelian, but M may
contain primitive essential annuli, in which case Out.�1.M// does not act properly
discontinuously on AH.M/.

One may combine Theorems 1.2 and 1.3 to completely characterize when
Out.�1.M// acts properly discontinuously on AH.M/ in the case that M has no
toroidal boundary components.

Corollary 1.4. Let M be a compact hyperbolizable 3-manifold with no toroidal
boundary components and non-abelian fundamental group. The group Out.�1.M//

acts properly discontinuously on AH.M/ if and only if M contains no primitive
essential annuli. Moreover,AI.M/ isHausdorff if andonly ifM contains noprimitive
essential annuli.

It is a consequence of the classical deformation theory of Kleinian groups (see
Bers [5] or Canary and McCullough, Chapter 7 in [17], for a survey of this the-
ory) that Out.�1.M// acts properly discontinuously on the interior int.AH.M// of
AH.M/. If Hn is the handlebody of genus n � 2, Minsky [43] exhibited an ex-
plicit Out.�1.Hn//-invariant open subsetPS.Hn/ ofX.Hn/ such that int.AH.Hn//

is a proper subset of PS.Hn/ and Out.�1.Hn// acts properly discontinuously on
PS.Hn/.

If M is a compact hyperbolizable 3-manifold with incompressible boundary and
no toroidal boundary components, which is not an interval bundle, then we find an
open set W.M/ strictly bigger than int.AH.M// which Out.�1.M// acts properly
discontinuously on. See Theorem 9.1 and its proof for a more precise description of
W.M/. We further observe, see Lemma 8.1, thatW.M/\ @AH.M/ is a dense open
subset of @AH.M/ in this setting.

Theorem 1.5. LetM be a compact hyperbolizable 3-manifold with nonempty incom-
pressible boundary and no toroidal boundary components, which is not an interval
bundle. Then there exists an open Out.�1.M//-invariant subset W.M/ of X.M/

such that Out.�1.M// acts properly discontinuously on W.M/ and int.AH.M// is
a proper subset of W.M/.
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It is conjectured that if M is an untwisted interval bundle over a closed surface
S , then int.AH.M// is the maximal open Out.�1.M//-invariant subset of X.M/

on which Out.�1.M// acts properly discontinuously. One may show that no open
domain of discontinuity can intersect @AH.S � I / (see Lee [34]). Further evidence
for this conjecture is provided by results of Bowditch [8], Goldman [21], Souto–Storm
[49], Tan–Wong–Zhang [54] and Cantat [19].

Michelle Lee [34] has recently shown that ifM is an twisted interval bundle over
a closed surface, then there exists an open Out.�1.M//-invariant subsetW ofX.M/

such that Out.�1.M// acts properly discontinuously on W and int.AH.M// is a
proper subset of W . Moreover, W contains points in @AH.M/. As a corollary, she
proves that ifM has incompressible boundary and no toroidal boundary components,
then there is open Out.�1.M//-invariant subset W of X.M/ such that Out.�1.M//

acts properly discontinuously on W , int.AH.M// is a proper subset of W , and
W \ @AH.M/ ¤ ; if and only if M is not an untwisted interval bundle.

Outline of paper. In Section 2, we recall background material from topology and
hyperbolic geometry which will be used in the paper.

In Section 3, we prove Theorem 1.1. The proof that AI.S � I / is not T1 follows
the arguments in [18], Proposition 3.1, closely. We now sketch the proof thatAI.M/

is T1 otherwise. In this case, letN 2 AI.M/ and letR be a compact core forN . We
show that N is a closed point, by showing that any convergent sequence f�ng in the
pre-image ofN is eventually constant. For all n, there exists a homotopy equivalence
hn W M ! N such that .hn/� D �n. If G is a graph in M carrying �1.M/, then,
since f�ng is convergent, we can assume that the length of hn.G/ is at most K, for
all n and someK. But, we observe that hn.G/ cannot lie entirely in the complement
of R, if R is not a compression body. In this case, each hn.G/ lies in the compact
neighborhood of radius K of R, so there are only finitely many possible homotopy
classes of maps ofG. Thus, there are only finitely many possibilities for �n, so f�ng is
eventually constant. The proof in the case that R is a compression body is somewhat
more complicated and uses the Covering Theorem.

In Section 4, we prove Theorem 1.2. Let A be a primitive essential annulus in
M . If ˛ is a core curve of A, then the complement yM of a regular neighborhood of
˛ inM is hyperbolizable. We consider a geometrically finite hyperbolic manifold yN
homeomorphic to the interior of yM and use the Hyperbolic Dehn Filling Theorem
to produce a convergent sequence f�ng in AH.M/ and a sequence f'ng of distinct
elements of Out.�1.M// such that f�n B'ng also converges. Therefore, Out.�1.M//

does not act properly discontinuously on AH.M/. Moreover, we show that f�ng
projects to a sequence inAI.M/with two distinct limits, soAI.M/ is not Hausdorff.

In Section 5 we recall basic facts about the characteristic submanifold and the
mapping class group of compact hyperbolizable 3-manifolds with incompressible
boundary and no toroidal boundary components. We identify a finite index subgroup
J.M/ of Out.�1.M// and a projection of J.M/ onto the direct product of mapping
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class groups of the base surfaces whose kernel K.M/ is the free abelian subgroup
generated by Dehn twists in frontier annuli of the characteristic submanifold.

In Section 6, we organize the frontier annuli of the characteristic submanifold
into characteristic collections of annuli and describe free subgroups of �1.M/which
register the action of the subgroup of Out.�1.M// generated by Dehn twists in the
annuli in such a collection.

In Section 7, we show that compact hyperbolizable 3-manifolds with compressible
boundary and no toroidal boundary components contain primitive essential annuli.

In Section 8, we introduce a subsetAHn.M/ ofAH.M/which contains all purely
hyperbolic representations. We see that int.AH.M// is a proper subset of AHn.M/

and that AHn.M/ D AH.M/ if M does not contain any primitive essential annuli.
In Section 9, we prove that if M has incompressible boundary and no toroidal

boundary components, but is not an interval bundle, there is an open neighborhood
W.M/ of AHn.M/ in X.M/ such that Out.�1.M// preserves and acts properly
discontinuously on W.M/. Theorems 1.3 and 1.5 are immediate corollaries. We
finish the outline by sketching the proof in a special case.

Let X be an acylindrical, compact hyperbolizable 3-manifold and let A be an
incompressible annulus in its boundary. Let V be a solid torus and let fB1; : : : ; Bng
be a collection of disjoint parallel annuli in @V whose core curves are homotopic to
the nth power of the core curve of V where jnj � 2. Let fM1; : : : ;Mng be copies
of X and let fA1; : : : ; Ang be copies of A in Mi . We form M by attaching each
Mi to V by identifying Ai and Bi . Then M contains no primitive essential annuli,
is hyperbolizable, and Out.�1.M// has a finite index subgroup J.M/ generated by
Dehn twists about fA1; : : : ; Ang. In particular, J.M/ Š Zn�1.

In this case, fA1; : : : ; Ang is the only characteristic collection of annuli. We say
that a groupH registers J.M/ if it is freely generated by the core curve of V and, for
each i , a curve contained in V [Mi which is not homotopic into V . SoH Š FnC1.
There is a natural map rH W X.M/ ! X.H/ where X.H/ is the PSL2.C/-character
variety of the groupH . Notice that J.M/ preservesH and injects into Out.H/. Let

�nC1 D int.AH.H// � X.H/

denote the space of Schottky representations (i.e. representations which are purely
hyperbolic and geometrically finite.) Since Out.H/ acts properly discontinuously on
�nC1, we see that J.M/ acts properly discontinuously on

WH D r�1
H .�nC1/

Let W.M/ D S
WH where the union is taken over all subgroups which register

J.M/. Notice thatW.M/ is open andJ.M/ acts properly discontinuously onW.M/.
One may use a ping pong argument to show that AH.M/ � W.M/, see Lemma 8.3.
Johannson’s Classification Theorem is used to show that W.M/ is invariant under
Out.�1.M//, see Lemma 9.3. (Actually, we define a somewhat larger set, in general,
by using the space of primitive-stable representations in place of Schottky space.)
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2. Preliminaries

As a convention, the letterM will denote a compact connected oriented hyperbolizable
3-manifold with boundary. We recall thatM is said to be hyperbolizable if the interior
of M admits a complete hyperbolic metric. We will use N to denote a hyperbolic
3-manifold. All hyperbolic 3-manifolds are assumed to be oriented, complete, and
connected.

2.1. The deformation spaces. Recall that PSL2.C/ is the group of orientation-
preserving isometries of H3. Given a3-manifoldM , a discrete, faithful representation
� W �1.M/ ! PSL2.C/ determines a hyperbolic 3-manifold N� D H3=�.�1.M//

and a homotopy equivalence m� W M ! N�, called the marking of N�.
We let D.M/ denote the set of discrete, faithful representations of �1.M/ into

PSL2.C/. The group PSL2.C/ acts by conjugation on D.M/ and we let

AH.M/ D D.M/=PSL2.C/:

Elements ofAH.M/ are hyperbolic 3-manifolds homotopy equivalent toM equipped
with (homotopy classes of) markings.

The space AH.M/ is a closed subset of the character variety

X.M/ D HomT .�1.M/;PSL2.C//==PSL2.C/;

which is the Mumford quotient of the space HomT .�1.M/;PSL2.C// of representa-
tions � W �1.M/ ! PSL2.C/ such that �.g/ is parabolic if g ¤ id lies in a rank two
free abelian subgroup of �1.M/. If M has no toroidal boundary components, then
HomT .�1.M/;PSL2.C// is simply Hom.�1.M/;PSL2.C//. Moreover, each point
in AH.M/ is a smooth point of X.M/ (see Kapovich [30], Sections 4.3 and 8.8, and
Heusener–Porti [24] for more details on this construction).

The group Aut.�1.M// acts naturally on HomT .�1.M/;PSL2.C// via

.' � �/.�/ WD �.'�1.�//:

This descends to an action of Out.�1.M// onAH.M/ andX.M/. This action is not
free, and it often has complex dynamics. Nonetheless, we can define the topological
quotient space

AI.M/ D AH.M/=Out.�1.M//:
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Elements of AI.M/ are naturally oriented hyperbolic 3-manifolds homotopy equiv-
alent to M without a specified marking.

2.2. Topological background. A compact 3-manifold M is said to have incom-
pressible boundary if whenever S is a component of @M , the inclusion map induces
an injection of �1.S/ into �1.M/. In our setting, this is equivalent to �1.M/ being
freely indecomposable. A properly embedded annulus A in M is said to be essen-
tial if the inclusion map induces an injection of �1.A/ into �1.M/ and A cannot be
properly homotoped into @M (i.e. there does not exist a homotopy of pairs of the
inclusion .A; @A/ ! .M; @M/ to a map with image in @M ). An essential annulus A
is said to be primitive if the image of �1.A/ in �1.M/ is a maximal abelian subgroup.

If M does not have incompressible boundary, it is said to have compressible
boundary. The fundamental examples of 3-manifolds with compressible boundary
are compression bodies. A compression body is either a handlebody or is formed by
attaching 1-handles to disjoint disks on the boundary surfaceR� f1g of a 3-manifold
R�Œ0; 1�whereR is a closed, but not necessarily connected, surface (see, for example,
Bonahon [6]). The resulting 3-manifold C (assumed to be connected) will have a
single boundary component @CC intersectingR�f1g, called the positive (or external)
boundary of C . If C is not an untwisted interval bundle over a closed surface, then
@CC is the unique compressible boundary component of C . Notice that the induced
homomorphism �1.@CC/ ! �1.C / is surjective. In fact, a compact irreducible
3-manifold M is a compression body if and only if there exists a component S of
@M such that �1.S/ ! �1.M/ is surjective.

Every compact hyperbolizable 3-manifold can be constructed from compression
bodies and manifolds with incompressible boundary. Bonahon [6] and McCullough–
Miller [40] showed that there exists a neighborhood CM of @M , called the charac-
teristic compression body, such that each component of CM is a compression body
and each component of @CM � @M is incompressible in M .

Dehn filling will play a key role in the proof of Theorem 1.2. Let F be a toroidal
boundary component of compact 3-manifoldM and let .m; l/ be a choice of meridian
and longitude for F . Given a pair .p; q/ of relatively prime integers, we may form a
new manifoldM.p; q/ by attaching a solid torus V toM by an orientation-reversing
homeomorphism g W @V ! F so that, if c is the meridian of V , then g.c/ is a
.p; q/ curve on F with respect to the chosen meridian-longitude system. We say that
M.p; q/ is obtained from M by .p; q/-Dehn filling along F .

2.3. Hyperbolic background. If N D H3=� is a hyperbolic 3-manifold, then
� � PSL2.C/ acts on yC as a group of conformal automorphisms. The domain
of discontinuity �.�/ is the largest open �-invariant subset of yC on which � acts
properly discontinuously. Note that �.�/ may be empty. Its complement ƒ.�/ D
yC��.�/ is called the limit set. The quotient @cN D �.�/=� is naturally a Riemann
surface called the conformal boundary.
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Thurston’s Hyperbolization theorem, see Morgan [44], Theorem B 0, guarantees
that if M is compact and hyperbolizable, then there exists a hyperbolic 3-manifold
N and a homeomorphism

 W M � @TM ! N [ @cN

where @TM denotes the collection of toroidal boundary components of M .
The convex core C.N/ ofN is the smallest convex submanifold whose inclusion

intoN is a homotopy equivalence. More concretely, it is obtained as the quotient, by
� , of the convex hull, in H3, of the limit setƒ.�/. There is a well-defined retraction
r W N ! C.N/ obtained by taking x to the (unique) point in C.N/ closest to x. The
nearest point retraction r is a homotopy equivalence and is 1

cosh s
-Lipschitz on the

complement of the neighborhood of radius s of C.N/.
There exists a universal constant �, called the Margulis constant, such that if

	 < �, then each component of the 	-thin part

Nthin.�/ D fx 2 N j injN .x/ < 	g
(where injN .x/ denotes the injectivity radius of N at x) is either a metric regular
neighborhood of a geodesic or is homeomorphic to T � .0;1/ where T is either a
torus or an open annulus (see Benedetti–Petronio [4] for example). The 	-thick part
of N is defined simply to be the complement of the 	-thin part

Nthick.�/ D N �Nthin.�/:

It is also useful to consider the manifold N 0
� obtained from N by removing the

non-compact components of Nthin.�/.
If N is a hyperbolic 3-manifold with finitely generated fundamental group, then

it admits a compact core, i.e. a compact submanifold whose inclusion into M is
a homotopy equivalence (see Scott [48]). More generally, if 	 < �, then there
exists a relative compact core R for N 0

� , i.e. a compact core which intersects each
component of @N 0

� in a compact core for that component (see Kulkarni–Shalen [33]
or McCullough [38]). Let P D @R � @N 0

� and let P 0 denote the interior of P .
The Tameness Theorem of Agol [1] and Calegari–Gabai [14] assures us that we may
choose R so that N 0

� � R is homeomorphic to .@R � P 0/ � .0;1/. In particular,
the ends of N 0

� are in one-to-one correspondence with the components of @R � P 0.
(We will blur this distinction and simply regard an end as a component of N 0

� � R

once we have chosen 	 and a relative compact core R for N 0
� .) We say that an end

U of N 0
� is geometrically finite if the intersection of C.N/ with U is bounded (i.e.

admits a compact closure). N is said to be geometrically finite if all the ends of N 0
�

are geometrically finite.
Thurston [53] showed that if M is a compact hyperbolizable 3-manifold whose

boundary is a torus F , then all but finitely many Dehn fillings of M are hyperboliz-
able. Moreover, as the Dehn surgery coefficients approach 1, the resulting hyperbolic
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manifolds “converge” to the hyperbolic 3-manifold homeomorphic to int.M/. If M
has other boundary components, then there is a version of this theorem where one
begins with a geometrically finite hyperbolic 3-manifold homeomorphic to int.M/

and one is allowed to perform the Dehn filling while fixing the conformal structure
on the non-toroidal boundary components of M . The proof uses the cone-manifold
deformation theory developed by Hodgson–Kerckhoff [25] in the finite volume case
and extended to the infinite volume case by Bromberg [11] and Brock–Bromberg
[9]. (The first statement of a Hyperbolic Dehn Filling Theorem in the infinite volume
setting was given by Bonahon–Otal [7], see also Comar [20].) For a general state-
ment of the Filling Theorem, and a discussion of its derivation from the previously
mentioned work, see Bromberg [12] or Magid [35].

Hyperbolic Dehn FillingTheorem. LetM be a compact, hyperbolizable 3-manifold
and let F be a toroidal boundary component ofM . LetN D H3=� be a hyperbolic
3-manifold admitting an orientation-preserving homeomorphism  W M � @TM !
N [ @cN . Let f.pn; qn/g be an infinite sequence of distinct pairs of relatively prime
integers.

Then, for all sufficiently large n, there exists a (non-faithful) representation
ˇn W � ! PSL2.C/ with discrete image such that

(1) fˇng converges to the identity representation of � , and

(2) if in W M ! M.pn; qn/ denotes the inclusion map, then for each n, there exists
an orientation-preserving homeomorphism

 n W M.pn; qn/ � @TM.pn; qn/ ! Nˇn
[ @cNˇn

such thatˇnB � is conjugate to . n/�B .in/�, and the restriction of nB inB �1

to @cN is conformal.

3. Points are usually closed

If S is a closed orientable surface, we showed in [18] that

A� .S/ D AH.S � I /=ModC.S/

is not T1 where ModC.S/ is the group of (isotopy classes of) orientation-preserving
homeomorphisms of S . We recall that a topological space is T1 if all points are closed
sets. Since ModC.S/ is identified with an index two subgroup of Out.�1.S//, one
also expects that

AI.S � I / D AH.S � I /=Out.�1.S//

is not T1.
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In this section, we show that if M is an untwisted interval bundle, which also
includes the case that M is a handlebody, then AI.M/ is not T1, but that AI.M/ is
T1 for all other compact, hyperbolizable 3-manifolds.

Theorem 1.1. Let M be a compact hyperbolizable 3-manifold with non-abelian
fundamental group. Then the moduli space AI.M/ is T1 if and only if M is not an
untwisted interval bundle.

Proof. We first show that AI.M/ is T1 ifM is not an untwisted interval bundle. Let
p W AH.M/ ! AI.M/ be the quotient map and let N be a hyperbolic manifold in
AI.M/. We must show that p�1.N / is a closed subset of AH.M/. Since AH.M/

is Hausdorff and second countable, it suffices to show that if f�ng is a convergent
sequence in p�1.N /, then lim �n 2 p�1.N /.

An element � 2 p�1.N / is a representation such that N� is isometric to N . Let
f�ng be a convergent sequence of representations in p�1.N /. Let G � M be a
finite graph such that the inclusion map induces a surjection of �1.G/ onto �1.M/.
Each �n gives rise to a homotopy equivalence hn W M ! N , and hence to a map
jn D hnjG W G ! N , both of which are only well-defined up to homotopy. Since
f�ng is convergent, there exists K such that jn.G/ has length at most K for all n,
after possibly altering hn by a homotopy.

Let R be a compact core for N . Assume first that R is not a compression body.
In this case, if S is any component of @R, then the inclusion map does not induce a
surjection of �1.S/ to �1.R/ (see the discussion in Section 2). Since jn.G/ carries
the fundamental group it cannot lie entirely outside of R. It follows that jn.G/ lies
in the closed neighborhood NK.R/ of radius K about R. By compactness, there
are only finitely many homotopy classes of maps of G into NK.R/ with total length
at most K. Hence, there are only finitely many different representations among the
�n, up to conjugacy. The deformation space AH.M/ is Hausdorff, and the sequence
f�ng converges, implying that f�ng is eventually constant. Therefore lim �n lies in
the preimage of N , implying that the fiber p�1.N / is closed and that N is a closed
point of AI.M/.

Next we assume that R is a compression body. If R were an untwisted interval
bundle, then M would also have to be a untwisted interval bundle (by Theorems 5.2
and 10.6 in Hempel [23]) which we have disallowed. So R must have at least one
incompressible boundary component and only one compressible boundary compo-
nent @CR. We are free to assume thatM is homeomorphic to R, since the definition
of AI.M/ depends only on the homotopy type of M . Let D denote the union of R
and the component of N � R bounded by @CR. Since the fundamental group of a
component ofN �D never surjects onto �1.N /, with respect to the map induced by
inclusion, we see as above that each jn.G/ must intersect D, so is contained in the
neighborhood of radius K of D.

Recall that there exists 	K > 0 so that the distance from the 	K-thin part of N to
the �-thick part ofN is greater thanK (where � is the Margulis constant). It follows
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that jn.G/ must be contained in the 	K-thick part of N .
Let F be an incompressible boundary component of M . Then hn.F / is homo-

topic to an incompressible boundary component of R (see, for example, the proof of
Proposition 9.2.1 in [17]). As there are finitely many possibilities, we may pass to a
subsequence so that hn.F / is homotopic to a fixed boundary component F 0. We may
chooseG so that there is a proper subgraphGF � G such that the image of �1.GF /

in �1.M/ (under the inclusion map) is conjugate to �1.F /. Let pF W NF ! N be
the covering map associated to �1.F

0/ � �1.N /. Then jnjGF
lifts to a map kn of

GF into NF .
Assume first that F is a torus. Then kn.GF /must lie in the portionX ofNF with

injectivity radius between 	K andK=2, which is compact. It follows that jn.G/must
lie in the closed neighborhood of radius K of pF .X/. Since pF .X/ is compact, we
may conclude, as in the general case, that f�ng is eventually constant and hence that
p�1.N / is closed.

We now suppose that F has genus at least 2. We first establish that there exists L
such that kn.GF /must be contained in a neighborhood of radiusL of the convex core
C.NF /. It is a consequence of the thick-thin decomposition, that if G0 is a graph in
NF which carries the fundamental group thenG0 must have length at least�. We also
recall that the nearest point retraction rF W NF ! C.NF / is a homotopy equivalence
which is 1

cosh s
-Lipschitz on the complement of the neighborhood of radius s ofC.N/.

Therefore, ifkn.GF / lies outside of Ns.C.NF //, then rF .kn.GF // has length at most
K

cosh s
. It follows that kn.GF / must intersect the neighborhood of radius cosh�1.K

�
/

of C.NF /, so we may choose L D K C cosh�1.K
�
/.

IfNF is geometrically finite, thenX D C.NF /\Nthick.�K/ is compact and jn.G/

must be contained in the neighborhood of radius LCK of pF .X/ which allows us
to complete the proof as before.

IfNF is not geometrically finite, we will need to invoke the Covering Theorem to
complete the proof. Let zF denote the lift of F 0 to NF . Then zF divides NF into two
components, one of which, say A�, is mapped homeomorphically to the component
of N � R bounded by F 0. Let AC D NF � A�. We may choose a a relative
compact core RF for .NF /

0
� (for some 	 < 	K) so that zF is contained in the interior

of RF . Since pF is infinite-to-one on each end of .NF /
0
� which is contained in AC,

the Covering Theorem (see [15] or [53]) implies that all such ends are geometrically
finite. Therefore,

Y D AC \ C.NF / \ .NF /thick.�K/

is compact. If we let Z D A� [ Y , then we see that kn.GF / is contained in the
closed neighborhood of radiusL aboutZ (sinceC.NF /\Nthick.�K/ � Z). Therefore,
jn.G/ is contained in the closed .LCK/-neighborhood of

D \ pF .Z/ D D \ pF .Y /:

Since D \ pF .Y / is compact, we conclude, exactly as in the previous cases, that
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p�1.N / is closed. This case completes the proof that AI.M/ is T1 if M is not an
untwisted interval bundle.

We now deal with the case whereM D S�I is an untwisted interval bundle over a
compact surface S . (In the special case thatM is a handlebody of genus 2, we choose
S to be the punctured torus.) In our previous paper [18], we consider the spaceAH.S/
of (conjugacy classes of) discrete faithful representations � W �1.S/ ! PSL2.C/ such
that if g 2 �1.S/ is peripheral, then �.g/ is parabolic. In Proposition 3.1, we use
work of Thurston [51] and McMullen [41] to exhibit a sequence f�ng in AH.S/
which converges to � 2 AH.S/ such that ƒ.�/ D yC, ƒ.�1/ ¤ yC and for all n there
exists 'n 2 ModC.S/ such that �n D �1 B 'n. Since AH.S/ � AH.S � I / and
ModC.S/ is identified with a subgroup of Out.�1.S//, we see that f�ng is a sequence
in p�1.N�1

/ which converges to a point outside of p�1.N�1
/. Therefore, N�1

is a
point in AI.S � I / which is not closed. �

Remark. One may further show, as in the remark after Proposition 3.1 in [18],
that if N 2 AI.S � I / is a degenerate hyperbolic 3-manifold with a lower bound
on its injectivity radius, then N is not a closed point in AI.S � I /. We recall that
N D H3=� is degenerate if�.�/ is connected and simply connected and� is finitely
generated.

4. Primitive essential annuli and the failure of proper discontinuity

In this section, we show that if M contains a primitive essential annulus, then
Out.�1.M// does not act properly discontinuously on AH.M/. We do so by us-
ing the Hyperbolic Dehn Filling Theorem to produce a convergent sequence f�ng in
AH.M/ and a sequence f'ng of distinct element of Out.�1.M// such that f�n B'ng is
also convergent. The construction is a generalization of a construction of Kerckhoff–
Thurston [31]. One may also think of the argument as a simple version of the “wrap-
ping” construction (see Anderson–Canary [2]) which was also used to show that
components of int.AH.M// self-bump whenever M contains a primitive essential
annulus (see McMullen [42] and Bromberg–Holt [13]).

Theorem 1.2. LetM be a compact hyperbolizable 3-manifold with non-abelian fun-
damental group. IfM contains a primitive essential annulus then Out.�1.M// does
not act properly discontinuously on AH.M/. Moreover, if M contains a primitive
essential annulus, then AI.M/ is not Hausdorff.

Proof. LetA be a primitive essential annulus inM with core curve ˛. Let yM D M �
N .˛/where N .˛/ is an open regular neighborhood of˛. Lemma 10.2 in [3] observes
that yM is hyperbolizable. Since yM is hyperbolizable, Thurston’s Hyperbolization
Theorem implies that there exists a hyperbolic manifold yN and a homeomorphism
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 W yM � @T
yM ! yN [ @c

yN . The classical deformation theory of Kleinian groups
(see Bers [5] or [17]) implies that we may choose any conformal structure on @c

yN .
LetA0 andA1 denote the components ofA\ yM . LetMi be the complement in yM

of a regular neighborhood of Ai . Let hi W M ! yM be an embedding with imageMi

which agrees with the identity map off of a (somewhat larger) regular neighborhood
of A.

Let F be the toroidal boundary component of yM which is the boundary of N .˛/

in M . Choose a meridian-longitude system for F so that the meridian for F bounds
a disk in M and the longitude is isotopic to A1 \ F . Lemma 10.3 in [3] implies that
if in W yM ! yM.1; n/ is the inclusion map, then in Bhi W M ! yM.1; n/ is homotopic
to a homeomorphism for each i D 0; 1 and all n 2 Z. Moreover, we may similarly
check that in B h1 is homotopic to in B h0 BDn

A for all n, where DA denotes a Dehn
twist along A. Notice first that jn D Dn

A0
takes a .1; 0/-curve on F to a .1; n/-curve

on F , so extends to a homeomorphism jn W M D yM.1; 0/ ! yM.1; n/. Therefore,
since i0 B h0 and i0 B h1 are homotopic, so are jn B i0 B h0 and jn B i0 B h1. But,
jn B i0 B h0 is homotopic to in B h0 BDn

A and jn B i0 B h1 D in B h1, which completes
the proof that in B h1 is homotopic to in B h0 BDn

A for all n.
Let �0 D . B h0/� and �1 D . B h1/�. Since .hi /� induces an injection of

�1.M/ into �1. yM/, �i 2 AH.M/. We next observe that one can choose yN so that
N�0

and N�1
are not isometric. Let ai D Ai \ .@M � @T

yM/ and let a�
i denote

the geodesic representative of  .ai / in @c
yN . Notice that for each i D 0; 1 there

is a conformal embedding of @c
yN � a�

i into @cN�i
such that each component of

the complement of the image of @c
yN � a�

i is a neighborhood of a cusp. One may
therefore choose the conformal structure on @c

yN so that there is not a conformal
homeomorphism from @cN�0

to @cN�1
. Therefore, N�0

and N�1
are not isometric.

Let fNn D Nˇn
g be the sequence of hyperbolic 3-manifolds provided by the

Hyperbolic Dehn Filling Theorem applied to the sequence f.1; n/gn2ZC
and let

f n W yM.1; n/ � @T
yM.1; n/ ! Nn [ @cNng be the homeomorphisms such that

 n B in B  �1 is conformal on @cN . Let

�n;i D ˇn B �i

for alln large enough thatNn and n exist. SinceˇnB � is conjugate to . nBin/� (by
applying part (2) of the Hyperbolic Dehn Filling Theorem) and in B hi is homotopic
to a homeomorphism, we see that �n;i D . n B in B hi /� lies in AH.M/ for all n and
each i . It follows from part (1) of the Hyperbolic Dehn Filling Theorem that f�n;ig
converges to �i for each i . Moreover, �n;1 D �n;0 B .DA/

n� for all n, since in B h1 is
homotopic to in B h0 B Dn

A for all n. Therefore, Out.�1.M// does not act properly
discontinuously on AH.M/.

Moreover, f�n;0g and f�n;1g project to the same sequence in AI.M/ and both
N�0

and N�1
are limits of this sequence. Since N�0

and N�1
are distinct manifolds

in AI.M/, it follows that AI.M/ is not Hausdorff. �
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Remark. One can also establish Theorem 1.2 using deformation theory of Kleinian
groups and convergence results of Thurston [52]. This version of the argument follows
the same outline as the proof of Proposition 3.3 in [18].

We provide a brief sketch of this argument. The classical deformation theory of
Kleinian groups (in combination with Thurston’s Hyperbolization Theorem) guaran-
tees that there exists a component B of int.AH.M// such that if � 2 B , then there
exists a homeomorphism Nh� W M � @TM ! N� [ @cN� and the point � is deter-
mined by the induced conformal structure on @M � @TM . Moreover, every possible
conformal structure on @M � @TM arises in this manner.

Let a0 and a1 denote the components of @A and let ta0
and ta1

denote Dehn twists
about a0 and a1 respectively. We choose orientations so that DA induces ta0

B ta1

on @M . We then let �n;0 2 B have associated conformal structure tna1
.X/ and let

�n;1 have associated conformal structure t�n
a0
.X/ for some conformal structure X

on @M . Thurston’s convergence results [51], [52] can be used to show that there
exists a subsequence fnj g of Z such that f�nj ;0g and f�nj ;1g both converge. One can
guarantee, roughly as above, that the limiting hyperbolic manifolds are not isometric.
Moreover, �n;1 D �n;0 B .DA/

n� for all n, so we are the same situation as in the proof
above.

5. The characteristic submanifold and mapping class groups

In order to further analyze the case where M has incompressible boundary we will
make use of the characteristic submanifold (developed by Jaco–Shalen [27] and Jo-
hannson [29]) and the theory of mapping class groups of 3-manifolds developed by
Johannson [29] and extended by McCullough and his co-authors [39], [26], [17].

We begin by recalling the definition of the characteristic submanifold, specialized
to the hyperbolic setting. In the general setting, the components of the characteristic
submanifold are interval bundles and Seifert fibred spaces. In the hyperbolic setting,
the only Seifert fibred spaces which occur are the solid torus and the thickened torus
(see Morgan [44], Section 11, or Canary–McCullough [17], Chapter 5).

Theorem 5.1. LetM be a compact oriented hyperbolizable 3-manifold with incom-
pressible boundary. There exists a codimension zero submanifold †.M/ � M with
frontier Fr.†.M// D @†.M/ � @M satisfying the following properties:

(1) Each component †i of †.M/ is either

(i) an interval bundle over a compact surface with negative Euler character-
istic which intersects @M in its associated @I -bundle,

(ii) a thickened torus such that @M \†i contains a torus, or

(iii) a solid torus.
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(2) The frontier Fr.†.M// is a collection of essential annuli.

(3) Any essential annulus or incompressible torus in M is properly isotopic into
†.M/.

(4) If X is a component of M � †.M/, then either �1.X/ is non-abelian or
. xX;Fr.X// Š .S1 � Œ0; 1� � Œ0; 1�; S1 � Œ0; 1� � f0; 1g/ and X lies between
an interval bundle component of †.M/ and a thickened or solid torus compo-
nent of †.M/.

Moreover, such a †.M/ is unique up to isotopy, and is called the characteristic
submanifold ofM .

The existence and the uniqueness of the characteristic submanifold in general
follows from The Characteristic Pair Theorem in [27] or Proposition 9.4 and Corol-
lary 10.9 in [29]. Theorem 5.1 (1) follows from Theorem 5.3.4 of [17], part (2)
follows from (1) and the definition of the characteristic submanifold, part (3) follows
from Theorem 12.5 of [29], and part (4) follows from Theorem 2.9.3 of [17].

Johannson’s Classification Theorem [29] asserts that every homotopy equivalence
between compact, irreducible 3-manifolds with incompressible boundary may be ho-
motoped so that it preserves the characteristic submanifold and is a homeomorphism
on its complement. Therefore, the study of Out.�1.M// often reduces to the study
of mapping class groups of interval bundles and Seifert-fibered spaces.

Johannson’s Classification Theorem ([29], Theorem 24.2). Let M and Q be irre-
ducible 3-manifoldswith incompressible boundary and leth W M ! Q be a homotopy
equivalence. Then h is homotopic to a map g W M ! Q such that

(1) g�1.†.Q// D †.M/,

(2) gj†.M/ W †.M/ ! †.Q/ is a homotopy equivalence, and

(3) gjM � †.M/ W M �†.M/ ! Q �†.Q/ is a homeomorphism.

Moreover, if h is a homeomorphism, then g is a homeomorphism.

We let the mapping class group Mod.M/ denote the group of isotopy classes of
self-homeomorphisms of M . Since M is irreducible and has (non-empty) incom-
pressible boundary, any two homotopic homeomorphisms are isotopic (see Wald-
hausen [55], Theorem 7.1), so Mod.M/ is naturally a subgroup of Out.�1.M//.
For simplicity, we will assume that M is a compact hyperbolizable 3-manifold with
incompressible boundary and no toroidal boundary components. Notice that this im-
plies that†.M/ contains no thickened torus components. Let† be the characteristic
submanifold of M and denote its components by f†1; : : : ; †kg.

Following McCullough [39], we let Mod.†i ;Fr.†i // denote the group of ho-
motopy classes of homeomorphisms h W †i ! †i such that h.F / D F for each
component F of Fr.†i /. We let G.†i ;Fr.†i // denote the subgroup consisting of
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(homotopy classes of) homeomorphisms which have representatives which are the
identity on Fr.†i /. Define

G.†;Fr.†// D ˚k
iD1G.†i ;Fr.†i //:

Notice that using these definitions, the restriction of a Dehn twist along a component
of Fr.†/ is trivial in G.†;Fr.†//.

In our case, each †i is either an interval bundle over a compact surface Fi with
negative Euler characteristic or a solid torus. If†i is a solid torus, thenG.†i ;Fr.†i //

is finite (see Lemma 10.3.2 in [17]). If †i is an interval bundle over a compact
surface Fi , then G.†i ;Fr.†i // is isomorphic to the group G.Fi ; @Fi / of proper
isotopy classes of self-homeomorphisms of F which are the identity on @F (see
Proposition 3.2.1 in [39] and Lemma 6.1 in [26]). Moreover, G.†i ;Fr.†i // injects
into Out.�1.†i // (see Proposition 5.2.3 in [17] for example). We say that†i is tiny if
its base surface Fi is either a thrice-punctured sphere or a twice-punctured projective
plane. If †i is not tiny, then Fi contains a 2-sided, non-peripheral homotopically
non-trivial simple closed curve, so G.†i ;Fr.†i // is infinite. If †i is tiny, then
G.†i ;Fr.†i // is finite (see Korkmaz [32] for the case when Fi is a twice-punctured
projective plane).

Let J.M/ be the subgroup of Mod.M/ consisting of classes represented by home-
omorphisms fixing M � † pointwise. Lemma 4.2.1 of McCullough [39] implies
that J.M/ has finite index in Mod.M/. (Instead of J.M/, McCullough writes
K.M;†1; †2; : : : ; †k/.) Lemma 4.2.2 of McCullough [39] implies that the kernel
K.M/ of the natural surjective homomorphism

p† W J.M/ ! G.†;Fr.†//

is abelian and is generated by Dehn twists about the annuli in Fr.†/.
We summarize the discussion above in the following statement.

Theorem 5.2. Let M be a compact hyperbolizable 3-manifold with incompressible
boundary and no toroidal boundary components. Then there is a finite index subgroup
J.M/ of Mod.M/ and an exact sequence

1 �! K.M/ �! J.M/
p†�! G.†;Fr.†// �! 1

such thatK.M/ is an abelian group generated by Dehn twists about essential annuli
in Fr.†/.

Suppose that†i is a component of†.M/. If†i is a solid torus or a tiny interval
bundle, thenG.†i ;Fr.†i // is finite. Otherwise,G.†i ;Fr.†i // is infinite and injects
into Out.�1.†i //.



Vol. 87 (2012) Moduli spaces of hyperbolic 3-manifolds 237

6. Characteristic collections of annuli

We continue to assume thatM has incompressible boundary and no toroidal boundary
components and that †.M/ is its characteristic submanifold. In this section, we or-
ganizeK.M/ into subgroups generated by collections of annuli with homotopic core
curves, called characteristic collection of annuli, and define a class of free subgroups
of �1.M/ which “register” these subgroups of K.M/.

A characteristic collection of annuli forM is either a) the collection of all frontier
annuli in a solid torus component of †.M/, or b) an annulus in the frontier of an
interval bundle component of †.M/ which is not properly isotopic to a frontier
annulus of a solid torus component of †.M/.

If Cj is a characteristic collection of annuli for M , let Kj be the subgroup of
K.M/ generated by Dehn twists about the annuli in Cj . Notice thatKi \Kj D fidg
for i ¤ j , since each element ofKj fixes any curve disjoint fromCj . ThenK.M/ DLm

j D1Kj , since every frontier annulus of†.M/ is properly isotopic to a component
of some characteristic collection of annuli. Let qj W K.M/ ! Kj be the projection
map.

We next introduce free subgroups of �1.M/, called Cj -registering subgroups,
which are preserved by Kj and such that Kj acts effectively on the subgroup.

We first suppose that Cj D Fr.Tj /where Tj is a solid torus component of†.M/.
Let fA1; : : : ; Alg denote the components of Fr.Tj /. For each i D 1; : : : ; l , let Xi be
the component of M � .Tj [ C1 [ C2 [ : : : [ Cm/ abutting Ai . (Notice that each
Xi is either a component of M � †.M/ or properly isotopic to the interior of an
interval bundle component of †.M/.) Let a be a core curve for Tj and let x0 be a
point on a. We say that a subgroup H of �1.M; x0/ is Cj -registering if it is freely
(and minimally) generated by a and, for each i D 1; : : : ; l , a loop gi in Tj [Xi based
at x0 intersecting Ai exactly twice. In particular, every Cj -registering subgroup of
�1.M; x0/ is isomorphic to FlC1.

Notice that a Dehn twist DAi
along any Ai preserves H in �1.M; x0/. It acts on

H by the map ti which fixes a and gm form ¤ i , and conjugates gi by an (where the
core curve ofAi is homotopic to an). Let sH W Kj ! Out.H/ be the homomorphism
which takes each DAi

to ti . Simultaneously twisting along all l annuli induces
conjugation by an, which is an inner automorphism of H . Moreover, it is easily
checked that sH .Kj / is isomorphic to Zl�1 and is generated by ft1; : : : ; tl�1g. The
set fa; g1; : : : ; glg may be extended to a generating set for �1.M; x0/ by appending
curves which intersect Fr.Tj / exactly twice, so DA1

B � � � BDAl
acts as conjugation

by an on all of �1.M; x0/. Therefore, Kj itself is isomorphic to Zl�1 and sH is
injective. (In particular, if Cj is a single annulus in the boundary of a solid torus
component of †.M/, then Kj is trivial and we could have omitted Cj .)

Now suppose thatCj D fAg is a frontier annulus of an interval bundle component
†i of† which is not properly isotopic into a solid torus component of†. Let a be a
core curve for A and let x0 be a point on a. We say that a subgroup H of �1.M; x0/
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is Cj -registering if it is freely (and minimally) generated by a and two loops g1 and
g2 based at x0 each of whose interiors misses A, and which lie in the two distinct
components ofM �.C1 [C2 [ : : :[Cm/ abuttingA. In this case,H is isomorphic to
F3. Arguing as above, it follows thatKj is an infinite cyclic subgroup of Out.�1.M//

and there is an injection sH W Kj ! Out.H/.
In either situation, ifH is a Cj -registering group for a characteristic collection of

annuli Cj , then we may consider the map

rH W X.M/ ! X.H/

simply obtained by taking � to �jH . (Here,X.H/ is the PSL2.C/-character variety of
the abstract group H .) One easily checks from the description above that if ˛ 2 Kj ,
then rH .� B˛/ D rH .�/ B sH .˛/ for all � 2 X.M/. Notice that if ' 2 Kl and j ¤ l ,
then Kl acts trivially on H , since each generating curve of H is disjoint from Cl .
Therefore,

rH .� B ˛/ D rH .�/ B sH .qj .˛//

for all � 2 X.M/ and ˛ 2 K.M/.
We summarize the key points of this discussion for use later:

Lemma 6.1. Let M be a compact hyperbolizable 3-manifold with incompressible
boundary and no toroidal boundary components. If Cj is a characteristic collection
of annuli forM andH is a Cj -registering subgroup of �1.M/, thenH is preserved
by each element of Kj and there is a natural injective homomorphism sH W Kj !
Out.H/. Moreover, if ˛ 2 K.M/, then rH .� B ˛/ D rH .�/ B sH .qj .˛// for all
� 2 X.M/.

7. Primitive essential annuli and manifolds with compressible boundary

In this section we use a result of Johannson [29] to show that every compact hyper-
bolizable 3-manifolds with compressible boundary and no toroidal boundary com-
ponents contains a primitive essential annulus. It then follows from Theorem 1.2
that if M has compressible boundary and no toroidal boundary components, then
Out.�1.M// fails to act properly discontinuously on AH.M/ and AI.M/ is not
Hausdorff.

We first find indivisible curves in the boundary of compact hyperbolizable 3-
manifolds with incompressible boundary and no toroidal boundary components. We
call a curve a in M indivisible if it generates a maximal cyclic subgroup of �1.M/.

Lemma 7.1. Let M be a compact hyperbolizable 3-manifold with (non-empty) in-
compressible boundary. Then, if F is a component of @M , there exists an indivisible
simple closed curve in F .
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Proof. We use a special case of a result of Johannson [29] (see also Jaco–Shalen [28])
which characterizes divisible simple closed curves in @M .

Lemma 7.2 ([29], Lemma 32.1). Let M be a compact hyperbolizable 3-manifold
with incompressible boundary. An essential simple closed curve ˛ in @M which is not
indivisible is either isotopic into a solid torus component of†.M/ or is isotopic to a
boundary component of an essential Möbius band in an interval bundle component
of †.M/.

Therefore, if†.M/ is not all ofM , then any simple closed curve inF which cannot
be isotoped into a solid torus or interval bundle component of †.M/ is indivisible.

If †.M/ D M , then M is an interval bundle over a closed surface with negative
Euler characteristic and the proof is completed by the following lemma, whose full
statement will be used later in the paper.

Lemma 7.3. LetM be a compact hyperbolizable 3-manifold with no toroidal bound-
ary components. Let†i be an interval bundle component of†.M/ which is not tiny,
then there is a primitive essential annulus (forM ) contained in †i .

Proof. Let Fi be the base surface of †i . Since †i is not tiny, Fi contains a non-
peripheral simple closed curve a which is two-sided and homotopically non-trivial.
Then a is an indivisible curve in Fi and hence inM . The sub-interval bundle A over
a is thus a primitive essential annulus. �

�

We are now prepared to prove the main result of the section.

Proposition 7.4. If M is a compact hyperbolizable 3-manifold with compressible
boundary and no toroidal boundary components, thenM contains a primitive essen-
tial annulus.

Proof. We first observe that under our assumptions every maximal abelian subgroup
of�1.M/ is cyclic (since every non-cyclic abelian subgroup of the fundamental group
of a compact hyperbolizable 3-manifold is conjugate into the fundamental group of
a toroidal component of @M , see [44], Corollary 6.10). Therefore, in our case an
essential annulus is primitive if and only if its core curve is indivisible.

We first suppose thatM is a compression body. IfM is a handlebody, then it is an
interval bundle, so contains a primitive essential annulus by Lemma 7.3. Otherwise,
M is formed from R � I by appending 1-handles to R � f1g, where R is a closed,
but not necessarily connected, orientable surface. Let ˛ be an essential simple closed
curve inR�f1g which lies in @M . LetD be a disk inR�f1g�@M . We may assume
that ˛ intersects @D in exactly one point. Let ˇ � .@M \ R � f1g/ be a simple
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closed curve homotopic to ˛ � @D (in @M ) and disjoint from ˛. Then ˛ and ˇ bound
an embedded annulus in R � f1g, which may be homotoped to a primitive essential
annulus in M (by pushing the interior of the annulus into the interior of R � I ).

If M is not a compression body, let CM be a characteristic compression body
neighborhood of @M (as discussed in Section 2). Let C be a component of CM

which has a compressible boundary component @CC and an incompressible boundary
componentF . LetX be the component ofM �CM which containsF in its boundary
and let ˛ be an essential simple closed curve in F which is indivisible in X (which
exists by Lemma 7.1). Let ˛0 be a curve in @CC � @M which is homotopic to
˛. One may then construct as above a primitive essential annulus A in C with
˛0 as one boundary component. It is clear that A remains essential in M . Since
�1.M/ D �1.X/ �H for some group H , the core curve of A, which is homotopic
to ˛, is indivisible in �1.M/. Therefore, A is our desired primitive essential annulus
in M . �

Remark. The above argument is easily extended to the case where M is allowed
to have toroidal boundary components (but is still hyperbolizable), unless M is a
compression body all of whose boundary components are tori. In fact, the only
counterexamples in this situation occur whenM is obtained from one or two untwisted
interval bundles over tori by attaching exactly one 1-handle.

We have thus already established Corollary 1.4 in the case thatM has compressible
boundary.

Corollary 7.5. If M is a compact hyperbolizable 3-manifold with compressible
boundary, no toroidal boundary components, and non-abelian fundamental group,
then Out.�1.M// does not act properly discontinuously on AH.M/. Moreover, the
moduli space AI.M/ is not Hausdorff.

8. The space AHn.M/

In this section, we assume that M has incompressible boundary and no toroidal
boundary components. We identify a subset AHn.M/ of AH.M/ which contains
all purely hyperbolic representations in AH.M/. We will see later that Out.�1.M//

acts properly discontinuously on an open neighborhood of AHn.M/ in X.M/ if M
is not an interval bundle.

We define AHn.M/ to be the set of (conjugacy classes of) representations � 2
AH.M/ such that

(1) If†i is a component of the characteristic submanifold which is not a tiny interval
bundle, then �.�1.†i // is purely hyperbolic (i.e. if g is a non-trivial element of
�1.M/ which is conjugate into �1.†i /, then �.g/ is hyperbolic), and
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(2) if †i is a tiny interval bundle, then �.�1.Fr.†i /// is purely hyperbolic.

We observe that int.AH.M// is a proper subset of AHn.M/ and that AH.M/ D
AHn.M/ if and only if M contains no primitive essential annuli.

Lemma 8.1. LetM be a compact hyperbolizable 3-manifold with non-empty incom-
pressible boundary and no toroidal boundary components. Then

(1) the interior of AH.M/ is a proper subset of AHn.M/,

(2) AHn.M/ contains a dense subset of @AH.M/, and

(3) AHn.M/ D AH.M/ if and only ifM contains no primitive essential annuli.

Proof. Sullivan [50] proved that all representations in int.AH.M// are purely hyper-
bolic (if M has no toroidal boundary components), so clearly int.AH.M// is con-
tained in AHn.M/. On the other hand, @AH.M/ is non-empty (see Lemma 4.1 in
Canary–Hersonsky [16]) and purely hyperbolic representations are dense in @AH.M/

(which follows from Lemma 4.2 in [16] and the Density Theorem [9], [10], [45], [47]).
This establishes claims (1) and (2).

If M contains a primitive essential annulus A, then there exist � 2 AH.M/ such
that �.˛/ is parabolic (where ˛ is the core curve of A), so AHn.M/ is not all of
AH.M/ in this case (see Ohshika [46]).

Now suppose that M contains no primitive essential annuli. We first note that
every component of †.M/ is a solid torus or tiny interval bundle (by Lemma 7.3).
Moreover, if †i is a tiny interval bundle component of †.M/, then any component
A of its frontier must be isotopic to a component of the frontier of a solid torus
component of †.M/. Otherwise, A would be a primitive essential annulus (by
Lemma 7.2). Therefore, it suffices to prove that �.†i / is purely hyperbolic whenever
†i is a solid torus component of †.M/.

Let T be a solid torus component of †.M/. A frontier annulus A of T is an
essential annulus in M , so it must not be primitive. It follows that the core curve a
of T is not peripheral in M (see [29], Theorem 32.1).

Let � 2 AH.M/ and letR be a relative compact core for .N�/
0
� (for some 	 < �/:

Let h W M ! R be a homotopy equivalence in the homotopy class determined by �.
By Johannson’s Classification Theorem ([29], Theorem 24.2) h may be homotoped
so that h.T / is a component T 0 of†.R/, hjFr.T / is an embedding with image Fr.T 0/
and hjT W .T;Fr.T // ! .T 0;Fr.T 0// is a homotopy equivalence of pairs. It follows
that h.a/ is homotopic to the core curve of T 0 which is not peripheral in R.

If �.a/ were parabolic, then h.a/ would be homotopic into a non-compact com-
ponent of .N�/thin.�/ and hence into P D R \ @.N�/

0
� � @R, so h.a/ would be

peripheral in R. It follows that �.a/ is hyperbolic. Since a generates �1.T /, we see
that �.�1.T // is purely hyperbolic. Since T is an arbitrary solid torus component of
†.M/, we see that � 2 AHn.M/. �
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We next check that the restriction of � 2 AHn.M/ to the fundamental group of an
interval bundle component of †.M/ (which is not tiny) is Schottky. By definition, a
Schottky group is a free, geometrically finite, purely hyperbolic subgroup of PSL2.C/
(see Maskit [36] for a discussion of the equivalence of this definition with more
classical definitions).

Lemma 8.2. Let M be a compact hyperbolizable 3-manifold with incompressible
boundary with no toroidal boundary components which is not an interval bundle. If
†i is an interval bundle component of †.M/ which is not tiny and � 2 AHn.M/,
then �.�1.†i // is a Schottky group.

Proof. By definition �.�1.†i // is purely hyperbolic, so it suffices to prove it is free
and geometrically finite. Since †i is an interval bundle whose base surface Fi has
non-empty boundary, �1.†i / Š �1.Fi / is free. Let �i W Ni ! N� be the cover ofN�

associated to �.�1.†i //. Since �1.†i / has infinite index in �1.M/, �i W Ni ! N is
a covering with infinite degree. LetRi be a compact core forNi . Since �1.Ri / is free
andRi is irreducible,Ri is a handlebody ([23], Theorem 5.2). Therefore,Ni D .Ni /

0
�

has one end and �i is infinite-to-one on this end, so the Covering Theorem (see [15])
implies that this end is geometrically finite, and hence thatNi is geometrically finite.
Therefore, �.�1.†i // is geometrically finite, completing the proof that it is a Schottky
group. �

Finally, we check that if � 2 AHn.M/ and Cj is a characteristic collection of
annuli, then there exists a Cj -registering subgroup whose image under � is Schottky.

Lemma 8.3. Suppose that M is a compact hyperbolizable 3-manifold with incom-
pressible boundary and no toroidal boundary components and Cj is a characteristic
collection of frontier annuli forM . If � 2 AHn.M/, then there exists aCj -registering
subgroupH of �1.M/ such that �.H/ is a Schottky group.

Proof. We first suppose that Cj D fAg is a frontier annulus of an interval bundle
component of †.M/ (and that A is not properly isotopic to a frontier annulus of a
solid torus component of†.M/) and let x0 2 A. We identify�1.M/with�1.M; x0/.
LetX1 andX2 be the (distinct) components ofM�Fr.†/ abuttingA. Notice that each
Xi must have non-abelian fundamental group, since it either contains (the interior of)
an interval bundle component of†.M/ or (the interior of) a component ofM�†.M/

which is not a solid torus lying between an interval bundle component of †.M/ and
a solid torus component of †.M/.

Let a be the core curve of A (based at x0). By assumption, �.a/ is a hyperbolic
element. LetF be a fundamental domain for the action of h�.a/i on�.h�.a/i/which
is an annulus in yC. Since each �.�1.Xi ; x0// is discrete, torsion-free and non-abelian,
hence non-elementary, we may choose hyperbolic elements �i 2 �.�1.Xi ; x0//

whose fixed points lie in the interior of F . There exists s > 0 such that one
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may choose (round) disks Di̇ � int.F / about the fixed points of �i , such that
� s

i .int.D�
i // D yC � DC

i , and DC
1 , D�

1 , DC
2 and D�

2 are disjoint. Then, the Klein
Combination Theorem (commonly referred to as the ping pong lemma), guarantees
that �.a/, � s

1 and � s
2 freely generate a Schottky group, see, for example, Theorem C.2

in Maskit [37]. Then each ��1.� s
i / is represented by a curve gi inXi based at x0 and

a, g1 and g2 generate a Cj -registering subgroup H such that �.H/ is Schottky.
Now suppose thatCj D fA1; : : : ; Alg is the collection of frontier annuli of a solid

torus component Tj of†.M/. LetXi be the component ofM � .Tj [C1 [� � �[Cm/

abutting Ai . Pick x0 in Tj and let a be a core curve of Tj passing through x0. Again
each Xi must have non-abelian fundamental group.

Let F be an annular fundamental domain for the action of h�.a/i on the comple-
ment in yC of the fixed points of �.a/. For each i , let Yi D Xi [Ai [ int.T 0

j / and pick
a hyperbolic element �i in �.�1.Yi ; x0// both of whose fixed points lie in the interior
of F . (Notice that even though it could be the case that Xi D Xk for i ¤ k, we still
have that �1.Yi ; x0/ intersects �1.Yk; x0/ only in the subgroup generated by a, so
these hyperbolic elements are all distinct.) Then, just as in the previous case, there
exists s > 0 such that the elements f�.a/; � s

1 ; : : : ; �
s
l
g freely generate a Schottky

group. Each ��1.� s
i / can be represented by a loop gi based at x0 which lies in Yi and

intersects Ai exactly twice. Therefore, the group H generated by fa; g1; : : : ; glg is
Cj -registering and �.H/ is Schottky. �

9. Proper discontinuity on AHn.M/

We are finally prepared to prove that Out.�1.M// acts properly discontinuously on
an open neighborhood of AHn.M/ if M is a compact hyperbolizable 3-manifold
with incompressible boundary and no toroidal boundary components which is not an
interval bundle.

Theorem 9.1. LetM be a compact hyperbolizable 3-manifold with nonempty incom-
pressible boundary and no toroidal boundary components which is not an interval
bundle. Then there exists an open Out.�1.M//-invariant neighborhood W.M/ of
AHn.M/ in X.M/ such that Out.�1.M// acts properly discontinuously onW.M/.

Notice that Theorem 1.3 is an immediate consequence of Proposition 7.4, Lem-
ma 8.1 and Theorem 9.1. Moreover, Theorem 1.5 is an immediate corollary of
Lemma 8.1 and Theorem 9.1.

We now provide a brief outline of the section. In Section 9.1 we recall Minsky’s
work which shows that Out.�1.Hn// acts properly discontinuously on the open set
PS.Hn/ of primitive-stable representations inX.Hn/whereHn is the handlebody of
genus g. In Section 9.2, we consider the set Z.M/ � X.M/ such that if � 2 Z.M/
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and Cj is a characteristic collection of annuli, then there exists a Cj -registering
subgroup H of �1.M/ such that �jH is primitive stable. We use Minsky’s work to
show thatK.M/ acts properly discontinuously onZ.M/. In Section 9.3, we consider
the set V.M/ of all representation such that �j�1.†i / is primitive-stable whenever†i

is an interval bundle component of †.M/ which is not tiny. We show that if f˛ng
is a sequence in J.M/ such that f�†.˛n/g is a sequence of distinct elements and K
is compact subset of V.M/, then f˛n.K/g leaves every compact set. In Section 9.4,
we let W.M/ D Z.M/ \ V.M/ and combine the work in the previous sections to
show that J.M/ acts properly discontinuously on W.M/. Since J.M/ has finite
index in Out.�1.M// (see [17]), this immediately implies Theorem 9.1. Johannson’s
Classification Theorem is used to show that J.M/ is invariant under Out.�1.M//.

9.1. Schottky groups and primitive-stable groups. In this section, we recall Mins-
ky’s work [43] on primitive-stable representations of the free group Fn, where n � 2.
An element of Fn is called primitive if it is an element of a minimal free generating
set for Fn. Let X be a bouquet of n circles with base point b and fix a specific
identification of �1.X; b/with Fn. To a conjugacy class Œw� in Fn one can associated
an infinite geodesic inX which is obtained by concatenating infinitely many copies of
a cyclically reduced representative ofw (here the cyclic reduction is in the generating
set associated to the natural generators of �1.X; b/). Let P denote the set of infinite
geodesics in the universal cover zX of X which project to geodesics associated to
primitive words of Fn.

Given a representation � W Fn ! PSL2.C/, x 2 H3 and a lift Qb of b, one obtains
a unique �-equivariant map 
�;x W zX ! H3 which takes Qb to x and maps each
edge of zX to a geodesic. A representation � W Fn ! PSL2.C/ is primitive-stable if
there are constants K; ı > 0 such that 
�;x takes all the geodesics in P to .K; ı/-
quasi-geodesics in H3. We let PS.Hn/ denote the set of (conjugacy classes) of
primitive-stable representations in X.Hn/ where Hn is the handlebody of genus n.

We summarize the key points of Minsky’s work which we use in the remainder
of the section. We recall that Schottky space �n � X.Hn/ is the space of discrete
faithful representations whose image is a Schottky group and that �n is the interior
of AH.Hn/.

Theorem 9.2 (Minsky [43]). If n � 2, then

(1) Out.Fn/ acts properly discontinuously on PS.Hn/,

(2) PS.Hn/ is an open subset of X.Hn/, and

(3) Schottky space �n is a proper subset of PS.Hn/.

Moreover, if K is any compact subset of PS.Hn/, and f˛ng is a sequence of distinct
elements of Out.Fn/, then f˛n.K/g exits every compact subset ofX.Hn/ (i.e. for any
compact subsetC ofX.Hn/ there existsN such that if n � N , then ˛n.K/\C D ;).
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Remark. In order to prove our main theorem it would suffice to use Schottky space
�n in place of PS.Hn/. However, the subset W.M/ we obtain using PS.Hn/ is
larger than the one we would obtain using simply �n.

9.2. Characteristic collection of annuli. We will assume for the remainder of the
section that M is a compact hyperbolizable 3-manifold with incompressible bound-
ary and no toroidal boundary components which is not an interval bundle. Main
Topological Theorem 2 in Canary and McCullough [17] (which is itself an exercise
in applying Johannson’s theory) implies that if M has incompressible boundary and
no toroidal boundary components, then Mod.M/ has finite index in Out.�1.M//.
Therefore, applying Theorem 5.2, we see that J.M/ has finite index in Out.�1.M//.
In particular, ifM is acylindrical, then J.M/ is trivial and Out.�1.M// acts properly
discontinuously on X.M/.

Let Cj be a characteristic collection of annuli in M . If H is a Cj -registering
subgroup of �1.M/, then the inclusion of H in �1.M/ induces a natural injection
sH W Kj ! Out.H/ such that if ˛ 2 K.M/, then

rH .� B ˛/ D rH .�/ B sH .qj .˛//

where rH .�/ D �jH (see Lemma 6.1). Let

ZH D r�1
H .PS.H//

where PS.H/ � X.H/ is the set of (conjugacy classes of) primitive-stable repre-
sentations of H . Let

Z.Cj / D
[
ZH

where the union is taken over all Cj -registering subgroups H of �1.M/.
If fC1; : : : ; Cmg is the set of all characteristic collections of annuli for M , then

we define

Z.M/ D
m\

iD1

Z.Cj /:

If there are no characteristic collection of annuli, then M is acylindrical and we set
Z.M/ D X.M/.

We use Lemma 8.3, Theorem 9.2, and Johannson’s Classification Theorem to
prove:

Lemma 9.3. LetM be a compact hyperbolizable 3-manifold with nonempty incom-
pressible boundary and no toroidal boundary components. Then

(1) Z.M/ is an Out.�1.M//-invariant open neighborhood of AHn.M/ in X.M/,
and

(2) ifK � Z.M/ is compact and f˛ng is a sequence of distinct elements ofK.M/,
then f˛n.K/g exits every compact set of X.M/.



246 R. D. Canary and P. A. Storm CMH

Proof. Lemma 8.3 implies thatAHn.M/ � Z.Cj / for each j , soAHn.M/ � Z.H/.
Moreover, since rH is continuous for allH , eachZ.Cj / is open, and henceZ.M/ is
open.

Johannson’s Classification Theorem implies that ifCj is a characteristic collection
of annuli for M and ' 2 Out.�1.M//, then there exists a homotopy equivalence
h W M ! M such that h� D ' and h.Cj / is also a characteristic collection of annuli
for M . Moreover, if H is a Cj -registering subgroup of �1.M/, then '.H/ is a
h.Cj /-registering subgroup of �1.M/. Therefore, Z.M/ is Out.�1.M//-invariant,
completing the proof of claim (1).

If (2) fails to hold, then there is a compact subset K of Z.M/, a compact subset
C ofX.M/ and a sequence f˛ng of distinct elements ofK.M/ such that ˛n.K/\C
is non-empty for all n. We may pass to a subsequence, still called f˛ng, so that
there exists j such that fqj .˛n/g is a sequence of distinct elements. Since X.M/

is locally compact, for each x 2 K, there exists an open neighborhood Ux of x
and a Cj -registering subgroup Hx such that the closure xUx is a compact subset of
ZHx

. SinceK is compact, there exists a finite collection of points fx1; : : : ; xrg such
that K � Ux1

[ � � � [ Uxr
. Therefore, again passing to subsequence if necessary,

there must exists xi such that ˛n.Uxi
/ \ C is non-empty for all n. Let U 0 D Uxi

and H 0 D Hxi
. Lemma 6.1 implies that fsH 0.qj .˛n//g is a sequence of distinct

elements of Out.H 0/ and that sH 0.qj .˛n//.rH 0. xU 0// D rH 0.˛n. xU 0//. Theorem 9.2
then implies that fsH 0.qj .˛n//.rH 0. xU 0//g D frH 0.˛n. xU 0//g exits every compact
subset ofX.H 0/. Therefore, f˛n.U

0/g exits every compact subset ofX.M/ which is
a contradiction. We have thus established (2). �

9.3. Interval bundle components of †.M/. Let †i be an interval bundle compo-
nent of†.M/ with base surface Fi and let X.†i / be its associated character variety.
There exists a natural restriction map ri W X.M/ ! X.†i / taking � to �j�1.†i /. Re-
call thatG.†i ;Fr.†i // injects into Out.�1.†i // (by Lemma 5.2), so acts effectively
on X.†i /. Moreover, if ˛ 2 J.M/, then ri .� B ˛/ D ri .�/ B pi .˛/ where pi is the
projection of J.M/ onto G.†i ;Fr.†i //. If †i is not tiny, we define

V.†i / D r�1
i .PS.†i //:

If f†1; : : : ; †ng denotes the collection of all interval bundle components of†.M/

which are not tiny, then we let

V.M/ D
n\

iD1

V.†i /:

If every interval bundle component of †.M/ is tiny, then we let V.M/ D X.M/.
We use Lemma 8.2, Theorem 9.2, and Johannson’s Classification Theorem to

prove:
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Lemma 9.4. LetM be a compact hyperbolizable 3-manifold with nonempty incom-
pressible boundary and no toroidal boundary components which is not an interval
bundle. Then

(1) V.M/ is an Out.�1.M//-invariant open neighborhood of AHn.M/ in X.M/,
and

(2) if K is a compact subset of V.M/ and f˛ng is a sequence in J.M/ such that
fp†.˛n/g is a sequence of distinct elements ofG.†;Fr.†//, then f˛n.K/g exits
every compact subset of X.M/.

Proof. Lemma 8.2 implies that AHn.M/ � V.†i /, for each i , and each V.†i / is
open since ri is continuous. Therefore, V.M/ is an open neighborhood of AHn.M/.

Johannson’s Classification Theorem implies that if ' 2 Out.�1.M//, then there
exists a homotopy equivalence h W M ! M such that h.†.M// � †.M/, hjFr.†/ is a
self-homeomorphism of Fr.†/ and h induces '. Therefore, if†i is an interval bundle
component of †.M/, then '.�1.†i // is conjugate to �1.†j / where †j is also an
interval bundle component of†.M/. Moreover, if†i is not tiny, then �1.†j / is also
not tiny (sincehj†i

W †i ! †j is a homotopy equivalence which is a homeomorphism
on the frontier). It follows that V.M/ is invariant under Out.�1.M//, completing
the proof of claim (1).

If (2) fails to hold, then there is a compact subsetK ofZ.M/, a compact subsetC
ofX.M/ and a sequence f˛ng of elements of J.M/ such that fp†.˛n/g is a sequence
of distinct elements of G.†;Fr.†// and ˛n.K/ \ C is non-empty for all n. If a
component†i of†.M/ is a tiny interval bundle or a solid torus, thenG.†i ;Fr.†i //

is finite, by Lemma 5.2. So, we may pass to a subsequence, so that there exists
an interval bundle †i which is not tiny such that fpi .˛n/g is a sequence of distinct
elements of G.†i ;Fr.†i //. Theorem 9.2 then implies that fpi .˛n/.ri .K//g leaves
every compact subset of X.†i /. Therefore, since ri .˛n.K// D pi .˛n/.ri .K// for
all n, f˛n.K/g leaves every compact subset of X.M/. This contradiction establishes
claim (2). �

9.4. Assembly. Let W.M/ D V.M/ \ Z.M/. Since V.M/ and Z.M/ are open
Out.�1.M//-invariant neighborhoods of AHn.M/, so isW.M/. It remains to prove
that Out.�1.M// acts properly discontinuously on W.M/. Since J.M/ is a finite
index subgroup of Out.�1.M//, it suffices to prove that J.M/ acts properly discon-
tinuously on W.M/. We will actually establish the following stronger fact, which
will complete the proof of Theorem 9.1.

Lemma 9.5. If K is a compact subset of W.M/ and f˛ng is a sequence of distinct
elements of J.M/, then f˛n.K/g leaves every compact subset of X.M/.

Proof. If our claim fails, then there exists a compact subset K of W.M/, a compact
subset C of X.M/ and a sequence f˛ng of distinct elements of J.M/ such that
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˛n.K/ \ C is non-empty. We may pass to an infinite subsequence, still called f˛ng,
such that either fp†.˛n/g is a sequence of distinct elements or f�†.˛n/g is constant.

If fp†.˛n/g is a sequence of distinct elements, Lemma 9.4 immediately implies
that f˛n.K/g leaves every compact subset of X.M/ and we obtain the desired con-
tradiction.

If f�†.˛n/g is constant, then, by Theorem 5.2, there exists a sequence fˇng of
distinct elements ofK.M/ such that ˛n D ˛1 Bˇn for all n. Lemma 9.3 implies that
fˇn.K/g exits every compact subset of X.M/. Since ˛1 induces a homeomorphism
ofX.M/, it follows that f˛n.K/ D ˛1.ˇn.K//g also leaves every compact subset of
X.M/. This contradiction completes the proof. �
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