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Small points on rational subvarieties of tori

Francesco Amoroso and Evelina Viada

Abstract. Let V be a subvariety of a torus defined over the rational numbers. We study the
distribution of points of smallWeil’s height on V . We simplify the proof and we improve previous
results by the first author and S. David. We obtain a totally explicit version of a generalized
Dobrowolski result on the Lehmer problem.
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1. Introduction

In this article we study the distribution of the small points of proper subvarieties of
the torus Gn

m defined over Q. For n D 1, the problem corresponds to finding lower
bounds for the Weil height of an algebraic number. Let ˛ be a non-zero algebraic
number of degree D which is not a root of unity. Lehmer (see [Leh]) asked whether
there exists an absolute constant c > 0 such that h.˛/ � c

D
. The best known result

in this direction is Dobrowolski’s result ([Dob]): if D > 1,

h.˛/ � c

D

�
log D

log log D

��3

for some absolute constant c > 0. Dobrowolski’s theorem was generalized to Q-
irreducible subvarieties V � Gn

m in a series of articles by David and the first author.
They prove the Generalized Dobrowolski Bound stated below. Their proofs are long
and involved. Mainly, they need an intricate descent argument, hard to read by non
specialists. This descent has been used in several occasions by other authors. Our
first achievement in this paper is a simple and short proof of an explicit and improved
version of the Generalized Dobrowolski Bound. More precisely, we generalize this
statement describing the distribution of small points for different invariants. In addi-
tion we improve some bounds in the applications.

We fix the usual embedding of Gn
m in P n given by x D .x1; : : : ; xn/ 7! .1 W x1 W

� � � W xn/. For a set S � Gn
m, we denote by xS the Zariski closure of S in Gn

m. On P n
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we consider the Weil logarithmic absolute height, denoted by h.�/. Given " > 0 we
denote by S."/ the set of ˛ 2 S \ Gm. xQ/ of height � ". A variety V � Gn

m is the
intersection of Gn

m with a variety of P n defined over xQ. Note that the varieties which
appear in this paper are not necessarily irreducible or equidimensional. However we
consider only proper subvarieties of Gn

m, therefore we say subvariety of Gn
m for proper

subvariety of Gn
m. We define the essential minimum O�ess.V / of V as the infimum of

the set of " > 0 such that V."/ is Zariski-dense in V . We say that B � Gn
m is torsion if

it is a translate of a subtorus by a torsion point. The Kronecker theorem for points and
the Bogomolov conjecture (Zhang [Zha]) for varieties of positive dimension yield

O�ess.V / > 0 if and only if V is not a union of torsion varieties. (1.1)

According to different geometric and arithmetic assumptions, we relate O�ess.V / to dif-
ferent invariants of V , proving essentially sharp effective versions of (1.1). Lehmer’s
conjecture can be seen as a sharp effective version of (1.1) for points. The Gener-
alized Dobrowolski Bound is a quasi optimal effective version of (1.1) for varieties
defined over Q of arbitrary dimension. For varieties over arbitrary number fields
which are not union of translates of subtori we speak of Effective Bogomolov. This
case has been treated in our previous work [Amo-Via]. Note that there are intersec-
tions between the two problems, namely for varieties over Q which are not translates.
Therefore an interesting new case treated in this work, is the one of translates defined
over Q and specially the case of 0-dimensional varieties consisting of the conjugates
of a non-torsion point ˛ 2 Gn

m. xQ/. Naturally the Galois group plays a key role in
this work.

Let us introduce relevant invariants of a proper projective subvariety V � P n.
The obstruction index !.V / is the minimum degree of a hypersurface Z containing
V . Define ı.V / as the minimal degree ı such that V is, as a set, the intersection of
hypersurfaces of degree � ı. Finally, define ı0.V / as the minimal degree ı0 such
that there exists an intersection X D Z1 \ � � � \ Zr of hypersurfaces Zj of degree
� ı0 such that any xQ-irreducible component of V is a xQ-irreducible component of
X . In Corollary 2.3 we prove that if V is defined over Q, we can choose the above
hypersurfaces Z, Z1; : : : ; Zr also defined over Q.

The following effective version of (1.1) is proved in [Amo-Dav] for dim V D 0,
in [Amo-Dav] for codim V D 1 and in [Amo-Dav] for varieties of arbitrary dimension.

Generalized Dobrowolski Bound. Let V be a subvariety of Gn
m defined over Q of

codimension k. Let us assume that V is not contained in any union of proper torsion
varieties.

Then, there exist two positive constants c.n/ and �.k/ D .k C 1/.k C 1/Šk � k

such that

O�ess.V / � c.n/

!.V /
.log 3!.V //��.k/ : (1.2)
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To recover a slightly weaker version of Dobrowolski’s theorem it is sufficient to
take V equal to the set of conjugates of the algebraic number ˛.

For a subvariety V of Gn
m, we denote by V � the complement in V of the union of

the torsion varieties B � V . By (1.1) the minimum of the height on V �. xQ/ is > 0.
In [Amo-Dav] is proved that for a Q-irreducible V and ˛ 2 V �. xQ/

h.˛/ � c.n/

ı.V /
.log 3ı.V //��.n/: (1.3)

where c.n/ > 0 is not computed and where �.n/ � nn2
is as above. Notice that this

lower bound implies (1.2), with a possible worse exponent on the remainder term. To
see that, apply (1.3) to a hypersurface Z 	 V defined over Q and of degree !.V /.

For n D 1 Dobrowolski’s result remains the best known. In order to simplify the
exposition and the computation of the constants we prefer to assume n � 2. Our first
achievement is a simple and short proof of an explicit and improved version of (1.3):

Theorem 1.1. Let V � Gn
m be a Q-irreducible variety of dimension d . Then, for

any ˛ 2 V �. xQ/

h.˛/ � ı.V /�1
�
935n5 log.n2ı.V //

��.dC1/.nC1/2

:

In short, the exponent �.n/ on the remainder term is improved by one exponen-
tial. In addition the constant c.n/ is computed. This could be useful in possible
applications. However, the most interesting aspect remains the simplicity of the new
method. We avoid the technical descent argument and the generalization of Philippon
zero’s estimate used in [Amo-Dav]. This new method could find other applications,
as for instance in the context of the Relative Lehmer Problem, where methods similar
to the ones of David and the first author are used (see [Del]).

To be able to use a conclusive geometric induction similar to the one presented in
[Amo-Via] we first need to produce a new sharp lower bound for O�ess.V / in terms of
ı0.V / for varieties which are not union of torsion varieties.

Theorem 1.2. Let V be a subvariety of Gn
m of codimension k, defined and irreducible

over Q. Assume that V is not a union of torsion varieties. Let

�0 D ı0.V /.52n2 log.n2ı0.V ///.nC1/.kC1/:

Then there exists a hypersurface Z defined over Q of degree at most �0 which does
not contain V and such that

V
�
��1

0

� � V \ Z:

This theorem is the arithmetic counterpart to [Amo-Via], Theorem 2.1. On one
side, V has to be defined over Q, assumption not necessary in [Amo-Via]. On the
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other side V can be a union of translates of torsion varieties by non-torsion points,
situation to avoid in [Amo-Via]. Despite some similarity, the methods used in other
works are not sufficient to prove this theorem. As in [Amo-Via], we first produce
an inequality involving some parameters, O�ess.V / and the Hilbert functions of two
varieties related to V (Theorem 3.1). Some ingredients of the proof of Theorem 3.1
come from [Amo-Dav]. The main difference is the following. In the quoted paper,
using Siegel’s lemma, the authors construct one auxiliary function vanishing on V and
then they extrapolate to show that the obstruction index of Œp�V is small. Here we use
Siegel’s lemma in its full power and we find a family of linearly independent auxiliary
functions vanishing on V . Then, we extrapolate at Œp�V for each auxiliary function.
We don’t use an interpolation determinant, as in [Amo-Via], because the problem
is not symmetric. Another important difference is that, to decode the diophantine
information in Theorem 3.1 it is not sufficient to use the estimates for the Hilbert
function due to M. Chardin and P. Philippon [Cha-Phi], like we do in [Amo-Via].
In the present situation we need a refinement of their results which is proved in the
appendix of this article by M. Chardin and P. Philippon. A further subtle point is
to control the behavior of ı0 under the action of groups (Proposition 2.7). The final
geometric induction allows us to prove the main result of this article:

Theorem 1.3. Let V0 � V1 be subvarieties of Gn
m, defined over Q, of codimensions

k0 and k1 respectively. Assume that V0 is Q-irreducible. Let

� D ı.V1/
�
935n5 log.n2ı.V1//

�.k0�k1C1/.k0C1/.nC1/
:

Then,

– either there exists a Q-irreducible B union of torsion varieties such that V0 �
B � V1 and ı0.B/ � � ,

– or there exists a hypersurface Z defined over Q of degree at most � such that
V0 6� Z and V0.��1/ � Z.

In Section 5, we show how to deduce Theorem 1.1. In addition we prove some
corollaries. Combining Theorem 1.1 with the estimate on the sum of the degrees
of the maximal torsion varieties of V ([Amo-Via], Corollary 5.3), we can give the
following complete description of the small points of V .

Corollary 1.4. Let V � Gn
m be a Q-irreducible variety of dimension d . Let

� D ı.V /
�
935n5 log.n2ı.V //

�.dC1/.nC1/2

:

Then
V.��1/ D B1 [ � � � [ Bt ;
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where B1; : : : ; Bt are the maximal torsion varieties of V . In addition, ı0.Bj / � �

and
tX

j D1

�dim.Bj / deg.Bj / � �n:

A direct application of Theorem 1.3 allows us to show

Corollary 1.5. Let V � Gn
m be a Q-irreducible subvariety of codimension k which

is not contained in any union of proper torsion varieties. Then

O�ess.V / � !.V /�1
�
935n5 log.n2!.V //

��k.kC1/.nC1/
:

As mentioned, also Theorem 1.1 implies a similar but less sharp lower bound
for the essential minimum, where the exponent on the remainder term is n.n C 1/2

instead of the better k.k C 1/.n C 1/.
An important application of Corollary 1.5 is a lower bound for the product of

the heights of multiplicatively independent algebraic numbers. For instance, this
kind of result is used by Bombieri, Masser and Zannier to show the finiteness of
the intersection of a transverse curve with the union of all subtori of codimension
two [Bom-Mas-Zan]. From Corollary 1.5 we deduce the following refined version
of [Amo-Dav], Theorem 1.6:

Corollary 1.6. Let ˛1; : : : ; ˛n be multiplicatively independent algebraic numbers in
a number field K of degree D D ŒK W Q�. Then

h.˛1/ : : : h.˛n/ � D�1
�
1050n5 log.3D/

��n2.nC1/2

:

The dependence on ı (or !) of our results is essentially sharp. However, the
dependence in the dimension n of the ambient variety remains mysterious. One
could conjecture that for all Q-irreducible linear subvarieties V � Gn

m and for all
˛ 2 V �. xQ/ we had h.˛/ � c for some positive absolute constant c (not depending
on n). This is false, as the following example shows. Let Vn � Gn

m be the hypersur-
face defined by the equation

x1 C � � � C xn�1 C xn D 0:

We claim that, as n tends to 1,

min
˛2V �

n

h.˛/ ! 0:

Indeed, let n � 3. Consider for instance the point ˛ 2 Gn
m. xQ/ whose coordinates

are the roots ˛1; : : : ; ˛n of the polynomial f .x/ D xn � 2x � 6. Observe that f is
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irreducible by Eisenstein’s criterion. Moreover ˛ 2 Vn, because the coefficient of
xn�1 in f is zero. We now show that ˛ has small height. For a non-zero integer a,
let a D .a; : : : ; a/ 2 Gn

m. Since ˛n D 2 � ˛ C 6 we obtain

nh.˛/ D h.˛n/ D h.2 � ˛ C 6/ � h.2 � ˛/ C h.6/ C log 2 � h.˛/ C log 24:

Thus

h.˛/ � log 24

n � 1
:

We claim that ˛ 2 V �
n . Assume on the contrary that ˛ is in a torsion variety contained

in Vn. From the description of [Sch], p. 163, of the torsion varieties contained in a
linear variety, we see that there exist i < j such that u D ˛i= j̨ is a root of unity.
Note that u 6D 1 because f has distinct roots. Thus

0 D f . j̨ / � f .u j̨ / D .1 � un/˛n
j � 2.1 � u/ j̨ :

Let � D .1 � un/=.1 � u/. Then � is an algebraic integer and �˛n�1
j D 2. Passing

to norms, we infer that ˙6 D Norm
Q. j̨ /

Q . j̨ / divides a power of 2. This is a

contradiction. Thus ˛ 2 V �. xQ/ and h.˛/ � log 24
n�1

.

2. Geometry

2.1. Algebraic interpolation. In the introduction, we have already mentioned the
definitions of !.V / and ı0.V / for a projective variety V � P n. Let us be more
precise and give some further details and useful relations.

Definition 2.1. Let V � P n be a projective variety and let K be a subfield of xQ.

i) The obstruction index !K.V / is the minimum degree of a hypersurface defined
over K containing V .

ii) We define ıK;0.V / as the minimal degree ı such that there exists an intersection
X of hypersurfaces defined over K of degree � ı such that every xQ-irreducible
component of V is a xQ-irreducible component of X .

iii) Suppose that V is defined over K. We define ıK.V / as the minimal degree ı such
that V is, as a set, the intersection of hypersurfaces defined over K of degree
� ı.

If K D xQ we shall omit the index xQ.

Note that the definition of ıK;0 makes sense for every number field K, indepen-
dently of the field of definition L of V . Indeed, V 0 D S

�2Gal. xQ=K/ �.V / is defined

over K and the xQ-irreducible components of V are components of V 0. On the con-
trary, ıK can only be defined for extensions of the field of definition of V . Indeed if V
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is the intersection of hypersurfaces over K then it is also defined over K. In addition,
if V is defined over K, then in the above definition ii), it is equivalent to require that
every K-irreducible component of V is a K-irreducible component of X .

Clearly, for L a field extension of K, !K � !L, ıK;0 � ıL;0 and ıK � ıL. We are
now going to show that these are equalities for extensions L of the field of definition
K of V .

Let G be a group acting on Gn
m. For any subset S of Gn

m we define

SG D
\
g2G

g.S/;

G � S D
[
g2G

g.S/:

In what follows we provide relations between the obstruction indices of V and
V G in two special cases, namely for G the Galois group (Lemma 2.2 below) and for
G the kernel of the “multiplication by l” (Lemma 2.4).

Lemma 2.2. Let K be a number field and let Z be a hypersurface defined over some
extension L of K. Then there exist D � ŒL W K� and hypersurfaces Z1; : : : ; ZD

defined over K and of degree � deg Z such that

ZGal. xQ=K/ D Z1 \ � � � \ ZD:

Proof. Let F.x/ 2 LŒx� be an equation defining Z. We fix a basis fej g of L=K

and we write F.x/ D P
ej Fj .x/ with Fj .x/ 2 KŒx�. Up to order, we can suppose

Fj .x/ ¤ 0 for j D 1; : : : ; D and Fj .x/ D 0 for j > D. Define Zj to be the zero

set of Fj .x/, for j � D. Clearly ZGal. xQ=K/ 	 Z1 \ � � � \ ZD . We now show the

reverse inclusion. Let ˛ 2 ZGal. xQ=K/. Let each �1; : : : ; �ŒLWK� be an extension to
xQ of each of the ŒL W K� embeddings of L in xQ fixing K. Then, for every i , also
��1

i .˛/ 2 ZGal. xQ=K/. Since the Fj are invariant under the action of any such �i , we
obtain that for every i � ŒL W K�

0 D �i .F.��1
i .˛// D �i

�X
ej Fj .��1

i .˛//
�

D �i

�X
ej .��1

i Fj .˛//
�

D
X

�i .ej /Fj .˛/:

The matrix .�iej /i;j is non singular. This implies that Fj .˛/ D 0 for all 1 � j �
ŒL W K�. This shows the inclusion ZGal. xQ=K/ � Z1 \ � � � \ ZD . �

Corollary 2.3. Let V be a variety defined over a number field K. Then ıK.V / D
ı.V /, !K.V / D !.V / and ıK;0.V / D ı0.V /.
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Proof. We already mentioned that such invariants decrease by fields extensions. Then
we have only to show that ıK.V / � ı.V /, !K.V / � !.V / and ıK;0.V / � ı0.V /.

Let X 	 V be an intersection of hypersurfaces of degree � ı, for ı 2 N. By
Lemma 2.2 XGal. xQ=K/ is an intersection of hypersurfaces defined over K, of degree
� ı. Since V is defined over K, V D V Gal. xQ=K/ � XGal. xQ=K/.

Choosing ı D ı.V / and X D V we see that ıK.V / � ı.V /. Choosing ı D !.V /

and X 	 V a hypersurface defined over xQ of minimal degree ı we see that !K.V / �
!.V /. Choose at last ı D ı0.V / and X 	 V such that every xQ-irreducible component
of V is a xQ-irreducible component of X . Let W be a xQ-irreducible component of
V . Then W is a xQ-irreducible component of X . Since V � XGal. xQ=K/ � X , we
see that W is a xQ-irreducible component of XGal. xQ=K/, too. Thus ıK;0.V / � ı0.V /.

�

We shall recall some important relations between the obstruction indices. If V is
equidimensional of codimension k, then, by a result of M. Chardin ([Cha]),

!.V / � n deg.V /1=k : (2.4)

Moreover,
!.V / � ı0.V / � ı.V / � deg.V / � ı0.V /k : (2.5)

The first three inequalities are immediate. The last one follows from [Phi], Corollary 5,
p. 357 (with m D n, S D P n and ı D ı0.V /).

2.2. An upper bound for ı0.Œl �V /. Let V be an equidimensional variety and let
l 6D 0 be an integer. We need a bound for ı0.Œl�V /. We denote by Œl � W Gn

m !
Gn

m; ˛ 7! ˛l D .˛l
1; : : : ; ˛l

n/ the “multiplication by l” and by kerŒl � its kernel. The
following lemma is analogue to Lemma 2.2. Here we consider the action of kerŒl �,
whereas in Lemma 2.2 we considered the Galois action.

Lemma 2.4. Let Z � Gn
m be a hypersurface. Then, there exist D � ln and hyper-

surfaces Z1; : : : ; ZD of degree � deg Z such that kerŒl � � Zj D Zj and

ZkerŒl� D Z1 \ � � � \ ZD:

Proof. Let F.x/ 2 xQŒx� be an equation for Z. Performing the euclidean divisions
by l on the exponents of each monomial, we can write

F.x/ D
X
�2ƒ

x�F�.xl/

where xl D .xl
1; : : : ; xl

n/ and � runs over the set ƒ of integral multi-indices � D
.�1; : : : ; �n/ with 0 � �i < l . Let Zj be the hypersurfaces defined by the non-trivial
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F�.xl/. Clearly kerŒl � � Zj D Zj . Moreover ZkerŒl� 	 Z1 \ � � � \ ZD . We now
show the reverse inclusion. Let ˛ 2 ZkerŒl�. Then, for every � 2 kerŒl �,

0 D F.�˛/ D
X
�2ƒ

.�˛/�F�..�˛/l/ D
X
�2ƒ

��˛�F�.˛l/:

Let �i varying over all elements of kerŒl � and �j varying over all elements of ƒ.
Then we can write the following homogenous linear system

.�
�j

i /i;j .˛�j F�j
.˛l//j D 0:

Since the matrix .�
�j

i /i;j is non singular, .˛�j F�j
.˛//j must be the zero vector. We

remark that no monomial vanishes on Gn
m. Then we have ˛ 2 Z1 \ � � � \ ZD . This

shows that ZkerŒl� � Z1 \ � � � \ ZD . �

To estimate ı0, we need a generalization of Lemma 3.7 of [Amo-Via], which
holds for xQ-irreducible varieties. Here the variety is not necessarily xQ-irreducible.
In general, the lemma does not extend to all equidimensional varieties, however it
extends under some additional assumptions.

Lemma 2.5. Let V be a Q-irreducible subvariety of Gn
m and let l be a positive integer.

Let K be the field of definition of one of the xQ-irreducible components of V . Assume
that K \ Q.	l/ D Q, for a primitive l-th root of unity 	l . Then

ı0.kerŒl � � V / � lnı0.V /:

Proof. The first step is to prove the following remark. By definition of ı0.V /, there
exists a variety X defined by rational equations of degree � ı0.V / such that V is a
Q-irreducible component of X . Let W1; : : : ; Wt be the xQ-irreducible components
of V .

Remark 2.6. Let � 2 kerŒl �. Assume that for some i the variety �Wi � X . Then
�Wj � X for any index j .

Proof. We remark that the Galois group permutes transitively W1; : : : ; Wt . Let Ki be
the field of definition of Wi . By assumption Ki \ Q.�/ D Q. Thus ŒKi .�/ W Ki � D
ŒQ.�/ W Q�. Hence, for any j D 1; : : : ; t there exists 
 2 Gal. xQ=Q/ such that

.Wi / D Wj and 
.�/ D �. We infer that �Wj D 
.�Wi / is included in 
.X/ D X .

�

In what follows we say that a xQ-irreducible variety W � Gn
m is imbedded in a

variety X � Gn
m if V is a subset of X but not an irreducible component of X . Let
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us denote W D W1. Let S be the set of � 2 kerŒl � such that �W is imbedded in X .
Then, by the remark above, V � ��1X . We define

X 0 D X \
\
�2S

��1X:

Note that V � X 0. Furthermore, the varieties X and ��1X are intersections of
hypersurfaces of degree � ı0.V /. Thus ı.X 0/ � ı0.V /.

We shall show that no translate �Wj is imbedded in X 0. Assume by contradiction
that �Wj was imbedded in X 0 for some � 2 kerŒl � and for some j 2 f1; : : : ; ng. We
will prove that 1 2 S . Then W would be imbedded in X , which contradicts the fact
that W is a component of X . Since � has finite order, to prove 1 2 S it is sufficient
to prove that �n 2 S , for all positive integers n. We proceed by induction. Since
X 0 � X , �Wj is imbedded in X and so � 2 S . We now assume �n 2 S for some
n � 1 and we prove that �nC1 2 S . Since X 0 � ��nX , �Wj is imbedded in ��nX .
Thus �nC1Wj is imbedded in X and �nC1 2 S .

We now define
Y D kerŒl � � X 0:

Clearly kerŒl � � V � Y and ı.Y / � lnı.X 0/ � lnı0.V /. Let �Wj (� 2 kerŒl �,
j 2 f1; : : : ; tg) be a xQ-irreducible component of kerŒl � � V . Assume by contradiction
�Wj imbedded in Y . Then �Wj is imbedded in �X 0 for some � 2 kerŒl �. Thus
��1�Wj is imbedded in X 0, which contradicts the construction of X 0. �

At last we provide the necessary upper bound for ı0.Œl�V /.

Proposition 2.7. Let V be a Q-irreducible subvariety of Gn
m and let l be a positive

integer. Let K be the field of definition of one of the xQ-irreducible component of V .
Assume that K \ Q.	l/ D Q. Then

ı0.Œl�V / � ln�1ı0.V /:

Proof. By Lemma 2.5 there exist hypersurfaces Z1; : : : ; Zr of degree � lnı0.V /

such that every xQ-irreducible component of kerŒl � �V is a component of Z1 \� � �\Zr .
By Lemma 2.4 we can assume kerŒl � � Zi D Zi . Thus

Œl �V � Œl �Z1 \ � � � \ Œl �Zr

and deg.Œl�Zi / D l�1 deg.Zi /. We now show that each component of Œl �V is isolated
in such an intersection. Suppose on the contrary that U is a xQ-irreducible component
of V such that

Œl �U ¨ Y � Œl �Z1 \ � � � \ Œl �Zr

for some xQ-irreducible Y . Then there exists a xQ-irreducible component Y 0 of Œl ��1Y

such that

U ¨ Y 0 � .kerŒl � � Z1/ \ � � � \ .kerŒl � � Zr/ D Z1 \ � � � \ Zr :
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This contradicts the fact that each component of V is isolated in Z1 \ � � � \ Zr . �

2.3. Exceptional primes. Let V � Gn
m be a Q-irreducible variety and let } be

a finite set of primes. In what follows, we need a lower bound for the degree ofS
p2} Œp�V and an upper bound for ı0.Œp�V / for p 2 }. This holds outside a set of

“bad” primes. One has to ensure that there are few bad primes. This is the object
of the next proposition. Part of the proof was already in [Amo-Dav], Section 2. We
prefer to reproduce the integral argument.

Proposition 2.8. Let V � Gn
m be a Q-irreducible variety of dimension d . Assume

that V is not a union of torsion varieties. Then there exists a set of prime numbers
E.V / of cardinality

jE.V /j � d C 1

log 2
log deg.V /

such that for all prime numbers p 62 E.V /,

ı0.Œp�V / � pn�1ı0.V / (2.6)

and, for all finite subsets } of primes lying outside E.V /,

deg
� [

p2}

Œp�V
�

� j}j deg.V /: (2.7)

Proof. We remark that the Galois group permutes transitively the xQ-irreducible com-
ponents W D W1; : : : ; Wk of V . We recall the definition of stabilizer:

Stab.W / D f˛ 2 Gn
m such that ˛W D W g:

Define H D Stab.W /= Stab.W /0 where Stab.W /0 is the connected component of
Stab.W / through the neutral element. Then, H is a finite group of cardinality

jH j � deg.Stab W / � deg.W /dC1: (2.8)

We denote d0 D dim Stab.W / � d . We remark that for any natural number l , it
holds that

j kerŒl � \ Stab.W /j D j kerŒl � \ Stab.W /0j � j kerŒl � \ H j D ld0 j kerŒl � \ H j;
where we identify Œl � with the “multiplication” by l in the quotient Gn

m= Stab.W /0.
Furthermore, denote by K the field of definition of W . Then ŒK W Q� D k.

Let E1 be the set of prime numbers p such that p divides jH j. Let E2 be the
set of primes p such that Œp�W D Œp�Wi for some 1 < i � k. Let E3 be the set of
primes p such that K \ Q.	p/ ¤ Q, where as usual 	p is a primitive p-th root of
unity. We define

E.V / D E1 [ E2 [ E3:
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Since E3 � E.V /, Proposition 2.7 shows that the upper bound (2.6) holds.
We now prove (2.7). First we show that

p − jH j H) deg.Œp�Wi / � deg.Wi /; for i D 1; : : : ; k: (2.9)

If p − jH j, then j kerŒp� \ H j D 1. By the degree formula for the image of the
multiplication by p (see for instance [Dav-Phi], Proposition 2.1 (i)),

deg.Œp�W / D pd�d0 j kerŒp� \ H j�1 deg.W / D pd�d0 deg.W / � deg.W /:

This shows (2.9).
We now show that, for l1, l2 natural integers,

V ¤ union of torsion varieties and l1 ¤ l2

H) Œl1�Wi ¤ Œl2�Wj for i; j D 1; : : : ; k:
(2.10)

Assume on the contrary that Œl1�W is a Galois conjugate to Œl2�W . Since the multipli-
cation by natural numbers commute with the Galois action, the same holds replacing
li by lr

i for r 2 N, as well. We can suppose l1 < l2. Let Oh be the normalised height

for subvarieties of Gn
m (see for instance [Dav-Phi]). Then Oh.Œl1�W / D Oh.Œl2�W /.

By the height formula for the image of the multiplication by an integer ([Dav-Phi],
Proposition 2.1 (i)), we obtain

l
d�d0C1
1 j kerŒl1� \ H j�1 Oh.W / D Oh.Œl1�W / D Oh.Œl2�W /

D l
d�d0C1
2 j kerŒl2� \ H j�1 Oh.W /:

Since V is not a union of torsion varieties, W is not torsion. Then Oh.W / > 0. Thus

l2=l1 � .l2=l1/d�d0C1 � j kerŒl2� \ H j
j kerŒl1� \ H j � jH j:

Replacing l1 and l2 with lr
1 and lr

2 and letting r ! C1 we get a contradiction.
Let } be a set of primes lying outside E.V / and assume that V is not a union of

torsion varieties. The statements (2.9) and (2.10) and the definition of E.V / show
that

deg
� [

p2}

Œp�V
�

D deg
� k[

j D1

[
p2}

Œp�Wj

�
D

kX
j D1

X
p2}

deg
�
Œp�Wj

�

�
kX

j D1

X
p2}

deg.Wj / D j}j deg.V /:
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To conclude the proof, we need to provide an upper bound for the cardinality of
E.V / D E1 [E2 [E3. First we remark that by (2.8) the set E1 of primes p dividing
jH j has cardinality

� log jH j
log 2

� d C 1

log 2
log deg.W / D d C 1

log 2
log.deg.V /=k/:

Below we detail the proof that the set E2 has cardinality

jE2j � log k

log 2
: (2.11)

We have still to estimate the cardinality of the set E3 of primes p such that K \
Q.	p/ ¤ Q. It holds that

jE3j � log k

log 2
: (2.12)

Indeed, for l 2 N, define Kl D K \ Q.	l/. Thus, Kl=Q is Galois. We note that for
n, m 2 N coprime, Kn \ Km D Q and KnKm � Knm. By induction we easily see
that

k D ŒK W Q� �
h Y

p2E3

Kp W Q
i

D
Y

p2E3

ŒKp W Q� � 2jE3j:

This is equivalent to (2.12). We conclude that

jE.V /j � jE1j C jE2j C jE3j � d C 1

log 2
log.deg.V /=k/ C 2 log k

log 2

� d C 1

log 2
log.deg.V // C 1 � d

log 2
log k

� d C 1

log 2
log deg.V /

as required.
The upper bound for jE2j is a variant of the corresponding lemma of Dobrowolski

([Dob], Lemma 3). For a natural integer l and for i 2 f1; : : : ; kg, let

�.l; i/ D fj; Œl�Wi D Œl �Wj g:
Thus, for a fixed l , these sets have the same cardinality. Moreover, p 2 E2 if and
only if �.p; 1/ � 2.

Let l1, l2 be coprime integers. Then, by the definition of the sets �,

�.l1l2; i/ 	
[

j 2�.l1;i/

�.l2; j /: (2.13)

Indeed, if m 2 �.l2; j / for some j 2 �.l1; i/, we have Œl2�Wj D Œl2�Wm and
Œl1�Wi D Œl1�Wj which implies Œl1l2�Wi D Œl1l2�Wj D Œl1l2�Wm. This immediately
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gives the inclusion. Moreover, for j 2 �.l1; i/ the sets �.l2; j / are pairwise distinct.
Indeed, let j1; j2 2 �.l1; i/ such that �.l2; j1/ \ �.l2; j2/ ¤ ;. Then Œl1�Wj1

D
Œl1�Wj2

and Œl2�Wj1
D Œl2�Wj2

. Thus, there exist x1 2 kerŒl1� and x2 2 kerŒl2� such
that Wj2

D x1Wj1
D x2Wj1

. This implies that x�1
2 x1 2 Stab.Wj1

/. Since l1, l2 are
coprime, by the Bézout identity, there exist integers u1, u2 such that u1l1 Cu2l2 D 1.
Thus

x1 D x
1�u1l1

1 D x
u2l2

1 D .x�1
2 x1/u2l2 2 Stab.Wj1

/:

Hence Wj2
D x1Wj1

D Wj1
, and j1 D j2. This proves that (2.13) is a disjoint

union. We infer

j�.l1l2; i/j �
X

j 2�.l1;i/

j�.l2; j /j D j�.l1; 1/jj�.l2; 1/j:

Iterating this process, we see that

k �
ˇ̌̌
�

� Y
p2E2

p; 1
�ˇ̌̌

�
Y

p2E2

j�.p; 1/j � 2jE2j;

which proves (2.11) and concludes the proof of the proposition. �

We remark that the inequalities (2.9) and (2.11) in the proof of the previous propo-
sition hold even for a Q-irreducible variety which is the union of torsion varieties.

3. Diophantine analysis

3.1. Coding the information. Let I � xQŒx� be a homogeneous radical ideal, where
x D .x1; : : : ; xn/. For � 2 N we denote by H. xQŒx�=I I �/ the Hilbert function
dimŒ xQŒx�=I �� . Let T be a positive integer. We denote by I .T / the T -symbolic
power of I , i. e. the ideal of polynomials vanishing on the variety defined by I with
multiplicity at least T . Let V be a variety of Gn

m. Let I be the radical homogeneous
ideal in xQŒx� defining the Zariski closure of V in P n. By abuse of notation, we set
H.V I �/ D H. xQŒx�=I I �/ and H.V; T I �/ D H. xQŒx�=I .T /I �/.

Proposition 3.1. Let �, T be positive integers and let } be a finite set of prime
numbers. Let V be a subvariety of Gn

m defined over Q. Define V 0 D S
Œp�V for p

running over }. Then, for some p 2 },

O�ess.V / � 1

p�

�
T log p � TH.V; T I �/

H.V 0I �/

�
log.� C 1/ C log p

�
� n log.� C 1/

�
:

Proof. Denote for simplicity H D H.V; T I �/ and H 0 D H.V 0I �/ and choose a
real " such that " > O�ess.V /. We remark that the lower bound for O�ess.V / of the
proposition is obviously negative if H � H 0. Hence we assume H 0 > H .
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As usual in diophantine approximation, we first construct the auxiliary function.
We are going to show that there exists an homogeneous polynomial F 2 QŒx��
vanishing on V with multiplicity � T but not vanishing identically on V 0 and such
that the Weil height of the vector of its coefficients satisfies

.H 0 � H/h.F / � H..T C n/ log.� C 1/ C �"/: (3.14)

Consider the vector space E of homogeneous polynomials F 2 QŒx�� vanishing on
V with multiplicity � T . Let

L D
�

� C n

n

�
:

Then dim.E/ D L � H . Note that L � H > L � H 0 � 0. Thus dim.E/ � 1. Then
there exists a basis F1; : : : ; FL�H of E such that

L�HX
j D1

h.Fj / � H..T C n/ log.� C 1/ C �"/: (3.15)

This is a standard application of Bombieri and Vaaler’s version of Siegel’s lemma.
The proof can be found in [Amo-Dav], Theorem 4.1. We briefly give a sketch.
Theorem 8 of [Bom-Vaa] shows that there exists a basis fF1; : : : ; FL�H g of E such
that

PL�H
j D1 h.Fj / is bounded by the logarithmic L2-height (defined choosing the L2-

norm at the infinite places) h2.E/. By the duality principle (see the proof of Theorem 9
of [Bom-Vaa]) h2.E/ is equal to the L2-height of the vector space E? of dimension
H . Given ˛ D .˛1; : : : ; ˛n/ 2 Gn

m. xQ/ and a multi-index � D .�1; : : : ; �n/ 2 Nn

we define ˛� D ˛
�1

1 : : : ˛
�n
n . Given two multi-indices �, � we write

�
�
�

�
for the

product over j of
�

�j

�j

�
. Since V."/ is Zariski-dense in V , the space E? is spanned

by the vectors ��
�

�

�
˛���

�
j�j��

.˛ 2 V."/; j�j � T / (3.16)

of L2-height � .T C n/ log.� C 1/ C �" (use
P

j�j��

�
�
�

� � .� C 1/T Cn). Since
the L2-height of a vector space is bounded by the sum of the L2-height of a basis
(by an application of Hadamard’s inequality, [Bom-Vaa], equation (2.6)) we find that
h2.E/ � H

�
.T C n/ log.� C 1/ C �"

�
. Then equation (3.15) is proved.

We can assume F1; : : : ; FL�H 2 ZŒx� and h.F1/ � � � � � h.FL�H /. We claim
that there exists j0 � L � H 0 C 1 such that Fj0

does not vanish on V 0. Indeed, if
all F1; : : : ; FL�H 0C1 vanish on V 0, then H 0 � L � .L � H 0 C 1/ D H 0 � 1. Let
F D Fj0

. Then

L�HX
j D1

h.Fj / � .L � H � j0 C 1/h.F / � .H 0 � H/h.F /:
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Using (3.15) we deduce that h.F / satisfy (3.14).
The extrapolation step is based on a generalization of Dobrowolski’s main lemma

([Dob], lemme 1). We recall that F does not vanish on V 0 and " > O�ess.V /. Then
there exists ˛ 2 V."/ such that F.˛p/ ¤ 0 for some prime p 2 }. Let v be a place
dividing p. By [Amo-Dav], Theorem 3.1,

jF.˛p/jv � p�T j˛jp�
v

where j˛j D maxf1; j˛1jv; : : : ; j˛njvg. Moreover, for an arbitrary place v,

jF.˛p/jv �
´

j˛jp�
v if v − 1;

LjF jvj˛jp�
v if v j 1:

Note that L � .� C 1/n and h.˛/ � ". The product formula gives

0 � �T log p C n log.� C 1/ C h.F / C p�":

Comparing with (3.14) we get

.H 0 � H/.T log p � n log.� C 1/ � p�"/ � H..T C n/ log.� C 1/ C �"/

� H..T C n/ log.� C 1/ C p�"/;

which easily implies our claim. �

3.2. Decoding the information. To decode the information of Proposition 3.1 we
need an upper bound for the Hilbert function. The proposition below follows from a
result of M. Chardin [Cha]. It is proved in Lemma 2.5 of [Amo-Dav].

Proposition 3.2. Let V � Pn be an equidimensional variety of dimension d and
codimension k D n � d . Let �, T be positive integers. Then

H.V; T I �/ �
�

T � 1 C k

k

��
� C d

d

�
deg.V /:

We also need a sharp lower bound for the Hilbert function. This is a deep result of
M. Chardin and P. Philippon. Let K be a subfield of xQ and let V be a K-irreducible
variety. They prove ([Cha-Phi], Corollary 3) that for an equidimensional V ,

H.V I �/ �
�

� C d � m

d

�
deg.V /

for � > m and m D k
�
ı0.V / � 1

�
.

We need a generalization of this result. Consider finitely many equidimensional
varieties Vj of the same dimension d . Let k D n � d ,

m D �1 C
X

j

�
k

�
ı0.Vj / � 1

� C 1
�

< k
X

j

ı0.Vj /:
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Let us consider the equidimensional variety V 0 D S
Vj . In the appendix of this

article, M. Chardin and P. Philippon prove (see Subsection 6.1)

H.V 0I �/ �
�

� C d � m

d

�
deg.V 0/ (3.17)

for � > m.
Let } be a set of prime numbers. We apply the previous result to V 0 D S

p2} Œp�V .
Using the upper bound (2.6) of Proposition 2.8 and (3.17) we get:

Proposition 3.3. Let V � Gn
m be a Q-irreducible variety of dimension d and codi-

mension k D n � d which is not a union of torsion varieties. Let N be a positive
real number and let } be a set of prime numbers with p � N lying outside the set
E.V / of Proposition 2.8. Define

V 0 D
[

p2}

Œp�V

and
m D ŒkN nı0.V /�:

Then for any � � m we have

H.V 0I �/ �
�

� C d � m

d

�
deg.V 0/:

We are now ready to prove the main result of this section, Theorem 1.2. Let us
recall the statement.

Theorem 1.2. Let V be a variety of Gn
m of codimension k, defined and irreducible

over Q. Assume that V is not a union of torsion varieties. Let

�0 D ı0.V /.52n2 log.n2ı0.V ///.nC1/.kC1/:

Then there exists a hypersurface Z defined over Q of degree at most �0 which does
not contain V and such that

V
�
��1

0

� � V \ Z:

Proof. For simplicity, denote ı0 D ı0.V /. We prove a slightly more precise result.
Namely that

V
�
ı�1

0 n�2.39n2 log.n2ı0//�.nC1/.kC1/C1
�

is contained in a hypersurface Z defined over Q, such that V 6� Z and

deg Z � ı0n2.39n2 log.n2ı0//.nC1/.kC1/:
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Since 39n2=..nC1/.kC1/ � 39n1=.nC1/ � 39 � 41=5 � 52 this statement implies the
statement of Theorem 1.2. Let

N D .39n2 log.n2ı0//kC1:

We need a lower and an upper bound for log N . We have

log N � 2 log.39 � 4 log 4/ � 10:75 (3.18)

and (using log x <
p

x for x > 0, k C 1 � 1:5n and 39 � 25:29 � n5:29)

log N � .k C 1/ log
�
39n2 �

p
n2ı0

�
� 1:5n log.n8:29ı0/ � 6:22n log.n2ı0/:

(3.19)

We define } as the set of prime numbers p such that N 3=4 � p � N and p 62 E.V /

where E.V / is as in Proposition 2.8. Thus

j}j � �.N / � �.N 3=4/ � jE.V /j;
where, as usual, �.t/ is the cardinality of the set of prime numbers � t . By Theorem 1
of [Ros-Sch] we have, for t � 59,

t

log t
C t

2.log t /2
< �.t/ � t

log t
C 3t

2.log t /2
:

By Proposition 2.8 and by the last inequality in (2.5),

jE.V /j=p
N � d C 1

log 2
log deg.V / � 1

.39n2 log.n2ı0//.kC1/=2

� nk log ı0

log 2 � 39n2 log.n2ı0/
� 1

39 log 2
:

Thus j}j � f .N /N
log N

, where

f .t/ D 1 C 1

2 log t
� 1

t1=4 � 3=4
� 3

2t1=4.3=4/2 log t
� log t

39.log 2/t1=2
:

Since f .t/ � 0:937 for log t � 10:75, we obtain,

j}j � 0:937N

log N
:

As in Proposition 3.1, we set
V 0 D

[
p2}

Œp�V:
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We constructed } such that } \ E.V / D ;. Then, by Proposition 2.8,

deg.V 0/ � j}j deg.V / � 0:937N

log N
deg.V /: (3.20)

As in the statement of Proposition 3.3, let m D ŒkN nı0�. Choose

� D md C m and T D Œ39n2 log.n2ı0/�:

We remark that
� C 1 � n2N nı0: (3.21)

Let
� WD ı0n2.39n2 log.n2ı0//.nC1/.kC1/�1:

Let W be the Zariski closure of the set V.��1/ and let W 0 D S
p2} Œp�W . We remark

that W is defined over Q because the small points of V are invariant under the Galois
action. Then

O�ess.W / � ��1: (3.22)

Furthermore

H.W; T I �/ � H.V; T I �/ and H.W 0I �/ � H.V 0I �/:

We are going to prove that the last inequality is strict. Assume on the contrary that

H.W 0I �/ D H.V 0I �/: (3.23)

Apply Proposition 3.2 to V and Proposition 3.3 to V 0. Then, by (3.20),

H.W; T I �/

H.W 0I �/
� H.V; T I �/

H.V 0I �/
�

�
T �1Ck

k

��
�Cd

d

�
�

�Cd�m
d

� 
 log N

0:937N
:

We remark that
�

T �1Ck
k

� � T k . Moreover, by the choice � D md C m,

�
� C d

d

��
� C d � m

d

��1

D
dY

j D1

� C j

� � m C j
�

�
1C m

� � m

�d

D
�

1 C 1

d

�d

� e:

Thus,

� WD TH.W; T I �/

H.W 0I �/
� e.log N /T kC1

0:937N
� 2:91 log N: (3.24)

By Proposition 3.1 (with V replaced by W ) there exists a prime p 2 } such that

��1 � 1

p�
..T C 1/ log p � �.log.� C 1/ C log N / � n log.� C 1/ � log N / :
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By the choice of T , we have T C 1 � 39n2 log.n2ı0/. By (3.24), (3.21) and (3.19),

�.log.� C 1/ C log N / C n log.� C 1/ C log N

� 2:91.log N /
�

log.n2ı0/ C .n C 1/ log N
� C n log.n2ı0/ C .n2 C 1/ log N

� 2:91.6:22n.n C 1/ C 1/ log.n2ı0/ log N C n log.n2ı0/ C .n2 C 1/ log N

� c � 39n2 log.n2ı0/ log N

with

c D 2:91.6:22 � 1:5 C 0:25/ C 0:5=10:75 C .1 C 0:25/= log 4

39
� 0:74

(use n � 2 and (3.18)). Let

f .t/ D N

t

�
log t

log N
� 0:74

�
log N:

Then

��1 >
39n2f .p/ log.n2ı0/

N�
:

We remark that f .t/ has a single stationary point on Œ0; C1� which is a local max-
imum. Since p 2 ŒN 3=4; N �, we have f .p/ � minff .N 3=4/; f .N /g. Moreover,
by (3.18),

f .N 3=4/ � e10:75=4.3=4 � 0:74/ � 10:75 > 1

and f .N / � .1 � 0:74/ � 10:75 > 1. Thus f .p/ > 1. Using (3.21), we finally obtain

� <
N�

39n2 log.n2ı0/
� n2N nC1ı0

39n2 log.n2ı0/
D ı0n2.39n2 log.n2ı0//.nC1/.kC1/�1 D �:

This contradiction shows that the assumption (3.23) cannot hold. Thus we have:

H.W 0I �/ < H.V 0I �/:

Equivalently, there exists a homogeneous polynomial F of degree � which vanishes
on W 0 but not on V 0. The varieties are defined over the rationals, so we can assume
F 2 QŒx�. Since F does not vanish on V 0, there exists a prime number p 2 } such
that F does not vanish on Œp�V . Let Z be the zero set of F.xp/ D 0 . Then V 6� Z

and V.��1/ � W � Z. We have

deg.Z/ � N deg F � N� � n2N nC1ı0 D ı0n2.39n2 log.n2ı0//.nC1/.kC1/

as required. �
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4. Distribution of the small points

A geometric reduction process, close to that of [Amo-Via], applied to each variety
involved, allows us to prove the main result of this article using Theorem 1.2.

Theorem 1.3. Let V0 � V1 be subvarieties of Gn
m, defined over Q, of codimensions

k0 and k1 respectively. Assume that V0 is Q-irreducible. Let

� D ı.V1/
�
935n5 log.n2ı.V1//

�.k0�k1C1/.k0C1/.nC1/
:

Then,

- either there exists a Q-irreducible B union of torsion varieties such that V0 �
B � V1 and ı0.B/ � � ,

- or there exists a hypersurface Z defined over Q of degree at most � such that
V0 6� Z and V0.��1/ � Z.

Proof. Theorem 1.3 is analogue to Theorem 2.2 of [Amo-Via]. The proof is similar.
Let us give the details.

We simply denote ı D ı.V1/. By contradiction, we suppose that the conclusion
of Theorem 1.3 does not hold. Thus

V0 is not contained in any union B � V1 of proper torsion varieties with ı0.B/ � �

(4.25)
and

Each hypersurface Z defined over Q, of degree � � , with V0.��1/ � Z contains V0.
(4.26)

For r 2 f0; : : : ; k0 � k1 C 1g we define

Dr D ı
�
935n5 log.n2ı/

�r.k0C1/.nC1/
:

Since r � k0 � k1 C 1, we have Dr � � . Using an inductive process on r , we are
going to construct a chain of varieties

X0 	 � � � 	 Xr 	 XrC1 	 � � � 	 Xk0�k1C1

defined over Q which satisfy:

Claim.

i) V0 � Xr .

ii) Each Q-irreducible component of Xr containing V0 has codimension � r Ck1.

iii) ı.Xr/ � Dr .
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Theorem 1.3 is proved if we show the claim for r D k0 � k1 C 1. Indeed, by i)
there exists a Q-irreducible component W of Xk0�k1C1 which contains V0. By ii)
codim W � k0 C 1. This gives a contradiction.

We now define Xr and prove our claim by induction on r .

• For r D 0, we simply choose X0 D V1.

• We assume that our claim holds for some r 2 f0; : : : ; k0 � k1g and we prove
that it holds for r C 1, as well. Since V0 � Xr , there exists at least one Q-
irreducible component of Xr which contains V0. Let 1 � s � t be integers and
let W1; : : : ; Ws; WsC1; : : : ; Wt be the Q-irreducible components of Xr . We enumer-
ate these components so that

V0 � Wj if and only if j D 1; : : : ; s:

Assertion ii) of our claim for r implies that r C k1 � codim.Wj / � k0, for j D
1; : : : ; s.

Let j 2 f1; : : : ; sg. Since ı.Xr/ � Dr , the variety Wj is a Q-irreducible com-
ponent of an intersection of hypersurfaces defined over Q of degree � Dr . Thus
ı0.Wj / � Dr � � . Moreover

V0 � Wj � Xr � X0 D V1:

By assumption (4.25), Wj is not a union of torsion varieties.
Let

�0 D Dr

�
52n2 log.n2Dr/

�.nC1/.k0C1/
:

In view of Theorem 1.2, the set Wj .��1
0 / is contained in a hypersurface Zj defined

over Q which does not contain Wj and such that deg Zj � �0. We show that
�0 � DrC1. For this we need an upper bound for log.n2Dr/. Using log x <

p
x for

x > 0, we obtain

Dr D ı
�
935n5 log.n2ı/

�r.k0C1/.nC1/ � ı.935n5 � nı/r.k0C1/.nC1/

� ı.935n6ı/n.nC1/2

:

We have n2 � nn3=4, n.n C 1/2 � .9=4/n3 and 935 � n.log 935/= log 2. Thus n2Dr �
.n2ı/cn3

with

c D 1

8
C 9

4
� 1

2

�
log 935

log 2
C 6

�
< 17:98:

We deduce

�0 � Dr

�
52n2 � 17:98n3 log.n2ı/

�.nC1/.k0C1/

� Dr

�
935n5 log.n2ı/

�.nC1/.k0C1/

D DrC1:
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Since V0 � Wj

V0.��1
0 / � Wj .��1

0 / � Zj :

As deg Zj � �0 � DrC1 � � , relation (4.26) implies that V0 � Zj . Thus, for
j D 1; : : : ; s we have V0 � Zj and

V0 �
s\

j D1

Zj :

Let
XrC1 D Xr \ Z1 \ � � � \ Zs:

Then V0 � XrC1 � Xr .
Recall that deg Zj � �0 � DrC1. Then

ı.XrC1/ � maxfı.Xr/; DrC1g � maxfDr ; DrC1g D DrC1:

We decompose

XrC1 D W 0
1 [ � � � [ W 0

s [ W 0
sC1 [ � � � [ W 0

t ;

where W 0
j D Wj \ Z1 \ � � � \ Zs .

Let j 2 f1; : : : ; sg. Since Wj 6� Zj , every Q-irreducible component of W 0
j has

codimension � codim.Wj / C 1 � r C 1 C k1.
Let j 2 fs C 1; : : : ; tg. Since V0 6� Wj , the variety V0 is not contained in any

Q-irreducible component of W 0
j .

We conclude that XrC1 satisfies our claim for r C 1. �

5. Proofs of Theorem 1.1 and of the corollaries

Theorem 1.1 becomes a corollary of Theorem 1.3:

Proof of Theorem 1.1. Let

� D ı.V /
�
935n5 log.n2ı.V //

�.dC1/.nC1/2

:

We have to show that V �.��1/ D ;. Let V0 be one of the finitely many Q-irreducible
components of V.��1/. Then V0.��1/ D V0. Apply Theorem 1.3 to V0 and V1 D V .
We have k0 � n and k1 D n � d . Thus

.k0 � k1 C 1/.k0 C 1/.n C 1/ � .d C 1/.n C 1/2:

Since V.��1/ is dense in V0, the first assertion of Theorem 1.3 must hold. So V0.��1/

is contained in a union of torsion varieties B � V . Varying V0 over all components of
V.��1/, we conclude that V.��1/ � B where B � V is a union of torsion varieties.
Thus V �.��1/ D ;. �
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On the one hand, Theorem 1.1 tells us that the small points of V are contained
in the union V u of torsion varieties included in V . On the other hand, the torsion is
dense in a torsion varieties and V u is a finite union of the maximal torsion varieties
of V . Thus, the closure of the small points must be V u. In [Amo-Via], Corollary 5.3,
we estimate the sum of the degrees of these maximal torsion varieties. This is the
line of

Proof of Corollary 1.4. Let V u D B1 [ � � � [ Bt where Bj are the maximal torsion
varieties of V . By [Amo-Via], Corollary 5.3, ı0.Bj / � � 0 and

tX
j D1

� 0 dim.Bj / deg.Bj / � � 0n

where � 0 � � . Since V � D V nV u, Theorem 1.1 shows that

V.��1/ � V u D B1 [ � � � [ Bt :

In addition
V u D V.0/ � V.��1/: �

Let V � Gn
m be a Q-irreducible subvariety which is not contained in any union of

proper torsion varieties. As remarked in the introduction, Theorem 1.1 implies a lower
bound for the essential minimum. The slightly better lower bound of Corollary 1.5
is obtained directly from Theorem 1.3.

Proof of Corollary 1.5. Choose a hypersurface Z defined over Q containing V of
minimal degree !.V /. The result follows choosing V0 D V , V1 D Z, k0 D k and
k1 D 1 in Theorem 1.3. �

Finally, we prove the lower bound for the product of the heights of multiplicatively
independent algebraic numbers announced in the introduction in Corollary 1.6.

Proof of Corollary 1.6. We reorder ˛1; : : : ; ˛n in such a way that h.˛1/ � � � � �
h.˛n/. Let Ai D Œ2h.˛i /=h.˛1/� and choose algebraic numbers ˇ1; : : : ; ˇn such
that ˇ

Ai

i D ˛i . We apply Corollary 1.5 to the 0-dimensional variety V of degree
ŒQ.ˇ/ W Q�, consisting of the conjugates of ˇ D .ˇ1; : : : ; ˇn/. We have

O�ess.V / D h.ˇ/ �
X

i

A�1
i h.˛i / � nh.˛1/:

By the bound (2.4) of Chardin, we deduce

!.V / � nŒQ.ˇ/ W Q�1=n

� n.DA1 : : : An/1=n

� 2n.h.˛1/ : : : h.˛n//1=nh.˛1/�1D1=n:
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In view of the upper bound for the essential minimum and in view of Corollary 1.5
we obtain

nh.˛1/ � O�ess.V /

� .2n/�1.h.˛1/ : : : h.˛n//�1=nh.˛1/D�1=n
�
935n5 log.n2!.V //

��n.nC1/2

or equivalently

h.˛1/ : : : h.˛n/ � D�1.2n2/�n
�
935n5 log.n2!.V //

��n2.nC1/2

:

To conclude the proof, we use an effective lower bound for the height due to P.Voutier.
Note that ˛1 is not a root of unity. By [Vou], Corollary 2, h.˛1/ � 2D�1 log.3D/�3.
Moreover we can clearly assume D � 2 and

h.˛1/ : : : h.˛n/ � D�1.n log.3D//�3n:

Thus,

!.V / � 2n � D�1=n.n log.3D//�3 � 1

2
D log.3D/3 � D1=n D n�2D

and (using .2n2/1=n.nC1/2 � 935 � 81=18 � 935 � 1050 for n � 2)

.2n2/n
�
935n5 log.n2!.V //

�n2.nC1/2 � .2n2/n
�
935n5 log D

�n2.nC1/2

� �
1050n5 log.3D/

�n2.nC1/2

: �

6. Appendix

The following appendix by M. Chardin and P. Philippon contains two results. The first
one is an extension of the lower bound for the Hilbert function proved in [Cha-Phi].
This result is crucial in the proof of Proposition 3.3. The second result in this appendix
deals with a filtration of invariants starting with ! and ending with ı0. Let V � P n

be a K-irreducible variety of codimension k defined by a homogeneous prime ideal
I � A D KŒx0; : : : ; xn�. Let 1 � r � k. Philippon (see [Phi], Corollary 6)
defines ı0

r.I / as the minimal degree ı such that there exist homogeneous polynomials
f1; : : : ; fr 2 A of degree ı which form a regular sequence in IAI . Thus ı0

r.I / is the
minimal degree ı such that there exists an intersection X of hypersurfaces defined
over K of degree � ı containing V and of local codimension � r at V . The proof
of Corollary 2.3 shows that it is not restrictive to require also that all hypersurfaces
are defined over xQ. Thus ı0

1.I / D !.V / and ı0
k
.I / D ı0.V /. In addition, one

can show that V is an isolated component of an intersection of k hypersurfaces of
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degree ı0
1.I /; : : : ; ı0

k
.I /. Thus, by Bézout’s theorem, deg.V / � ı0

1.I / : : : ı0
k
.I /. In

the second part of the appendix, M. Chardin and P. Philippon prove that there exist
hypersurfaces Z1; : : : ; Zk of degree d1; : : : ; dk such that V is an isolated component
of Z1 \ � � � \ Zk and

.nk.kC1/=22nk.k�1//�1d1 : : : dk � deg.V / � d1 : : : dk :

Obviously, by definition ı0
r � dr . In addition, since deg.V / � ı0

1.I / : : : ı0
k
.I /, we

deduce

.nk.kC1/=22nk.k�1//�1ı0
1.I / : : : ı0

k.I / � deg.I / � ı0
1.I / : : : ı0

k.I /: (6.27)

Even if these inequalities are not needed here, we believe that they will be useful.

Complément à [Cha-Phi]

Par M. Chardin et P. Philippon

6.1. Extension de la minoration de fonction de Hilbert. Dans l’énoncé suivant,
nous utilisons la notion de modules et schémas .m; b/-parfaits telle qu’introduite
dans [Cha-Phi]. Rappelons que dans cette propriété m est un entier et b est un idéal
homogène de l’anneau de base (supposé gradué). En particulier, l’espace projectif
P n est 0-régulier et son anneau de coordonnées A D kŒx0; : : : ; xn� est .0; A/-régulier
(en tant que A-module).

Théorème 6.1. Soient V1; : : : ; Vs des sous-schémas de P n, équi-dimensionnels de
même dimension D et de supports deux à deux distincts. Notons b1; : : : ; bs des
idéaux homogènes de l’anneau de coordonnées A D kŒx0; : : : ; xn�. On suppose que
Vi est .mi ; bi /-parfait pour i D 1; : : : ; s et on note V un sous-schéma de dimension
D contenu dans V1 [ � � � [ Vs . Alors on a

H .V; �/ � deg.V /

�
� C D � m

D

�

dès que � > m WD m1 C � � � C ms C s � 1.

Nota Bene – Posons ı0.V / le plus petit entier tel que V soit composante d’une
intersection de n�D formes de degré au plus ı0. On sait que mi � .n�D/.ı0.Vi /�1/

et on a donc dans l’énoncé ci-dessus :

m � .n � D/.ı0.V1/ C � � � C ı0.Vs/ � s/ C s � 1:

Démonstration. On procède par récurrence sur D, on note A D kŒx0; : : : ; xn� et
I1; : : : ; Is les idéaux des Vi . Pour D D 0 on sait que le A-module A=Ii est .mi ; bi /-
parfait et donc mi -régulier d’après [Cha-Phi], proposition 3. D’après le théorème 2.4
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de [Con-Her] (appliqué avec M D A=.I1\� � �\Ii�1/ et A=Ii qui est de dimension 1)
on sait que la régularité de Ii=.I1 \� � �\Ii / est majorée par la somme de la régularité
de A=.I1 \ � � � \ Ii�1/ et de celle de Ii (qui est égale à celle de A=Ii plus 1). De
plus, la régularité de A=.I1 \ � � � \ Ii / est le maximum de celle de Ii=.I1 \ � � � \ Ii /

et de celle de A=Ii , d’où les inégalités

reg.A=.I1 \ � � � \ Ii // � max .reg.Ii=.I1 \ � � � \ Ii /I reg.A=Ii //

� reg.A=.I1 \ � � � \ Ii�1/ C reg.A=Ii / C 1:

Comme la régularité de A=Ii est majorée par mi on obtient par téléscopage que la
régularité de A=.I1 \ � � � \ Is/ est majorée par m1 C � � � C ms C s � 1. L’idéal J

de V contient I1 \ � � � \ Is et A=J a même dimension D, la minoration cherchée
résulte alors de [Cha-Phi], proposition 4, dans ce cas.

Pour passer de D � 1 à D on intersecte, comme dans loc. cit., V par une forme
linéaire x assez générale de sorte que pour tout i; j 2 f1; : : : ; sg on ait dim.Vi \
Vj \ Z.x// < D � 1 et dim.Vi \ Z.bi C xA// < D � 1. On note Wi la partie de
dimension D�1 de Vi \Z.x/ et on vérifie que Wi est .mi ; bibi /-parfait pour un bi 2 A

convenable. De plus les Wi sont deux à deux distincts, en posant W D W1 [� � �[Ws

on a deg.W / D deg.V / et

H .V; �/ � H .V; � � 1/ D H .V \ Z.x/; �/ � H .W; �/:

L’hypothèse de récurrence entraîne donc

H .V; �/ � H .V; � � 1/ � deg.V /

�
� C D � 1 � m

D � 1

�

puis la minoration voulue par intégration finie. �

6.2. Complément à l’interpolation : estimations du degré. Dans le théorème 2
de [Cha-Phi], on vérifie de plus :

.nr.rC1/=22nr.r�1//�1d1 : : : dr � deg.X/ � d1 : : : dr :

La majoration deg.X/ � d1 : : : dr est une conséquence du théorème de Bézout.
Pour l’autre inégalité, on peut en fait établir les propriétés supplémentaires suivantes,
à annexer à celles .1/i , .2/i et .3/i du théorème 2 de [Cha-Phi]. Pour i D 1; : : : ; r

on pose ci D .ni.iC1/=22ni.i�1//�1 et cette propriété s’énonce :
.4/i pour toute composante Y de Xi on a H .Y; di � 1/ � cid1 : : : di

�
di Cn�i

n�i

�
. Et en

particulier deg.Xi / � deg.Y / � cid1 : : : di � ci deg.Xi /.
La démonstration se fait dans la récurrence sur i D 1; : : : ; r et pour i D r on a

bien deg.X/ � crd1 : : : dr � cr deg.X/ car Xr D X . Le cas i D 1 résulte déjà de
.2/1 (c1 D 1=n) et pour la récurrence l’argument à ajouter est le suivant (1 < i � r):



382 F. Amoroso and E. Viada CMH

Comme X � Y on a, par .2/i et .4/i�1,

H .Y; di � 1/ � H .X; di � 1/

� c.n; i/�1 deg.Xi�1/di

�
di C n � i

n � i

�

� c.n; i/�1ci�1d1 : : : di

�
di C n � i

n � i

�
:

Ce qui conclut car ci � ci�1c.n; i/�1, vu que c.n; i/ D nŠ
.n�i/Š

2.i�1/.2n�i/ �
ni4n.i�1/.
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