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Abstract. Let k be an algebraically closed field of characteristic p > 0. Let D be a p-divisible
group over k. Let nD be the smallest non-negative integer for which the following statement
holds: if C is a p-divisible group over k of the same codimension and dimension as D and such
that C ŒpnD � is isomorphic to DŒpnD �, then C is isomorphic to D. To the Dieudonné module
of D we associate a non-negative integer `D which is a computable upper bound of nD . If D

is a product
Q

i2I Di of isoclinic p-divisible groups, we show that nD D `D ; if the set I has
at least two elements we also show that nD � maxf1; nDi

; nDi
C nDj

� 1 j i; j 2 I; j ¤ ig.
We show that we have nD � 1 if and only if `D � 1; this recovers the classification of minimal
p-divisible groups obtained by Oort. If D is quasi-special, we prove the Traverso truncation
conjecture for D. If D is F -cyclic, we explicitly compute nD . Many results are proved in the
general context of latticed F -isocrystals with a (certain) group over k.
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1. Introduction

Let p 2 N be a prime. Let k be an algebraically closed field of characteristic p. Let
c; d 2 N [ f0g be such that r WD c C d > 0. Let D be a p-divisible group over k

of codimension c and dimension d . The height of D is r . Let nD 2 N [ f0g be the
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smallest number for which the following statement holds: if C is a p-divisible group
of codimension c and dimension d over k such that C ŒpnD � is isomorphic to DŒpnD �,
then C is isomorphic to D. We have nD D 0 if and only if cd D 0. For the existence
of nD we refer to [Ma, Chapter III, Section 3], [Tr1, Theorem 3], [Tr2, Theorem 1],
[Va1, Corollary 1.3], or [Oo2, Corollary 1.7]. For instance, one has the following
gross estimate nD � cd C 1 (cf. [Tr1, Theorem 3]). The classical Dieudonné theory
says that the category of p-divisible groups over k is antiequivalent to the category of
Dieudonné modules over k. Thus the existence of nD gets translated into a suitable
problem pertaining to Dieudonné modules and thus to a particular type of latticed
F -isocrystals over k (see Section 1.1 below for precise definitions).

Traverso’s truncation conjecture predicts that nD � minfc; dg, cf. [Tr3, Sec-
tion 40, Conjecture 4]. This surprising and old conjecture is known to hold only in
few cases (like for supersingular p-divisible groups over k; see [NV, Theorem 1.2]).
To prove different refinements of this conjecture, one needs to have easy ways to
compute and estimate nD . Each estimate of nD represents progress towards the clas-
sification of p-divisible groups over k; implicitly, it represents progress towards the
understanding of the ultimate stratifications defined in [Va1, Section 5.3] and (thus
also) of the special fibres of all integral canonical models of Shimura varieties of
Hodge type. The goal of the paper is to put forward basic principles that compute
either nD or some very sharp upper bounds of nD .

For the sake of generality, a great part of this paper will be worked out in the
context of latticed F -isocrystals with a (certain) group over k.

1.1. Latticed F -isocrystals. Let W.k/ be the ring of Witt vectors with coefficients in
k. Let B.k/ be the field of fractions of W.k/. Let � be the Frobenius automorphism
of W.k/ and B.k/ induced from k.

By a latticed F -isocrystal over k we mean a pair .M; �/, where M is a free
W.k/-module of finite rank and � W MŒ 1

p
� �!� MŒ 1

p
� is a � -linear automorphism. We

recall that if �.M/ � M , then the pair .M; �/ is called an F -crystal over k. We also
recall that if pM � �.M/ � M , then the pair .M; �/ is called a Dieudonné module
over k and # WD p��1 W M ! M is called the Verschiebung map of .M; �/.

The composite of W.k/-linear maps endows End.M/ with a natural structure of a
W.k/-algebra (and thus also of a Lie algebra over W.k/). We denote also by � the � -
linear automorphism of End.MŒ 1

p
�/ that takes e 2 End.MŒ 1

p
�/ to �.e/ WD �BeB��1.

Let GB.k/ be a connected subgroup of GLMŒ 1
p � such that its Lie algebra Lie.GB.k// is

left invariant by � i.e., we have �.Lie.GB.k/// D Lie.GB.k//. Let G be the schematic
closure of GB.k/ in GLM . The triple .M; �; G/ is called a latticed F -isocrystal with
a group over k, cf. [Va1, Definition 1.1 (a)]. Let g WD Lie.GB.k// \ End.M/; it is a
Lie subalgebra of End.M/ which as a W.k/-submodule is a direct summand. If G is
smooth over Spec.W.k//, then g D Lie.G/. Let nG 2 N [ f0g be the i -number of
.M; �; G/ introduced in [Va1, Definition 3.1.4]. Thus nG is the smallest non-negative
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integer for which the following statement holds:

� If g 2 G.W.k// is congruent to 1M modulo pnG , then there exists h 2 G.W.k//

which is an isomorphism between .M; g�; G/ and .M; �; G/ (equivalently, be-
tween .M; g�/ and .M; �/). In other words, we have hg�h�1 D � (equiva-
lently, hg�.h/�1 D 1M ).

In [Va1] we developed methods that provide good upper bounds of nG (see [Va1,
Section 3.1.3 and Example 3.1.5]). The methods used exponential maps and applied
to all possible types of affine, integral group schemes G over Spec.W.k//. But when
the type of G is simple (like when G is GLM ), then one can obtain significantly better
bounds. This idea was exploited to some extent in [Va1, Section 3.3] and it is brought
to full fruition in this paper. Accordingly, in the whole paper we will work under the
following assumption:

1.1.1. Assumption. We have M ¤ 0, the W.k/-submodule g of End.M/ is a W.k/-
subalgebra of End.M/ (and not only a Lie subalgebra of End.M/), and (thus) G is
the group scheme over Spec.W.k// of invertible elements of g.

Typical cases we have in mind: (i) G is either GLM or a parabolic subgroup
scheme of GLM ; (ii) G is the centralizer in GLM of a semisimple W.k/-subalgebra
of End.M/; and (iii) g is W.k/1M ˚ n, with n a nilpotent subalgebra (without unit)
of End.M/.

1.1.2. Newton polygon slopes. Dieudonné’s classification of F -isocrystals over k

(see [Di, Theorems 1 and 2], [Ma, Chapter 2, Section 4], [De], etc.) implies that we
have a direct sum decomposition MŒ 1

p
� D L

˛2Q W.˛/ that is left invariant by � and
that has the property that all Newton polygon slopes of .W.˛/; �/ are ˛. We recall
that if m 2 N is the smallest number such that m˛ 2 Z, then there exists a B.k/-basis
for W.˛/ which is formed by elements fixed by p�m˛�m. One says that .M; �/ is
isoclinic if there exists a rational number ˛ such that we have MŒ 1

p
� D W.˛/. We

consider the direct sum decomposition into B.k/-vector spaces

End.MŒ 1
p

�/ D LC ˚ L0 ˚ L�

that is left invariant by � and such that all Newton polygon slopes of .LC; �/

are positive, all Newton polygon slopes of .L�; �/ are negative, and finally all
Newton polygon slopes of .L0; �/ are 0. We have direct sum decompositions
LC D L

˛;ˇ2Q ˛<ˇ Hom.W.˛/; W.ˇ//, L� D L
˛;ˇ2Q ˛<ˇ Hom.W.ˇ/; W.˛//,

and L0 D L
˛2Q End.W.˛//. Thus both LC and L� are nilpotent subalgebras

(without unit) of End.M/.
We have L0 D End.MŒ 1

p
�/ if and only if .M; �/ is isoclinic.
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1.2. Level modules and torsions. We define

OC ´ fx 2 End.M/ \ LC j �q.x/ 2 End.M/ \ LC for all q 2 Ng
D

\

q2N[f0g
��q.End.M/ \ LC/:

Let A0 WD fe 2 End.M/ j �.e/ D eg be the Zp-algebra of endomorphisms of
.M; �/. Let O0 be the W.k/-span of A0; it is a W.k/-subalgebra of End.M/ \ L0.
We have identities

O0 D A0 ˝Zp
W.k/ D

\

q2N[f0g
�q.End.M/\L0/ D

\

q2N[f0g
��q.End.M/\L0/:

We also define

O� ´ fx 2 End.M/ \ L� j ��q.x/ 2 End.M/ \ L� for all q 2 Ng
D

\

q2N[f0g
�q.End.M/ \ L�/:

As all Newton polygon slopes of .LC; �/ are positive, for each x 2 LC the
sequence .�q.x//q2N of elements of LC converges to 0 in the p-adic topology. This
implies that there exists s 2 N such that psx 2 OC. Thus we have OCŒ 1

p
� D LC.

As OC is a W.k/-submodule of the finitely generated W.k/-module End.M/, we
conclude that OC is a lattice of LC. A similar argument shows that O0 and O� are
lattices of L0 and L� (respectively). We have the following relations: �.OC/ � OC,
�.O0/ D O0 D ��1.O0/, ��1.O�/ � O�, LCL0 C L0LC � LC, L0L0 � L0,
and L0L� C L0L� � L�. These relations imply the following:

(i) Both OC and O� are left and right O0-modules.

(ii) The direct sum OC ˚ O0 (resp. O0 ˚ O�) is a W.k/-subalgebra of End.M/

that has OC (resp. O�) as a nilpotent, two-sided ideal.

Let O WD OC ˚ O0 ˚ O�; it is a lattice of End.M/Œ 1
p

� contained in End.M/. In
general, O is not a W.k/-subalgebra of End.M/ (see Example 2.2). Thus we call O

the level module of .M; �/.
Let OG WD .g\OC/˚ .g\O0/˚ .g\O�/; it is a lattice of gŒ 1

p
� contained in g.

We refer to OG as the level module of .M; �; G/. We note down that O D OGLM
.

By the level torsion of .M; �; G/ we mean the unique number `G 2 N [ f0g for
which the following inclusions hold

p`G g � OG � g .1/

and which obeys the following two disjoint rules:
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(a) if g D OG and if the two-sided ideal of the W.k/-algebra g generated by
.g \ OC/ ˚ .g \ O�/ is not topologically nilpotent, then `G WD 1;

(b) in all other cases, `G is the smallest non-negative integer for which (1) holds.

1.2.1. A connection to [Va1]. Let mG WD T .g; �/ be the Fontaine–Dieudonné
torsion of .g; �/ introduced in [Va1, Definitions 2.2.2 (a) and (b)]. We recall that
mG is the smallest non-negative integer with the property that there exists a W.k/-
submodule m of g which contains pmG g and for which the pair .m; �/ is a Fontaine–
Dieudonné p-divisible object over k in the sense of loc. cit. One has a direct sum
decomposition .m; �/ D L

j 2J .mj ; �/ such that each pair .mj ; �/ is an elementary
Fontaine–Dieudonné p-divisible object over k. The pair .mj ; �/ is a special type of
isoclinic latticed F -isocrystals over k that are definable over Fp; let j̨ 2 Q be the
Newton polygon slope of .mj ; �/. One basic property of .mj ; �/ is the following:
if j̨ > 0 (resp. j̨ D 0 or j̨ < 0), then we have �.mj / � mj (resp. �.mj / D mj

or ��1.mj / � mj ). Thus if j̨ > 0 (resp. j̨ D 0 or j̨ < 0), then we have
mj � g \ OC (resp. mj � g \ O0 or mj � g \ O�). This implies that m � OG .
Therefore we have `G � mG except in the case when g D OG D m and `G D 1.
This implies that `G � maxf1; mGg. In general, `G can be smaller than mG (see
Example 2.2).

1.2.2. Example. We assume that all Newton polygon slopes of .g; �/ are 0. Then
we have OG D g \ O0 and `G is the smallest non-negative integer such that we
have inclusions p`G g � OG � g. As the W.k/-module g is a direct summand of
End.M/, we have OG D g \ O0 D gŒ 1

p
� \ O0. This implies that �.OG/ D OG

and therefore OG has a W.k/-basis formed by elements of g \ A0. Thus .OG ; �/ is
a Fontaine–Dieudonné p-divisible object over k; therefore `G D mG .

Our first main goal is to prove (see Section 3) the following theorem.

1.3. Main Theorem A. We recall that .M; �; G/ is a latticed F -isocrystal with a
group over k and that we work under Assumption 1.1.1.

(a) We have the inequality nG � `G .

(b) Assume that .M; �/ is a direct sum of isoclinic latticed F -isocrystals over k.
Then we have nGLM

D `GLM
.

We neither know nor expect examples with nGLM
< `GLM

. Our second main
goal is to apply Main Theorem A to study p-divisible groups over k.

1.4. First applications to p-divisible groups. Let D and nD be as in the beginning
paragraph of the paper. We say that D is isoclinic if its (contravariant) Dieudonné
module is isoclinic. If .M; �/ is the Dieudonné module of D, then let

`D WD `GLM
2 N [ f0g:
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We call `D the level torsion of D. The following elementary lemma is our starting
point for calculating and estimating nD .

1.4.1. Lemma. We assume that .M; �/ is the Dieudonné module of D. Then we have
nD D nGLM

.

See [Va1, Lemma 3.2.2 and Corollary 3.2.3] and [NV, Theorem 2.2 (a)] for two
proofs of Lemma 1.4.1 (the second proof is not stated in the language of latticed
F -isocrystals with a group). Accordingly, we call nD the i -number (i.e., the isomor-
phism number) of D. Based on Lemma 1.4.1, we have the following corollary of
Main Theorem A.

1.4.2. Basic Corollary. For each non-trivial p-divisible group D over k we have
nD � `D . If D is a direct sum of isoclinic p-divisible groups over k, then we have
nD D `D .

The inequality nD � `D was first checked for the isoclinic case in [Va1, Exam-
ple 3.3.5].

1.4.3. Proposition. We assume that D D Q
i2I Di is a direct sum of at least two

isoclinic p-divisible groups over k. Then we have the following basic estimate:

nD � maxf1; nDi
; nDi

C nDj
� 1 j i; j 2 I; j ¤ ig:

Proposition 1.4.3 is proved in Section 4.5. Example 4.6.2 shows that in general,
Proposition 1.4.3 is optimal. The next proposition (proved in Section 4.7) describes
the possible range of variation of nD and `D under isogenies.

1.4.4. Proposition. Let D � zD be an isogeny between non-trivial p-divisible
groups over k. Let � 2 N [ f0g be the smallest number such that p� annihilates the
kernel of this isogeny. Then we have nD � `D � ` zD C 2�. Thus, if zD is a direct
sum of isoclinic p-divisible groups, then we have nD � `D � n zD C 2�.

In general, the constant 2� of Proposition 1.4.4 is optimal (see Example 4.7.1).

1.5. Minimal and quasi-special types. Let B D fe1; : : : ; erg be a W.k/-basis
for M . Let � be an arbitrary permutation of the set Jr WD f1; : : : ; rg. Let .M; ��/ be
the Dieudonné module over k with the property that for each s 2 f1; : : : ; dg we have
��.es/ D pe�.s/ and for each s 2 fd C 1; : : : ; d C cg we have ��.es/ D e�.s/. Let
C� be a p-divisible group over k whose Dieudonné module is .M; ��/. For a cycle
�i D .es1

; : : : ; esri
/ of � , let ci and di D ri � ci be the number of elements of the

sets fs1; : : : ; sri
g \ fd C 1; : : : ; d C cg and fs1; : : : ; sri

g \ f1; : : : ; dg (respectively),
and let ˛i WD di

ri
2 Q \ Œ0; 1�.

1.5.1. Definitions. We recall that c and d are non-negative integers such that r WD
c C d > 0, that D is a p-divisible group over k of codimension c and dimension d ,
and that Jr D f1; : : : ; rg.
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(a) We say that D is F -cyclic (resp. F -circular), if there exists a permutation �

(resp. an r-cycle permutation �) of Jr such that D is isomorphic to C� .

(b) We say that � is a minimal permutation, if the following condition holds:

.�/ for each cycle �i D .es1
; : : : ; esri

/ of � and for all q 2 N and u 2 f1; : : : ; rig,

we have �
q
�.esu

/ D pŒq˛i �C"q.su/e�q.su/ for some number "q.su/ 2 f0; 1g.

(c) We say that D is minimal, if there exists a minimal permutation � of Jr such
that D is isomorphic to C� .

(d) A non-trivial truncated Barsotti–Tate group B of level 1 over k is called minimal,
if there exists a p-divisible group zD over k such that zDŒp� is isomorphic to B

and n zD � 1.

(e) Let m WD g:c:d:fc; dg 2 N and let .d1; r1/ WD . d
m

; r
m

/. We say that D is
isoclinic quasi-special (resp. isoclinic special), if we have �r.M/ D pd M

(resp. we have �r1.M/ D pd1M ). We say that D is quasi-special (resp.
special), if it is a direct sum of isoclinic quasi-special (resp. isoclinic special)
p-divisible groups over k.

The terminology F -cyclic and F -circular is suggested by Definition 1.2.4 (c) in
[Va2]. The terminology minimal p-divisible groups and minimal truncated Barsotti–
Tate groups of level 1 is the one used in [Oo3] and [Oo4]. It is easy to check that
the above definitions of minimal p-divisible groups over k and of minimal truncated
Barsotti–Tate groups of level 1 over k are equivalent to the ones used in [Oo3, Sec-
tion 1.1] (this also follows from Main Theorem B below). Moreover D is minimal
if and only if DŒp� is minimal, cf. Main Theorem B below. The terminology special
(see (e)) is as in [Ma, Chapter III, Section 2]. If D is F -cyclic, then it is also quasi-
special but it is not necessarily special (see Lemma 4.2.4 (a) and Example 4.7.1). The
class of isomorphism classes of quasi-special p-divisible groups of codimension c

and dimension d over k, is a finite set (see Lemma 4.2.4 (b)); this result recovers and
refines slightly [Ma, Chapter III, Section 3, Theorem 3.4].

A systematic approach to C� ’s was started in [Va2] and [Va3] using the language
of Weyl groups (the role of a permutation � of Jr is that one of a representative of
the Weyl group of GLM with respect to its maximal torus that normalizes W.k/es

for all s 2 Jr ); for instance, we proved that for two permutations �1; �2 of Jr , the
p-divisible groups C�1

and C�2
are isomorphic if and only if C�1

Œp� and C�2
Œp�

are isomorphic (cf. [Va3, Theorem 1.3 (a) and Fact 4.3.1]). The p-divisible groups
C� are also studied in [Oo4] using the language of cyclic words in the variables �

and # . We note down that in the condition .�/, it suffices to consider natural numbers
q which are at most equal to the order of �i . Thus we view (b) and (d) as a more
practical form of [Oo4, Section 4].

In Section 4.6 we prove the following theorem.
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1.5.2. Theorem. We assume that the non-trivial p-divisible group D is quasi-special
(for instance, D is F -cyclic or special). Then D is a direct sum of isoclinic p-divi-
sible groups over k and thus we have nD D `D . Moreover, we have an inequality
nD � minfc; dg i.e., the Traverso truncation conjecture holds for D.

The proof of the inequality part of Theorem 1.5.2 relies on Proposition 1.4.3
and on an explicit formula for nD (see property 4.6 (ii); if D is F -cyclic, see also
Scholium 4.6.1).

The importance of minimal p-divisible groups stems from the following theorem
to be proved in Section 5.1.

1.6. Main Theorem B. Let D be a non-trivial p-divisible group over k. Then the
following three statements are equivalent:

(a) we have `D � 1;

(b) we have nD � 1 (equivalently, DŒp� is minimal);

(c) the p-divisible group D over k is minimal.

The implication (c) ) (b) was first checked for the isoclinic case in [Va1, Exam-
ple 3.3.6] and for the general case in [Oo3, Theorem 1.2]. A great part of [Oo4] is
devoted to the proof of the equivalence between (b) and (c), cf. [Oo4, Theorem B].

2. Preliminaries

Let .M; �/ be a latticed F -isocrystal over k. In this section we include simple
properties that pertain to .M; �/. Let M � WD Hom.M; W.k//.

The notations p, k, c, d , r D c C d , D, nD , W.k/, B.k/, .M; �; G/, g, MŒ 1
p

� DL
˛2Q W.˛/, LC, L0, L�, OC, A0, O0, O�, OG , `G , `D , Jr D f1; : : : ; rg, .M; ��/,

and C� introduced in Section 1 will be used throughout the paper. Let Dt be the p-
divisible group over k which is the Cartier dual of D. For m 2 N, let Wm.k/ WD
W.k/=pmW.k/.

All finitely generated W.k/-modules and all finite dimensional B.k/-vector spaces
are endowed with the p-adic topology. As in Section 1.2, in the whole paper we keep
the following order: first C, next 0, and last �.

2.1. Duals and homs. Let � W M �Œ 1
p

� �!� M �Œ 1
p

� be the � -linear automorphism that

takes f 2 M �Œ 1
p

� to �Bf B��1 2 M �Œ 1
p

�. The latticed F -isocrystal .M �; �/ is called
the dual of .M; �/, cf. [Va1, Section 2.1]. The canonical identification End.M/ D
M ˝W.k/ M � defines an identification .End.M/; �/ D .M; �/˝ .M �; �/ of latticed
F -isocrystals over k. If .M; �/ is the Dieudonné module of D, then .M �; p�/ is the
Dieudonné module of Dt. Let .M1; �1/ and .M2; �2/ be two latticed F -isocrystals
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over k. Let �12 W Hom.M1; M2/Œ 1
p

� �!� Hom.M1; M2/Œ 1
p

� be the � -linear automor-

phism that takes f 2 Hom.M1Œ 1
p

�; M2Œ 1
p

�/ to �2 B f B ��1
1 2 Hom.M1Œ 1

p
�; M2Œ 1

p
�/.

The latticed F -isocrystal .Hom.M1; M2/; �12/ over k is called the hom of .M1; �1/

and .M2; �2/. Thus .M �; �/ is the hom of .M; �/ and .W.k/; �/. The dual of
.Hom.M1; M2/; �12/ is .Hom.M2; M1/; �21/ (here �21 is defined similarly to �12).
Thus the dual of .End.M/; �/ is .End.M/; �/ itself.

If B is a W.k/-basis for M , let B� WD fx� j x 2 Bg be the dual W.k/-basis
for M �. Thus for x; y 2 B, we have x�.y/ D ıxy . For q 2 Z and x; y 2 B,
let aq.x; y/ 2 B.k/ be such that we have �q.x/ D P

y2B aq.x; y/y. We have
�q.x�/ D P

y2B �q.a�q.y; x//y� and hence ��q.x�/ D P
y2B ��q.aq.y; x//y�.

This implies:

.�/ If s 2 Z, then we have ps�q.M/ � M (i.e., psaq.x; y/ 2 W.k/ for all
x; y 2 B) if and only if we have ps��q.M �/ � M � (i.e., psaq.y; x/ 2 W.k/

for all x; y 2 B).

The set fx ˝ y� j x; y 2 Bg is a W.k/-basis for End.M/ D M ˝W.k/ M �.

2.2. Example. We assume that we have a direct sum decomposition M D W.k/˚N

such that � acts on W.k/ as � does, we have �.N / � N , and .N; �/ is isoclinic of
Newton polygon slope � 2 .Q \ .0; 1// n Z. We have a direct sum decomposition
of latticed F -isocrystals over k

.End.M/; �/ D .End.N /; �/ ˚ .N; �/ ˚ .N �; �/ ˚ .W.k/; �/:

The W.k/-span of the product N �N (taken inside End.M/) is End.N /. As �.N / �
N and N � � ��1.N �/, we have N � OC and N � � O�. As � … Z, we have
O \ End.N / ¤ End.N /. Thus OCO� ª O . Therefore O is not a W.k/-subalgebra
of End.M/.

We take G such that g is the W.k/-subalgebra N ˚ W.k/1N of End.M/. As
N � OC and 1M 2 O0, we have g D OG D .g \ OC/ ˚ .g \ O0/ and .g \ OC/ is
a nilpotent, two-sided ideal of the W.k/-algebra g. Thus `G D 0, cf. the rule 1.2 (a).
If the pair .N; �/ is not a Dieudonné–Fontaine p-divisible object over k, then the
Dieudonné–Fontaine torsion mG of .g; �/ is positive (and in fact it can be any natural
number).

2.3. Lemma. We assume that nGLM
D 0. Then there exists an integer s such that we

have �.M/ D psM . Thus �.End.M// D End.�.M// D End.M/ and therefore
we have O0 D End.M/ and `GLM

D 0.

Proof. Let q 2 N. By induction on q we show that the Lemma holds if the rank r

of M is at most q. If q D 1 and r D 1, then the Lemma is obvious. The passage
from q to q C 1 goes as follows. We can assume that r D q C 1. By multiplying
� with p�s for some s 2 Z, we can assume that �.M/ is a W.k/-submodule of
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M that contains a direct summand of M of rank at least 1. Let Qx 2 M n pM be
such that �. Qx/ 2 M n pM . Let g Qx 2 GLM .W.k// be such that g Qx�. Qx/ D Qx. As
nGLM

D 0, .M; �/ is isomorphic to .M; g Qx�/. Thus there exists x 2 M n pM such
that �.x/ D x. Let M0 be the W.k/-submodule of M generated by elements fixed
by �; it is a direct summand of M which contains x.

If M0 D M , then we are done as �.M/ D M . Thus to end the proof it suffices to
show that the assumption that M0 ¤ M leads to a contradiction. Let M1 WD M=M0

and let �1 W M1 ! M1 be the � -linear endomorphism induced by �. For each
element g1 2 GLM1

.W.k// there exists an element g 2 GLM .W.k// that fixes M0

and that maps naturally to g1. As .M; g�/ and .M; �/ are isomorphic and due to
the definition of M0, we easily get that .M1; �1/ and .M1; g1�1/ are isomorphic.
Thus the i -number of .M1; �1; GLM1

/ is 0. As the rank of M1 is less than q C 1,
by induction we get that there exists a natural number s1 such that �.M1/ D ps1M1

(we have s1 ¤ 0, due to the definition of M0). Let z1 2 M1 n pM1 be such
that �1.z1/ D ps1z1. Let Qz 2 M be such that it maps naturally to z1. We have
�. Qz/ � ps1 Qz 2 M0. Let Qy 2 M0 be such that �. Qy/ � ps1 Qy D ��. Qz/ C ps1 Qz. If
z WD Qz C Qy, then we have �.z/ D ps1z. As z maps naturally to z1 2 M1 n pM1, the
W.k/-module M0 ˚ W.k/z is a direct summand of M . Let gxz 2 GLM .W.k// be
such that it permutes x and z, it normalizes M0 ˚ W.k/z, and it acts identically on
.M0 ˚W.k/z/=.W.k/x ˚W.k/z/ and on M=.M0 ˚W.k/z/. The Newton polygon
slopes of .M; gxz�/ are 0, s1

2
, and s1. As the Newton polygon slopes of .M; �/ are

0 and s1 and as s1 2 N, we get that .M; �/ and .M; gxz�/ are not isomorphic. This
contradicts the equality nGLM

D 0. �

2.4. Lemma. Let x 2 End.M/ be such that for all q 2 N (resp. for all q 2 �N) we
have �q.x/ 2 End.M/. Then we have x 2 OC ˚ O0 (resp. we have x 2 O0 ˚ O�).

Proof. We will prove only the non-negative part of the Lemma as the non-positive
part of it is proved in the same way. Thus we assume that we have �q.x/ 2 End.M/

for all q 2 N. We write x D xC C x0 C x�, where xC 2 LC, x0 2 L0, and
x� 2 L�. There exists a number s 2 N such that psxC 2 OC and psx0 2 O0.
Thus �q.psxC/ 2 OC � End.M/ and �q.psx0/ 2 O0 � End.M/. We easily
get that we have ps�q.x�/ 2 End.M/ for all q 2 N. This implies that x� D 0

(as all Newton polygon slopes of .L�; �/ are negative). Thus x D xC C x0. The
sequence .�q.xC//q2N converges to 0 (as all Newton polygon slopes of .LC; �/ are
positive). Thus there exists Qq 2 N such that yC WD � Qq.xC/ 2 OC. Let y WD � Qq.x/

and y0 WD y � yC D � Qq.x0/ 2 End.M/ \ L0. As for each q 2 N we have
�q.yC/ 2 OC � End.M/ and �q.y/ 2 End.M/, we also have �q.y0/ 2 End.M/.
Thus y0 2 O0. Therefore x0 D ��Qq.y0/ 2 ��Qq.O0/ D O0. This implies that for all
q 2 N [ f0g we have �q.x0/ 2 O0 � End.M/. Thus for all q 2 N [ f0g we have
�q.xC/ D �q.x/ � �q.x0/ 2 End.M/ i.e., xC 2 OC. Therefore x D xC C x0 2
OC ˚ O0. �
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2.5. Invertible elements. In this section we recall basic properties of invertible
elements of W.k/-subalgebras of End.M/. Let h be a W.k/-subalgebra of End.M/.

(i) If x 2 h has an inverse x�1 in End.M/ (i.e., if x 2 h \ GLM .W.k//), then
the determinant of x is an invertible element of W.k/ and therefore from the
Cayley–Hamilton theorem we get that x�1 is a polynomial in x with coefficients
in W.k/; thus x�1 2 h (i.e., x is an invertible element of h).

(ii) Each invertible element of h is also an invertible element of any other W.k/-
subalgebra of End.M/ that contains h.

(iii) If we have a direct sum decomposition h D n ˚ h0 such that h0 is a W.k/-
subalgebra of h and n is a nilpotent, two-sided ideal of the W.k/-algebra h,
then we have a short exact sequence 1 ! 1M C n ! h \ GLM .W.k// !
h0 \ GLM .W.k// ! 1 which splits and which is defined by the following rule:
if x 2 n and y 2 h0 are such that x C y 2 h \ GLM .W.k//, then the image of
x C y in h0 \ GLM .W.k// is y.

(iv) We recall that a two-sided ideal i of the W.k/-algebra h is called topologically
nilpotent if for all m 2 N there exists Qm 2 N such that we have an inclusion
i Qm � pmh (this implies that

T
m2N im D 0). If x 2 i, then the element

1M C P1
mD1.�x/m 2 1M C i is well defined and is the inverse of 1M C x.

This implies that an element of h is invertible if and only if its image in h=i is
an invertible element of h=i.

3. The proof of Main Theorem A

In this section we prove Main Theorem A (see Sections 3.4 and 3.5). We begin
by introducing certain W.k/-algebras and group schemes over Spec.W.k// and by
presenting basic properties of them (see Sections 3.1 and 3.2). In Section 3.3 we list
simple properties of isomorphism classes of certain latticed F -isocrystals over k. All
these properties play a key role in Section 3.4. In Sections 3.6 and 3.7 we include
two remarks as well as a more general variant of Theorem 1.3 (b).

3.1. Group schemes of invertible elements. Let hC WD g \ OC and h0 WD g \ O0.
Let h WD .hC ˚ h0/ C p`G g. As O0 and OC ˚ O0 are W.k/-algebras and as
p`G g is a two-sided ideal of the W.k/-algebra g, it is easy to see that h is a W.k/-
subalgebra of g. Let h� WD h \ O�. As p`G g � OG (see (1)), we have a direct sum
decomposition

h D .hC ˚ h0/ C p`G g D hC ˚ h0 ˚ h�: .2/

Let …C W h ! h be the projection on hC along h0 ˚ h�.
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Let H , HC0, and H0 be the affine group scheme over Spec.W.k// of invertible
elements of h, hC ˚ h0, and h0 (respectively). Due to Section 2.5 (ii), we have a
sequence

H0.W.k// 6 HC0.W.k// 6 H.W.k// 6 G.W.k// .3a/

of subgroups. As hC and h� are nilpotent subalgebras (without unit) of h, we have

1M C hC 6 HC0.W.k// and 1M C h� 6 H.W.k//: .3b/

From Section 2.5 (iii) we get that we have a natural split short exact sequence

1 ! 1M C hC ! HC0.W.k// ! H0.W.k// ! 1: .3c/

Based on (2), for each element h 2 H.W.k// we can write uniquely

h D 1M C a.h/ C b.h/ C c.h/;

where a.h/ 2 hC, b.h/ 2 h0, and c.h/ 2 h�. We have a.h/ D …C.h/.

3.1.1. The ideal i. If `G D 0, let i be the two-sided ideal of the W.k/-algebra h D g
generated by hC and h�. If `G � 1, let i WD hC C h� C p`G g. We check that i
is a topologically nilpotent, two-sided ideal of h. If `G D 0, this is so by the very
definitions (see rules 1.2 (a) and (b)). We assume that `G � 1. This implies that p`G g
is a topologically nilpotent, two-sided ideal of h. As hC is a nilpotent, two-sided ideal
of hC ˚h0, its image in h=p`G g D hC ˚h0=Œ.hC ˚h0/\p`G g� is a nilpotent, two-
sided ideal. Thus p`G gChC is a topologically nilpotent, two-sided ideal of h. As h� is
a nilpotent, two-sided ideal of h0˚h� and as h0˚h� surjects onto h=.p`G gChC/ D
h0=Œh0 \ .p`G g C hC/�, the image of h� in h=.p`G g C hC/ is a nilpotent, two-sided
ideal. From the last two sentences, we get that i D p`G gChC Ch� is a topologically
nilpotent, two-sided ideal of h.

3.1.2. Fact. For each element h D 1M C a.h/ C b.h/ C c.h/ 2 H.W.k//, we have
1M C b.h/ 2 H0.W.k//. Therefore also 1M C a.h/ C b.h/ 2 H0C.W.k//.

Proof. As 1M C b.h/ and h are congruent modulo i, the first part of the fact follows
from Section 2.5 (iv). The last part of the fact follows from (3c). �
3.1.3. On H0. As h0 D g \ O0, we have �.h0/ D h0 (see Example 1.2.2). Let
h0Zp

be the Zp-subalgebra of h0 formed by elements fixed by �. Let H0Zp
be

the affine group scheme over Spec.Zp/ of invertible elements of h0Zp
. The group

scheme H0Zp
is a Zp-structure of H0 and thus the Frobenius automorphism � acts

naturally on H0.W.k// D H0Zp
.W.k//: for � 2 H0.W.k// we have �.�/ D �.�/.

The scheme H0Zp
is an open subscheme of the vector group scheme over Spec.Zp/

defined by h0Zp
(viewed only as a Zp-module). Thus the affine, smooth group scheme

H0Zp
has connected fibres.

3.1.4. Lemma. Let fC be a W.k/-submodule of hC. Let j WD fC ˚ h0 ˚ h�. We
consider the following three conditions:
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(i) we have …C.fCh� C h�fC/ � fC;

(ii) the W.k/-module fC is a left and right h0-module;

(iii) we have f2C � fC (i.e., fC is an algebra).

Then the following three properties hold:

(a) Conditions (i) and (ii) hold if and only if j is a left and right h0 ˚ h�-module.

(b) Conditions (ii) and (iii) hold if and only if fC ˚ h0 is a W.k/-subalgebra of
hC ˚ h0.

(c) The three conditions (i) to (iii) hold if and only if j is a W.k/-subalgebra of h.

Proof. As h0 ˚ h� is a W.k/-subalgebra of h, j is a left and right h0 ˚ h�-module if
and only if we have fCh0 Ch0fC CfCh� Ch�fC � j. We have fCh� Ch�fC � j if
and only if (i) holds. As hC is a left and right h0-module, we have fCh0 C h0fC � j
if and only if fCh0 C h0fC � fC and thus if and only if (ii) holds. Part (a) follows
from the last three sentences. As hC is an algebra and a left and right h0-module,
we have .fC ˚ h0/2 � fC ˚ h0 if and only if f2C C fCh0 C h0fC � fC and thus
if and only if conditions (ii) and (iii) hold. Thus (b) holds. Part (c) follows from (a)
and (b). �

3.2. Subalgebras. In this section we list several subalgebras of h.

3.2.1. Frobenius filtration of hC. For i 2 N [ f0g let

hC;i WD hC \ �i .g/ D hC \ �i .g \ LC/:

We have hC;0 D hC, �.hC;i / � hC;iC1 � hC;i , and each hC;i is a W.k/-module and
a nilpotent algebra. As �i .h0/ D h0 (see Section 3.1.3) and as hC is a left and right
h0-module, hC;i is also a left and right h0-module. As all Newton polygon slopes of
.hC; �/ are positive, we have

T1
iD0 hC;i D 0. Thus .hC;i /i2N[f0g is a decreasing,

separated, and exhaustive filtration of hC to be called the Frobenius filtration.

3.2.2. The Theta operations. We assume that hC ¤ 0. Let M.hC/ be the set of
W.k/-submodules of hC endowed with the pre-order relation defined by inclusions.
We consider the increasing operators ‚; ‚a; ‚s W M.hC/ ! M.hC/ that take fC 2
M.hC/ to

‚.fC/ WD f2C C …C.fCh� C h�fC/ C �.fC/ 2 M.hC/;

‚a.fC/ WD f2C C …C.fCh� C h�fC/, and ‚s.fC/ WD …C.fCh� C h�fC/. We have
identities ‚.fC/ D ‚a.fC/ C �.fC/ and ‚a.fC/ D f2C C ‚s.fC/. The lower right
indices a and s stand for algebraic and slope module (respectively), as suggested by
Lemma 3.1.4 (a) and (c). For i 2 N [ f0g let

fi WD ‚i .hC/:



178 A. Vasiu CMH

As ‚ is increasing and as ‚.hC/ � hC, we have fiC1 D ‚.fi / � fi � hC.

3.2.3. Lemma. We assume that hC ¤ 0. Let i 2 N [ f0g. Then ei WD fi ˚ h0 ˚ h�
is a W.k/-subalgebra of h.

Proof. We use induction on i . For i D 0 we have e0 D h and thus the Lemma holds.
The passage from i to i C 1 goes as follows. We check that the three conditions (i)
to (iii) of Lemma 3.1.4 hold for fC WD fiC1. As fiC1 � fi , we have ‚s.fiC1/ �
‚s.fi / � ‚.fi / D fiC1. Thus condition 3.1.4 (i) holds. To check that condition
3.1.4 (ii) holds, it suffices to show that each one of the following four elements f2

i ,
…C.fih�/, …C.h�fi /, and �.fi / of M.hC/ are left and right h0-modules; we will
only check that they are left h0-modules as the arguments for checking that they are
right h0-modules are entirely the same. As fi is a left h0-module, f2

i is also a left
h0-module. We have h0…C.fih�/ D …C.h0fih�/ D …C.fih�/ (the last equality as
fi is a left h0-module). We have h0…C.h�fi / D …C.h0h�fi / D …C.h�fi / (the last
equality as h� is a left h0-module). We have h0�.fi / D �.h0/�.fi / D �.h0fi / D
�.fi /. Thus condition 3.1.4 (ii) holds. As f2

iC1 � f2
i � fiC1, condition 3.1.4 (iii)

also holds. Thus eiC1 is a W.k/-subalgebra of h, cf. Lemma 3.1.4 (c). This ends the
induction. �

3.2.4. Lemma. We assume that hC ¤ 0. Let i 2 N [ f0g. Then ‚s.hC;i / � hC;i .
Thus hC;i ˚ h0 ˚ h� is a W.k/-subalgebra of h.

Proof. Let x 2 hC;i and y 2 h�. As z WD �xy C …C.xy/ 2 h0 ˚ h�, we have
Qz WD ��i .z/ 2 g \ .O0 ˚ O�/. As x 2 hC;i and y 2 h� � g \ O�, we have
Qx WD ��i .x/ 2 g \ LC and Qy WD ��i .y/ 2 g \ L�. Thus …C.xy/ D z C xy D
�i . Qz C Qx Qy/ 2 �i .g/ i.e., …C.xy/ 2 hC \ �i .g/ D hC;i . A similar argument shows
that …C.yx/ 2 hC;i . Thus ‚s.hC;i / � hC;i . As hC;i is an algebra and a left and
right h0-module (see Section 3.2.1), from Lemma 3.1.4 (c) we get that hC;i ˚h0 ˚h�
is a W.k/-subalgebra of h. �

3.2.5. Lemma. We assume that hC ¤ 0. Then fa;1 WD T1
iD0 ‚i

a.hC/ is 0.

Proof. Let i be as in Section 3.1.1. Let n0 be the topologically nilpotent, two-sided
ideal of the W.k/-algebra h0 such that we have i D hC ˚ n0 ˚ h�. We will check
by induction on q 2 N that fa;1 � iq C n0 C h�. As fa;1 � hC � i, the basis of
the induction holds. The passage from q to q C 1 goes as follows. Let i 2 N be such
that ‚i

a.hC/ � iq C n0 C h� � i. We have

‚iC1
a .hC/ D .‚i

a.hC//2C‚s.‚
i
a.hC// � .iqCn0Ch�/2C‚s.hC\.iqCn0Ch�//

� iqC1 C n0 C h� C ‚s.hC \ .iq C n0 C h�//:

Let x 2 hC \.iq Cn0 Ch�/ � i and y 2 h� � i. We have …C.xy/�xy 2 n0 ˚h�
and xy 2 iqC1C.n0Ch�/h� � iqC1Cn0Ch�. Thus …C.xy/ D Œ…C.xy/�xy�C
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xy 2 iqC1 C n0 C h�. A similar argument shows that …C.yx/ 2 iqC1 C n0 C h�.
From the last two sentences we get that ‚s.hC\.iqCn0Ch�// � iqC1Cn0Ch�. We
conclude that ‚iC1

a .hC/ � iqC1Cn0Ch�. This implies that fa;1 � iqC1Cn0Ch�.
This ends the induction.

As i is topologically nilpotent, we have
T

q2N.iqCn0Ch�/ � T
q2N.pqhCn0C

h�/ D n0 Ch�. This implies that fa;1 � n0 Ch�. Thus fa;1 � hC \.n0 Ch�/ D 0

i.e., fa;1 D 0. �
3.2.6. Lemma. We assume that hC ¤ 0. Then f1 WD T1

iD0 fi is 0.

Proof. We show that the assumption that f1 ¤ 0 leads to a contradiction. As we have
inclusions 0 ¨ f1 � fi � hC D hC;0 and as

T1
iD0 hC;i D 0, there exists a greatest

number i0 2 N [ f0g for which there exists i 2 N such that we have inclusions
f1 � fi � hC;i0 .

As ‚s.hC;i0C1/ � hC;i0C1 (cf. Lemma 3.2.4) and as h2C;i0C1 C �.hC;i0C1/ �
hC;i0C1 (cf. Section 3.2.1), we have ‚.hC;i0C1/ � hC;i0C1. Based on this and the
inclusion �.hC;i0/ � hC;i0C1, an easy induction on j 2 N shows that the images of
fiCj D ‚j .fi / and ‚j

a .fi / in hC;i0=hC;i0C1 coincide. Let j0 2 N be such that we
have ‚j0

a .hC/ � hC;i0C1, cf. Lemma 3.2.5. Thus the image of fiCj0
in hC;i0=hC;i0C1

is 0. Therefore f1 � fiCj0
� hC;i0C1 and this contradicts the choice of i0. Thus

f1 D 0. �

3.3. Isomorphism properties. In this section we list properties of the isomorphism
classes of those latticed F -isocrystals with a group over k which are of the form
.M; g�; G/ with g 2 G.W.k//. We recall that � acts on H0.W.k// as � does, cf.
Section 3.1.3.

3.3.1. Lemma. (a) We have H0.W.k// D f��1�.�/ j � 2 H0.W.k//g.
(b) If m 2 N, then

Ker.H0.W.k// ! H0.Wm.k///

D f��1�.�/ j � 2 Ker.H0.W.k// ! H0.Wm.k///g:
(c) For each � 2 HC0.W.k//, we have �.�/ 2 HC0.W.k//.

(d) Let fC and f� be two left and right h0-modules contained in hC and h�
(respectively). Let g 2 H.W.k// be such that a.g/ 2 fC and c.g/ 2 f�. Then there
exists an element h0 2 H0.W.k// such that for g0 WD h0g�.h0/�1 2 H.W.k// we
have a.g0/ 2 fC, b.g0/ D 0, and c.g0/ 2 f�.

Proof. As H0Zp
is an affine, smooth group scheme over Spec.Zp/ whose special fibre

is connected (see Section 3.1.3), (a) and (b) are only the Witt vectors version of Lang
theorem for affine, connected, smooth groups over Fp; see [NV, Proposition 2.1] and
its proof for details. As �.hC/ � hC and �.H0.W.k/// D H0.W.k//, from (3c) we
get that for each � 2 HC0.W.k// we have �.�/ 2 HC0.W.k//. Thus (c) holds.
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We prove (d). We have 1M C b.g/ 2 H0.W.k//, cf. Fact 3.1.2. Let h0 2
H0.W.k// be such that 1M C b.g/ D h�1

0 �.h0/, cf. (a). We have

g0 D h0a.g/�.h0/�1 C h0Œ1M C b.g/��.h0/�1 C h0c.g/�.h0/�1

D 1M C h0a.g/�.h0/�1 C h0c.g/�.h0/�1:

As fC and f� are left and right h0-modules, we have h0a.g/�.h0/�1 2 fC and
h0c.g/�.h0/�1 2 f�. Therefore a.g0/ D h0a.g/�.h0/�1 2 fC and c.g0/ D
h0c.g/�.h0/�1 2 f�. Thus (d) holds. �
3.3.2. Lemma. Let g D 1M C c.g/ 2 1M C h�. Then there exists an element
h 2 G.W.k// \ .1M C h�Œ 1

p
�/ such that we have hg�.h/�1 D 1M .

Proof. For i 2 N [f0g let gi WD ��i .g/ D 1M C��i .c.g//. As ��i .O�/ � O�, we
have ��i .h�/ � g\O� � g\h�Œ 1

p
� and thus ��i .c.g// is a nilpotent element of g.

This implies that gi D 1M C ��i .c.g// is an invertible element of g i.e., we have
gi 2 G.W.k//. We have g D g0. For i 2 N we have �.gi / D gi�1. As all Newton
polygon slopes of .L�; �/ are negative, the sequence .��i .c.g///i2N of elements of
g \ O� converges to 0. This implies that the element h WD limi!1 gigi�1 : : : g1 2
G.W.k// is well defined. We compute that

hg�.h/�1 D lim
i!1 gigi�1 : : : g1g�.g1/�1 : : : �.gi�1/�1�.gi /

�1

D lim
i!1 gi : : : g0g�1

0 : : : g�1
i�1

is equal to limi!1 gi D 1M . �

3.4. Proof of 1.3 (a). We prove Theorem 1.3 (a). Let Qg 2 G.W.k// be congruent to
1M modulo p`G . As Qg � 1M 2 p`G g � h, we have Qg 2 h. As Qg 2 GLM .W.k//, we
have Qg 2 H.W.k// (cf. Section 2.5 (i)). Thus to prove Theorem 1.3 (a), it suffices to
prove the following stronger statement:

.�/ for each element g in H.W.k// there exists an element hg in G.W.k// such
that hgg�.hg/�1 D 1M .

We will first prove the following lemma.

3.4.1. Lemma. Let g 2 H.W.k//. Then there exists an element hC 2 HC0.W.k//

such that gC WD hCg�.hC/�1 2 H.W.k// has the property that a.gC/ D 0.

Proof. We can assume that hC ¤ 0. For i 2 N [ f0g, let ei D fi ˚ h0 ˚ h� be the
W.k/-subalgebra of h constructed in Lemma 3.2.3. By induction on i 2 N [ f0g we
show that there exists hi 2 HC0.W.k// such that gi WD hig�.hi /

�1 2 H.W.k//

has the property that a.gi / 2 ei . Taking h0 D 1M , we have g0 D g 2 h D e0. Thus
the basis of the induction holds. The passage from i to i C 1 goes as follows.
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We will take hiC1 to be a product of the form hi;Chi;0hi . Let ıi 2 N [ f0g be
the greatest number such that we have b.gi / 2 pıi h0. Let hi;0 2 Ker.H0.W.k// !
H0.Wıi

.k/// be such that hi;0.1M C b.gi //�.hi;0/�1 D 1M , cf. Lemma 3.3.1 (b).
The element giC1;0 WD hi;0gi�.hi;0/�1 2 H.W.k// has the properties that
a.giC1;0/ 2 fi and b.giC1;0/ D 0, cf. proof of Lemma 3.3.1 (d) applied with
.fC; f�/ D .fi ; h�/. Let hi;C WD 1M � a.giC1;0/ 2 1M C hC 6 HC0.W.k//.
We compute that

giC1 D hiC1g�.hiC1/�1 D hi;Chi;0gi�.hi;0/�1�.hi;C/�1 D hi;CgiC1;0�.hi;C/�1

D Œ1M � a.giC1;0/�Œ1M C a.giC1;0/ C c.giC1;0/�Œ1M � �.a.giC1;0//��1

D Œ1M � a.giC1;0/2 � a.giC1;0/c.giC1;0/ C c.giC1;0/�Œ1M � �.a.giC1;0//��1:

As a.giC1;0/ 2 fi , the three elements �a.giC1;0/2, …C.�a.giC1;0/c.giC1;0//, and
�.a.giC1;0// belong to ‚.fi / D fiC1. As …C.�a.giC1;0/c.giC1;0// 2 fiC1, we
get that �a.giC1;0/c.giC1;0/ 2 eiC1. As eiC1 is a W.k/-algebra, we conclude that
both 1M � �.a.giC1;0// and Œ1M � a.giC1;0/�Œ1M C a.giC1;0/ C c.giC1;0/� belong
to eiC1. From Section 2.5 (i) we get that Œ1M � �.a.giC1;0//��1 2 eiC1. Thus we
have giC1 2 eiC1. This ends the induction.

Due to Lemma 3.2.6, the sequences .a.gi //i2N[f0g and .a.giC1;0//i2N[f0g of el-
ements of hC converge to 0. We have b.giC1/ D Œ1M �a.giC1;0/�Œ1M Ca.giC1;0/C
c.giC1;0/�Œ1M ��.a.giC1;0//��1 �1M �a.giC1/�c.giC1/ 2 h0. From the last two
sentences we easily get that the sequence .b.giC1//i2N[f0g of elements of h0 con-
verges to 0. Thus the sequence .ıi /i2N[f0g of non-negative integers converges to 1.
This implies that the sequence .hi;0/i2N[f0g of elements of H0.W.k// converges to
1M . As hi;C D 1M C a.giC1;0/, the sequence .hi;C/i2N[f0g converges to 1M . Thus
the sequence .hi;Chi;0/i2N[f0g of elements of HC0.W.k// converges also to 1M . As
hiC1 D hi;Chi;0hi , we get that the sequence .hi /i2N[f0g of elements of HC0.W.k//

converges to an element hC 2 HC0.W.k//. We have gC D hCg�.hC/�1 D
limi!1 hig�.hi /

�1 D limi!1 gi 2 T1
iD0 ei D T1

iD0 fi ˚ h0 ˚ h�. Thus
gC 2 h0 ˚ h�, cf. Lemma 3.2.6. Therefore a.gC/ D 0. �
3.4.2. End of the proof of 1.3 (a). Let g 2 H.W.k//. Let hC 2 HC0.W.k//

and gC 2 H.W.k// be as in Lemma 3.4.1. Let h0 2 H0.W.k// be such that
for g0 WD h0gC�.h0/�1 2 H.W.k// we have a.g0/ D b.g0/ D 0, cf. Lemma
3.3.1 (d) applied with .fC; f�/ D .0; h�/. Let h� 2 G.W.k// be such that we
have g0 D h�1� �.h�/, cf. Lemma 3.3.2. Due to (3a), the element hg WD h�h0hC be-
longs to G.W.k//. We have hgg�.hg/�1 D h�h0hCg�.hC/�1�.h0/�1�.h�/�1 D
h�h0gC�.h0/�1�.h�/�1 D h�g0�.h�/�1 D 1M . Thus the statement 3.4 .�/

holds. This ends the proof of Theorem 1.3 (a). �
3.4.3. Remarks. (a) The proof of Theorem 1.3 (a) can be also worked out using
p`G g C h0 C h� instead of h D p`G g C hC C h0.
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(b) If g 2 HC0.W.k//, then hg D h0hC 2 HC0.W.k//. Thus we have
an identity HC0.W.k// D f��1�.�/ j � 2 HC0.W.k//g (to be compared with
Lemma 3.3.1 (a)).

3.5. Proof of 1.3 (b). We prove Theorem 1.3 (b). We consider a direct sum decom-
position

M D L
i2I

Mi .4a/

with the property that for all elements i of the finite set I we have �.Mi Œ
1
p

�/ D Mi Œ
1
p

�

and .Mi ; �/ is isoclinic. For instance, we can take I to be the set of Newton polygon
slopes of .M; �/ and then as each Mi we can take M \ W.i/ (see Section 1.1.2 for
W.˛/ with ˛ 2 Q). For each i 2 I , let ˛i 2 Q be the unique Newton polygon
slope of .Mi ; �/. In Section 3.5.1 we do not assume that the association i ! ˛i is
one-to-one.

3.5.1. Scholium. One computes `GLM
as follows. For i 2 I , let Bi be a W.k/-basis

for Mi . Let B WD S
i2I Bi ; it is a W.k/-basis for M . Let B� WD fx� j x 2 Bg be

the W.k/-basis for M � which is the dual of B (see Section 2.1).
Due to (4a), we have direct sum decompositions

End.M/ \ LC D L
i;j 2I

˛i < j̨

Hom.Mi ; Mj /;

End.M/ \ L0 D L
i2I

End.Mi /;

and

End.M/ \ L� D L
i;j 2I

˛i < j̨

Hom.Mj ; Mi /:

Thus End.M/ D .End.M/\LC/˚.End.M/\L0/˚.End.M/\L�/ and therefore

End.M/=O D Œ.End.M/ \ LC/=OC� ˚ Œ.End.M/ \ L0/=O0�

˚ Œ.End.M/ \ L�/=O��:
(4b)

For i; j 2 I , x 2 Bi , and y 2 Bj , we define a number `.x; y/ 2 N [ f0g via the
following two rules:

� if ˛i � j̨ , let `.x; y/ 2 N [ f0g be the smallest number such that we have
p`.x;y/�q.x ˝ y�/ 2 Hom.Mj ; Mi / for all q 2 N;

� if ˛i < j̨ , let `.x; y/ 2 N [ f0g be the smallest number such that we have
p`.x;y/��q.x ˝ y�/ 2 Hom.Mj ; Mi / for all q 2 N.
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Let `C, `0, `� 2 N [ f0g be the smallest numbers such that p`C annihilates
.End.M/ \ LC/=OC, p`0 annihilates .End.M/ \ L0/=O0, and p`� annihilates
.End.M/ \ L�/=O�. As

OC D
\

q2N[f0g
��q.End.M/ \ LC/ D

\

q2N[f0g
End.��q.M/ \ LC/;

`C is the smallest non-negative integer with the property that we have p`C.End.M/\
LC/ � ��q.M/\LC for all q 2 N (i.e., we have p`C�q.End.M/\LC/ � End.M/

for all q 2 N). As fx ˝ y� j x 2 Bi ; y 2 Bj ; i; j 2 I; ˛i > j̨ g is a W.k/-basis
for End.M/ \ LC, we get that `C is the smallest non-negative integer such that we
have p`C�q.x ˝ y�/ 2 Hom.Mj ; Mi / for all q 2 N, all i; j 2 I with ˛i > j̨ , and
all x 2 Bi and y 2 Bj . Therefore

`C WD maxf`.x; y/ j x 2 Bi ; y 2 Bj ; i; j 2 I; ˛i > j̨ g: .5a/

Similar arguments show that

`0 D maxf`.x; y/ j x; y 2 Bi ; i 2 I g .5b/

and that
`� WD maxf`.x; y/ j x 2 Bi ; y 2 Bj ; i; j 2 I; ˛i < j̨ g: .5c/

From (4b) and the very definitions of `C, `0, and `� we get that maxf`C; `0; `�g 2
N [ f0g is the smallest number such that pmaxf`C;`0;`�g annihilates End.M/=O .

Next we define a number "GLM
2 f0; 1g via the following rules. If O D End.M/,

let "GLM
WD `GLM

(cf. rules 1.2 (a) and (b)); we have `C D `0 D `� D 0 and
thus `GLM

D maxf"GLM
; `C; `0; `�g. If O ¤ End.M/, let "GLM

WD 0; we have
`GLM

D maxf`C; `0; `�g (cf. rule 1.2 (b)). From the last two sentences and the
formulas (5a), (5b), and (5c) we get that, regardless of what O is, we have

`GLM
D maxf"GLM

; `C; `0; `�g D maxf"GLM
; `.x; y/ j x; y 2 Bg: .6a/

The latticed F -isocrystals .Hom.Mj ; Mi /; �/ and .Hom.Mi ; Mj /; �/ are dual to
each other (cf. Section 2.1) and the dual of the W.k/-basis fx ˝ y�jx 2 Bi ; y 2 Bj g
of Hom.Mj ; Mi / is the W.k/-basis fy ˝ x� j x 2 Bi ; y 2 Bj g of Hom.Mi ; Mj /.
Based on this, from the property 2.1 .�/ we get that for all i; j 2 I we have an
equality

maxf`.x; y/ j x 2 Bi ; y 2 Bj g D maxf`.y; x/ j x 2 Bi ; y 2 Bj g: .6b/

3.5.2. Reduction steps and notations. Let ` WD `GLM
. Based on Theorem 1.3 (a),

we have nGLM
� `. Thus to prove that nGLM

D `, it suffices to show that nGLM
>

` � 1. If nGLM
D 0, then ` D 0 (see Lemma 2.3) and therefore nGLM

> ` � 1. Thus
to prove that nGLM

D `, it suffices to show that for ` � 2 we have nGLM
> ` � 1. To

check this we can assume that the map I ! Q that takes l 2 I to ˛l 2 Q is injective
(i.e., for each element l 2 I we have Ml D M \ W.˛l/).
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Let q be the smallest positive integer for which the following two properties hold:

(i) there exists a W.k/-basis B D [l2I Bl for M which is contained in [l2I Ml

and for which there exist elements i; j 2 I , x 2 Bi � Mi , and y 2 Bj � Mj

such that (cf. (6a) and (6b)) we have `.x; y/ D ` and j̨ � ˛i ;

(ii) we have eq;x;y WD p`.x;y/�q.x ˝ y�/ D p`�q.x ˝ y�/ 2 Hom.Mj ; Mi / n
p Hom.Mj ; Mi /.

The existence of q follows from (6a), (6b), and the very definition of the numbers
`.x; y/.

For z 2 M , let az;q be the unique integer such that we have �q.z/ 2 paz;q M n
paz;qC1M . We can choose the W.k/-basis B D [l2I Bl such that we have a di-
rect sum decomposition M D L

z2B W.k/p�az;q �q.z/ i.e., we have ��q.M/ DL
z2B W.k/p�az;q z. Let

ai;q WD minfaz;q j z 2 Big and bj;q WD maxfaz;q j z 2 Bj g:
Therefore ai;q is the greatest integer such that we have �q.Mi / � pai;q Mi and bj;q is
the smallest integer such that we have pbj;q Mj � �q.Mj /. The smallest number s 2
N[f0g with the property that ps�q.Hom.Mj ; Mi // D ps Hom.�q.Mj /; �q.Mi // is
contained in Hom.Mj ; Mi /, equals maxf0; bj;q � ai;qg; as eq;x;y 2 Hom.Mj ; Mi / n
p Hom.Mj ; Mi /, we have s � `.x; y/ D ` � 2. As s � maxf`C; `0g � `, we
conclude that 2 � ` D s D bj;q � ai;q . It is easy to see that we have maxf`C; `0g �
ay;q � ax;q � `.x; y/, cf. property (ii) for the second inequality. From the last two
sentences we get that ax;q D ai;q and ay;q D bj;q . Thus we have ` D `.x; y/ D
ay;q � ax;q D bj;q � ai;q . As ` D ay;q � ax;q > 0, we have x ¤ y.

3.5.3. The set ƒ. Let ƒ WD fw 2 Mi n pMi j aw;q D ax;qg; it is the set of those
elements w 2 Mi for which p�ax;q �q.w/ is a direct summand of M . Obviously the
set ƒ is stable under multiplication by invertible elements of W.k/. For w 2 ƒ let

gw WD 1M C p`�1w ˝ y� 2 End.M/I
it is the endomorphism of M that fixes each element z 2 B n fyg and that takes y

to y C p`�1w. As ` � 2, we have gw 2 GLM .W.k//. As each gw is congruent
to 1M modulo p`�1, to prove that nGLM

> ` � 1 it suffices to show that there
exists an element w 2 ƒ such that the latticed F -isocrystals .M; gw�/ and .M; �/

are not isomorphic. We show that the assumption that this is not true leads to a
contradiction. This assumption implies that for each element w 2 ƒ there exists an
element hw 2 GLM .W.k// which is an isomorphism between .M; gw�/ and .M; �/.
Thus we have hwgw�h�1

w D � i.e., we have

hwgw D �.hw/: .7a/
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We write hw D 1M C uw , where uw 2 End.M/. Substituting the expressions of hw

and gw in (7a), we come across the following identity

uw C p`�1w ˝ y� C p`�1uw.w ˝ y�/ D uw C p`�1Œw C uw.w/� ˝ y� D �.uw/

.7b/

(here uw.w ˝ y�/ is the product inside End.M/ of uw and w ˝ y�). In other words,
if vw WD w C uw.w/ then the pair .uw ; vw/ is a solution of the following equation

U C p`�1V ˝ y� D ˆ.U / .7c/

in variables U and V that can take values in End.M/Œ 1
p

� and M (respectively).

3.5.4. Fact. There exists an isomorphism between .M; gw�/ and .M; �/ defined by
an element Qhw of GLM .W.k// which has the following two properties:

(i) it acts identically on each Ml with l 2 I n fi; j g and leaves invariant Mi ;

(ii) if i ¤ j , then it acts identically on Mi , leaves invariant Mi ˚ Mj , and acts
identically on .Mi C Mj /=Mi .

Proof. We will prove this only in the case when i ¤ j (as the case i D j is even
simpler). We know that gw acts identically on each Ml with l 2 I n fj g and on
.Mi ˚ Mj /=Mi . This implies that each Ml with l 2 I n fj g is the maximal direct
summand of M such that all Newton polygon slopes of .Ml ; gw�/ are equal to ˛l

and that Mi ˚Mj is the maximal direct summand of M such that all Newton polygon
slopes of .Mi ˚ Mj ; gw�/ are equal to either ˛i or j̨ . From this and the fact that
hw 2 GLM .W.k// is an isomorphism between .M; gw�/ and .M; �/, we get that hw

leaves invariant each Ml with l 2 I n fj g as well as Mi ˚ Mj . Even more, from the
second sentence of this proof we get that hw restricted to each Ml with l 2 I n fj g
is an automorphism hlw of .Ml ; �/ and moreover hw induces an automorphism of
..Mi ˚ Mj /=Mi ; �/ and thus an automorphism hjw of .Mj ; �/.

Let h0w WD Q
l2I hlw 2 Q

l2I GLMl
.W.k// 6 GLM .W.k//; it is an automor-

phism of .M; �/. The element Qhw WD h�1
0whw 2 GLM .W.k// has all the desired

properties. �

To reach the desired contradiction we can assume that we have hw D Qhw , where
Qhw is as in Fact 3.5.4. We first consider the case when i ¤ j .

3.5.5. The case i ¤ j . We assume that i ¤ j (i.e., j̨ < ˛i ). As hw D Qhw , we have
uw 2 Hom.Mj ; Mi /. From this and the relation i ¤ j we get that uw.w/ D 0. As

j̨ < ˛i , all Newton polygon slopes of .Hom.Mj ; Mi /; �/ are positive. Therefore
for each V in Mi the sequence .�m.p`�1V ˝ y�//m�0 converges to 0 and thus
all the solutions of the equation (7c) in Hom.Mj ; Mi /Œ

1
p

� � Mi are of the form

.� P1
mD0 �m.p`�1V ˝ y�/; V /. From this and the relation uw.w/ D 0 we get the



186 A. Vasiu CMH

following identity

uw D �
1X

mD0

�m.p`�1w ˝ y�/: .7d/

We have the following two properties of the terms of the sum (7d).

(i) All the terms of the sum of (7d) belong to 1
p

Hom.Mj ; Mi / (this is so as w

and y belong to a W.k/-basis for M formed by elements of [l2I Ml and therefore
the element `.w; y/ can be defined as in Section 3.5.1 and it is equal to `.x; y/ D `).
Moreover, all but a finite number of these terms belong to Hom.Mj ; Mi /.

(ii) The term �q.p`�1w ˝ y�/ of the sum of (7d) belongs to 1
p

Hom.Mj ; Mi / n
Hom.Mj ; Mi / (cf. property 3.5.2 (ii) and the fact that aw;q D ax;q).

Let � be an invertible element of W.k/. Let N� 2 knf0g be its reduction modulo p.
Based on properties (i) and (ii), the condition that the element u�w obtained as in
(7d) belongs to Hom.Mj ; Mi / is expressed by N� being a solution of a system of
polynomial equations in one variable which have coefficients in k and which contain
at least one polynomial of degree at least pq . Therefore there exist such elements
� with the property that we have u�w 2 1

p
Hom.Mj ; Mi / n Hom.Mj ; Mi /. Thus

for such an element � we have �w 2 ƒ and h�w D 1M C u�w … GLM .W.k//.
Contradiction.

3.5.6. Extra reduction steps. To reach the desired contradiction we can assume
that i D j (i.e., ˛i D j̨ ), cf. Section 3.5.5. As hw D Qhw and i D j , to reach a
contradiction we can assume based on Fact 3.5.4 (i) that Mi D M (i.e., that I D fig).
Thus .M; �/ is isoclinic and we have O D O0 D A0 ˝Zp

W.k/, cf. Section 1.2.

3.5.7. Lemma. We recall that vw D w C uw.w/. Then we have vw 2 ƒ.

Proof. Due to the definition of q, we have �s.gw/ 2 GLM .W.k// for all s 2
f1; : : : ; q � 1g but �q.gw/ … GLM .W.k//. From this and the equation (7a) we get
that �s.hw/ 2 GLM .W.k// for all s 2 f1; : : : ; qg but �qC1.hw/ … GLM .W.k//.
Thus we have �s.uw/ 2 End.M/ for all s 2 f1; : : : ; qg but �qC1.uw/ … End.M/.

Due to this and the identity (7b) we get that �q.p`�1vw ˝ y�/ … End.M/. If
�q.p`�1vw ˝ y�/ … 1

p
End.M/ or if vw 2 pM , then we have `0 � ` C 1 and

this contradicts (6a). Thus we have �q.p`�1vw ˝ y�/ 2 1
p

End.M/ n End.M/ and

vw 2 M npM . Therefore �q.p`vw˝y�/ 2 End.M/np End.M/ and vw 2 M npM .
But we also have �q.p`x ˝ y�/ 2 End.M/ n p End.M/, cf. property 3.5.2 (ii).
From the last two sentences and the very definitions of aw;q and ax;q , we get that
avw ;q D ax;q . From this and the relation vw 2 M npM we conclude that vw 2 ƒ. �

3.5.8. Lemma. Let .u; v/ 2 End.M/ � M be a solution of the equation (7c).

(a) Then we have fu; p`�1v ˝ y�g 	 End.M/ \ 1
p

O .
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(b) Let v1 2 pM . Then there exists a solution .u C u1; v C v1/ of the equation (7c)
with u1 2 O .

Proof. We have pp`�1v ˝ y� 2 p` End.M/ � O . It is easy to see that for each
element Qw 2 O , the equation � C Qw D �.�/ in � has a solution in �.O/ D O D O0

and thus also in End.M/. Let Qu 2 O be such that we have QuCpp`�1v ˝y� D �. Qu/.
Thus pu � Qu D �.pu � Qu/ belongs to A0Œ 1

p
� \ End.M/ D A0 � O . Therefore we

have u 2 End.M/ \ 1
p

O . Thus (a) holds. Part (b) follows from the fact that there

exists u1 2 O such that u1 C p`v1 ˝ y� D �.u1/. �
3.5.9. Morphisms between k-schemes. Let M be the affine space (scheme) over k

defined naturally by the k-vector space M=pM . Let 'q W M ! M be the morphism
of k-schemes that takes N� 2 M.k/ D M=pM to the element of M.k/ which is the
reduction modulo p of p�ax;q �q.�/ 2 M , where � 2 M is an arbitrary lift of Nm.

The set Im.ƒ ! M=pM/ is the set of k-valued points of the open, non-empty
subscheme S WD '�1

q .Mnf0g/ of M. For each solution .u; v/ 2 End.M/�M of the
equation (7c), a similar argument to the proof of Lemma 3.5.8 shows that v modulo
p determines u modulo A0 up to a finite number of possibilities. From this and the
identity w D vw �uw , we get that the association that takes .w; uw/ modulo p to vw

modulo p has finite fibres. This association can be viewed as the one defined naturally
(at the level of k-valued points) by a morphism of k-schemes whose codomain is S

and whose domain has the same dimension r as S. By reasons of dimensions, we get
the following:

(i) There exists an open, non-empty subscheme V of S which has the property
that each k-valued point Nv of V is of the form vw modulo p for some elements
w 2 ƒ and uw 2 End.M/ such that .w; vw/ WD .w; w C uw.w// is a solution of the
equation (7c).

Let xO WD 1
p

O=O and let xE be the image of End.M/ \ 1
p

O in xO . Both xO and
xE are k-vector spaces. Let O and E be the affine spaces (schemes) over k defined

naturally by the k-vector spaces xO and xE (respectively). Let N� W O ! O be the
morphism which takes a k-valued point of O defined by some element o 2 1

p
O to

the k-valued point of O defined by the element �.o/ � o 2 1
p

O (we think of N� as

a finite, surjective endomorphism of Gr2

a ). Let F WD E \ N��1.E/. Thus F is a
closed subscheme of O equipped with a morphism m1 W F ! E induced from N� (we
think of m1 as a homomorphism between closed subgroup schemes of Gr2

a ). Based
on Lemma 3.5.8 (a) we can speak about the natural images Nuw and Nvw;y of uw and
p`�1vw ˝y� (respectively) in xO and thus about k-valued points (denoted in the same
way) Nuw 2 F.k/ and Nvw;y 2 E.k/ with the property that m1 maps Nuw to Nvw;y .

We have a natural morphism of k-schemes m2 W V ! E which at the level of
k-valued points maps a k-valued point of V represented by an element v 2 ƒ to the
k-valued point of E defined by the image of p`�1v˝y� 2 p`�1 End.M/ � 1

p
O in xO .
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From the property (i) and the previous paragraph we get that the natural morphism

� W V �E F ! V

associated to the fibre product of m1 and m2, is surjective. As the morphism N� W O !
O has finite fibres and it is of finite type, the finite type morphism � is quasi-finite and
therefore it is generically finite. From this, the property (i), and Lemma 3.5.8 (b) we
get the following:

(ii) There exists an element v 2 ƒ that defines naturally a k-valued point of V

and there exists a finite subset x	 of k such that for each algebraically closed field k1

that contains k and for every invertible element � of W.k1/ whose reduction modulo
p does not belong to x	 , the following equation in U ,

U C p`�1�v ˝ y� D .� ˝ �k1
/.U /; .7e/

obtained from (7c) by replacing .V; �/ with .�v; � ˝ �k1
/, possesses a solution in

End.M ˝W.k/ W.k1//. Here �k1
is the Frobenius automorphism of the ring W.k1/

of Witt vectors with coefficients in k1.

3.5.10. Good choice of � . We will take k1 to be an algebraic closure of k..X//,
where X is an independent variable. We identify W.k/ŒŒX�� with a W.k/-subalgebra
of W.k1/ that contains the invertible element X D .X; 0; : : :/ of W.k1/. We will take
� WD 
X , where 
 is an invertible element of W.k/. We have �k1

.X/ D Xp . For this
choice of � , the equation (7e) has (up to addition of elements in the free Zp-module
1
p

A0 of rank r2) a unique solution

u�X D �
1X

mD0

Xpm

�m.p`�1
v ˝ y�/ .7f/

in 1
p

O ˝W.k/ W.k1/. In fact we have u�X 2 1
p

End.M/ ˝W.k/ W.k/ŒŒX��. As


v 2 ƒ, from the property 3.5.2 (ii) we get that the term Xpq
�q.p`�1
v ˝ y�/ of

(7f) does not belong to End.M/ ˝W.k/ W.k1/. The last two sentences imply that
the intersection .u�X C 1

p
A0/ \ ŒEnd.M/ ˝W.k/ W.k1/� is empty and therefore we

reached the desired contradiction.

3.5.11. End of the proof. The contradiction we reached implies that nGLM
> ` � 1.

Thus nGLM
D ` D `GLM

. This ends the proof of Theorem 1.3 (b) and therefore also
of Main Theorem A. �

3.6. Remarks. Suppose .M; �/ is a direct sum of isoclinic latticed F -isocrystals
over k.

(a) We have a direct sum decomposition g D .g \ LC/ ˚ .g \ L0/ ˚ .g \ L�/

of W.k/-modules. Thus OG D g \ O and therefore g=OG � End.M/=O . From
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this inclusion we easily get the following monotony properties: we have `G � `GLM

and therefore (cf. Main Theorem A) we also have nG � nGLM
.

(b) We assume that .M; �/ is the Dieudonné module of D; thus `GLM
D `D .

We will use the notations of Section 3.5. We also assume that there exist elements
x; y 2 B such that `.x; y/ � 2 and we have x 2 Bi and y 2 Bj with j̨ < ˛i .
Let g 2 GLM .W.k// be the element that fixes each z 2 B n fyg and that takes y

to y C p`.x;y/�1x. Let Dg be a p-divisible group over k whose Dieudonné module
is isomorphic to .M; g�/. Then Dg Œp`.x;y/�1� is isomorphic to DŒp`.x;y/�1� and
Dg has the same Newton polygon as D (as j̨ ¤ ˛i ). If by chance we also have an
identity `D D `.x; y/, then Section 3.5 can be easily adapted to give us that, up to
a replacement of x 2 Bi by a multiple of it with an invertible element of W.k/, we
can assume that Dg is not isomorphic to D.

3.7. Variant of 1.3 (b). Let .M; �; G/ be a latticed F -isocrystal with a group over
k such that Assumption 1.1.1 holds. We assume that the following two conditions
hold:

(i) we have nG � 1 and a direct sum decomposition g D .g\LC/˚.g\L0/˚.g\
L�/ (or g D .g\LC/˚ Œg\ .L0 ˚L�/� or g D Œg\ .LC ˚L0/�˚ .g\L�/)
of W.k/-modules;

(ii) for all q 2 N, there exists a W.k/-basis B for M and a sequence of inte-
gers .az;q/z2B such that certain subsets of fx ˝ y� j x; y 2 Bg are W.k/-
bases for all direct summands of g listed in (i) and moreover we have M DL

z2B W.k/p�az;q �q.z/.

Then the proof of Theorem 1.3 (b) (see Section 3.5) can be entirely adapted to give
us that nG D `G . We only add here two things. First, if by chance in Section 3.5.2
we have `.x; y/ D `GLM

with x 2 Bi and y 2 Bj such that j̨ > ˛i , then
one needs to use ��q (instead of �q) with q 2 N in order to reach the desired
contradiction. Second, if we have g D .g \ LC/ ˚ Œg \ .L0 ˚ L�/� (resp. g D
Œg \ .LC ˚ L0/� ˚ .g \ L�/), then one needs to use Lemma 2.4 in order to be able
to treat g \ .L0 ˚ L�/ (resp. g \ .LC ˚ L0/) in the same manner as g \ L� (resp.
as g \ LC).

4. Direct applications to p-divisible groups

In this section we prove the results stated in Sections 1.4.2 to 1.4.4 (see Sections 4.5
to 4.7). In Sections 4.1 to 4.4 we introduce basis invariants of p-divisible groups
over k and we present basic properties of them that are needed in Sections 4.5 to 4.7.
Until the end we will assume that .M; �/ is the Dieudonné module of D.
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4.1. Definitions. (a) Let q 2 N. Let ˛D.q/ 2 N [ f0g be the greatest number
such that we have �q.M/ � p˛D.q/M . Let ˇD.q/ 2 N [ f0g be the smallest
number such that we have pˇD.q/M � �q.M/. Let ıD.q/ WD ˇD.q/ � ˛D.q/; as
pˇD.q/M � �q.M/ � p˛D.q/M , we have ıD.q/ 2 N [ f0g.

(b) We assume that D is isoclinic. Let m WD g.c.d.fc; dg. Let .c1; d1; r1/ WD
. c

m
; d

m
; r

m
/. Let uD WD supf0; ˇD.r1n/ � d1n j n 2 Ng. Let QuD WD supf0; d1n �

˛D.r1n/ j n 2 Ng. Let vD WD supf0; ˇD.rn/ � dn j n 2 Ng. Let QvD WD
supf0; dn � ˛D.rn/ j n 2 Ng. Proposition 4.3 (c) and (b) below will imply that uD ,
Qud , vD , and QvD are non-negative integers and therefore that in their definition we can
replace sup by max.

(c) Let .M1; �1/ and .M2; �2/ be the Dieudonné modules of two isoclinic p-
divisible groups D1 and D2 (respectively) over k. Let ˛1 and ˛2 be the unique
Newton polygon slopes of D1 and D2 (respectively). Let `D1;D2

2 N [ f0g be the
smallest number that has the following property:

(i) if ˛1 � ˛2, then for all q 2 N the W.k/-module �q.p`D1;D2 Hom.M1; M2// D
p`D1;D2 Hom.�q.M1/; �q.M2// is included in Hom.M1; M2/;

(ii) if ˛1 > ˛2, then for all q 2 N the W.k/-module ��q.p`D1;D2 Hom.M1; M2// D
p`D1;D2 Hom.��q.M1/; ��q.M2// is included in Hom.M1; M2/.

(d) Let "D WD "GLM
, where the number "GLM

2 f0; 1g is as in Scholium 3.5.1.

4.1.1. Remark. If cd D 0, then O0 D End.M/ and therefore `D D "D D 0.
If c; d � 1 and D is ordinary (i.e., isomorphic to .Qp=Zp/c ˚ .�p1/d ), then
O D End.M/ and the two-sided ideal of the W.k/-algebra End.M/ generated by
OC ˚ O� is End.M/; thus `D D "D D 1. If c; d � 1 and D is not isomorphic
to .Qp=Zp/c ˚ .�p1/d , then End.M/ ¤ O and therefore `D > 0 and "D D 0;
moreover `D 2 N is the smallest number such that we have p`D End.M/ � O (cf.
rule 1.2 (b)).

4.2. Simple properties. In this section we list few simple properties of the invariants
we have introduced so far.

4.2.1. Fact. We have nD D nDt and `D D `Dt .

Proof. We show that nD � nDt . Let C be a p-divisible group of codimension c and
dimension d over k. If C ŒpnDt � is isomorphic to DŒpnDt �, then taking Cartier duals
we get that C tŒpnDt � is isomorphic to DtŒpnDt � and thus that C t is isomorphic to Dt.
Taking Cartier duals, we get that C is isomorphic to D. This implies that nD � nDt .
As D is the Cartier dual of Dt, we also have nDt � nD . Thus nD D nDt .

As .M �; p�/ is the Dieudonné module of Dt, under the natural identification
End.M �/ D End.M/, the level module of .M �; p�/ gets identified with O . Thus
we have `D D `Dt . �
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4.2.2. Fact. The following three properties hold:

(a) for all q 2 N, we have inclusions

M � p�ˇD.q/�q.M/ � p�ıD.q/M .8a/

which are optimal in the sense that we also have

M ª p�ˇD.q/C1�q.M/ and p�ˇD.q/�q.M/ ª p�ıD.q/C1M I .8b/

(b) for all q 2 N, we have ˛Dt.q/ D q � ˇD.q/ and ˇDt.q/ D q � ˛D.q/;

(c) if D is isoclinic, then we have uD D QuDt , QuD D uDt , vD D QvDt , and QvD D vDt .

Proof. Part (a) follows from the very Definition 4.1 (a). As pˇD.q/M � �q.M/ �
p˛D.q/M , we have p�˛D.q/M � � �q.M �/ � p�ˇD.q/M � i.e., pq�˛D.q/M � �
.p�/q.M �/ � pq�ˇD.q/M �. As .M �; p�/ is the Dieudonné module of Dt and
due to (8a) and (8b), we get that (b) holds. We prove (c). Due to (b) we have an
equality ˇD.r1n/ � d1n D r1n � ˛Dt.r1n/ � d1n D c1n � ˛Dt.r1n/. This implies
that uD D QuDt . By replacing D with Dt, we get that uDt D QuD . Similar arguments
show that vD D QvDt and QvD D vDt . Thus (c) holds. �

4.2.3. Lemma. We assume that D is isoclinic. Let ˛ WD d
r

2 Q \ Œ0; 1� be its unique
Newton polygon slope. Then the following two properties hold:

(a) we have ˛D.q/ � q˛ � ˇD.q/;

(b) if ˛D.q/ D q˛ (or if ˇD.q/ D q˛), then we have ˛D.q/ D ˇD.q/ D q˛.

Proof. As 'q WD p�˛D.q/�q is a �q-linear endomorphism of M , the Newton polygon
slopes of 'q are on one hand non-negative and on the other hand are all equal to
q˛ � ˛D.q/. Thus ˛D.q/ � q˛. If q˛ D ˛D.q/, then all the Newton polygon
slopes of 'q W M ! M are 0 and therefore we have 'q.M/ D M . This implies that
ˇD.q/ D ˛D.q/ D q˛. The part involving ˇD.q/ is proved in the same way but
working with pˇD.q/��q . �

4.2.4. Lemma. (a) If D is either F -cyclic or special, then D is also quasi-special.

(b) The class Qc;d of isomorphism classes of quasi-special p-divisible groups of
codimension c and dimension d over k, is a finite set.

Proof. Each isoclinic special p-divisible group over k is isoclinic quasi-special. Each
F -cyclic p-divisible group over k is a direct sum of F -circular p-divisible groups
over k. Based on the last two sentences, it suffices to prove (a) in the case when D

is F -circular. Let � be an r-cycle of Jr such that D is isomorphic to C� . We have
�r

�.M/ D pd M and therefore C� is isoclinic quasi-special of Newton polygon slope
d
r

. Thus (a) holds.
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To prove (b) it suffices to show that for all pairs .c; d/ 2 .N[f0g/2 with cCd > 0,
the class Ic;d of isomorphism classes of isoclinic quasi-special p-divisible groups of
codimension c and dimension d over k, is a finite set. We assume that D is isoclinic
quasi-special. Then we have �r.M/ D pd M . Therefore 'r WD p�d �r W M ! M

is a � r -linear automorphism of M . Let MW.Fpr / WD fx 2 M j 'r.x/ D xg. We
have MW.Fpr / ˝W.Fpr / W.k/ D M . Moreover �.MW.Fpr // � MW.Fpr /. Therefore
the Dieudonné module .M; �/ is definable over the finite field Fpr . Thus every
isoclinic quasi-special p-divisible group of codimension c and dimension d over k

has a Dieudonné module over k which (i) is isomorphic to .M; g�/ for a suitable
element g 2 GLM .W.k//, and (ii) it is definable over Fpr .

Let M D F 1 ˚ F 0 be a direct decomposition such that F 1=pF 1 is the kernel of
� modulo p. We have �. 1

p
F 1 C F 0/ D M . Thus the cocharacter � W Gm ! GLM

that fixes F 0 and that acts on F 1 via the inverse of the identity character of Gm, is a
Hodge cocharacter of .M; �; GLM / in the sense of [Va1, Section 2.2.1 (d)]. Thus the
triple .M; �; GLM / is a latticed F -isocrystal with a group over k for which the W -
condition of loc. cit. holds. From the Atlas Principle applied to .M; �; GLM / and to
an emphasized family of tensors indexed by the empty set (see [Va1, Theorem 5.2.3]),
we get that the set of isomorphism classes of Dieudonné modules over k which are
of the form .M; g�/ with g 2 GLM .W.k// and which are definable over the finite
field Fpr is finite. From this and the classical Dieudonné theory, we get that the class
Ic;d is a finite set. �

4.3. Proposition. We assume that D is isoclinic. Then the following six properties
hold:

(a) we have `D D maxfıD.q/ j q 2 Ng;
(b) if ˛ WD d

r
, then we have limq!1 ˇD.q/

q
D limq!1 ˛D.q/

q
D ˛;

(c) if M0 (resp. zM0) is the W.k/-submodule of M generated by elements fixed by
'r1

WD p�d1�r1 (resp. by 'r WD p�d �r ), then uD (resp. vD) is finite and it is
the smallest non-negative integer such that puD (resp. pvD ) annihilates M=M0

(resp. M= zM0);

(d) if M1 (resp. zM1) is the smallest W.k/-submodule of MŒ 1
p

� which is generated
by elements fixed by 'r1

(resp. by 'r ) and which contains M , then QuD (resp. QvD)
is finite and it is the smallest non-negative integer such that p QuD (resp. p QvD )
annihilates M1=M (resp. zM1=M );

(e) we have uD D QuD (resp. vD D QvD);

(f) we have uD � `D .

Proof. We prove (a). The W.k/-span of endomorphisms of .M; �/ is O D O0.
The number `D is the smallest number such that p`D End.M/ � O � End.M/,
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cf. Example 1.2.2. As O D T
q2N[f0g �q.End.M// D T

q2N[f0g End.�q.M// DT
q2N[f0g End.p�ˇD.q/�q.M//, `D is the smallest (non-negative) integer such that

we have p`D End.M/ � End.p�ˇD.q/�q.M// for all q 2 N. Thus from (8a) and
(8b) we get that `D is the smallest integer which is greater than or equal to ıD.q/ for
all q 2 N. From this (a) follows.

We prove (b). From (a) we get that ıD.q/ D ˇD.q/ � ˛D.q/ � `D . Thus
˛D

q
� ˛ � ˇD

q
� ˛D

q
C `D

q
, cf. Lemma 4.2.3 (a). From these inequalities we get that

(b) holds.
We will prove (c) only for M0 as the case of zM0 is argued in the same manner. We

have M0 D T
n2N[f0g 'n

r1
.M/. As 'n

r1
.M/ D p�d1n�r1n.M/, from (8a) and (8b)

we get that pˇD.r1n/�d1nM � 'n
r1

.M/ and pˇD.r1n/�d1n�1M ª 'n
r1

.M/. Thus the
smallest non-negative number s such that we have psM � 'n

r1
.M/ for all n 2 N is

supf0; ˇD.r1n/ � d1n j n 2 Ng and therefore it is uD . Thus (c) holds.
We will prove (d) only for M1 as the case of zM1 is argued in the same manner.

The W.k/-submodule M �
1 of M � is the largest W.k/-submodule of M � generated by

elements fixed by p�d1�r1 . As .M �; p�/ is the Dieudonné module of Dt, the ana-
logue of p�d1�r1 for Dt is the � r1-linear automorphism p�c1.p�/r1 D p�d1�r1 of
M �Œ 1

p
�. Thus from (c) applied to Dt, we get that uDt is the smallest non-negative inte-

ger with the property that puDt annihilates M �=M �
1 . As QuD D uDt (see Fact 4.2.2 (c))

and as the W.k/-modules M1=M and M �=M �
1 are isomorphic, we get that QuD is the

smallest non-negative integer such that p QuD annihilates M1=M . Thus (d) holds.
We will prove (e) for uD and QuD as the case of vD and QvD is argued in the same

manner. As p QuD M1 � M and as p QuD M1 is W.k/-generated by elements fixed by
'r1

, we have p QuD M1 � M0. Thus p QuD annihilates M=M0 and therefore QuD � uD ,
cf. (c). A similar argument shows that M1 � p�uD M0 and that QuD � uD . Thus
uD D QuD i.e., (e) holds.

We prove (f). Each endomorphism of .M; �/ maps M0 to M0. Thus O D O0 �
End.M0/. But due to (c), the smallest number s 2 N [ f0g such that ps End.M/ �
End.M0/ is uD . As p`D End.M/ � O � End.M0/, we get that uD � `D . Thus (f)
holds. �

4.3.1. Remark. We have M0 � zM0 � M and M � zM1 � M1. Thus vD D QvD �
uD D QuD . The W.k/-submodule M0 (resp. zM0) of M is the largest one with the
property that .M0; �/ (resp. . zM0; �/) is the Dieudonné module of an isoclinic special
(resp. isoclinic quasi-special) p-divisible group over k. Thus we call uD D QuD (resp.
vD D QvD) the Manin height (resp. the Manin quasi-height) of D, cf. [Ma, Chapter III,
Section 2]. Similarly, the W.k/-submodule M1 (resp. zM1) of MŒ 1

p
� is the smallest

one with the properties that it contains M and that .M1; �/ (resp. . zM1; �/) is the
Dieudonné module of an isoclinic special (resp. isoclinic quasi-special) p-divisible
group over k.
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4.4. Proposition. We assume that D D Q
i2I Di is a product of at least two non-

trivial isoclinic p-divisible groups over k. Then the following three properties hold:

(a) for all i; j 2 I with i ¤ j , we have `Di ;Dj
D `Dj ;Di

;

(b) we have `Di
D `Di ;Di

and `D D maxf"D; `Di
; `Di ;Dj

j i 2 I; j 2 I n figg;
(c) if i; j 2 I with i ¤ j and if the Newton polygon slope ˛i of Di is less

than or equal to the Newton polygon slope j̨ of Dj , then we have `Di ;Dj
D

maxf0; ˇDi
.q/ � ˛Dj

.q/ j q 2 Ng.
Proof. Let M D L

i2I Mi be the direct sum decomposition such that .Mi ; �/ is
the Dieudonné module of Di . Let Bi be a W.k/-basis for Mi . Let B WD [i2I Bi .
For x; y 2 B, let `.x; y/ 2 N [ f0g be defined as in Scholium 3.5.1. We have
`Di ;Dj

D maxf`.y; x/ j x 2 Bi ; y 2 Bj g, cf. the very definitions. Thus (a) is a
particular case of Formula (6b). As Di is isoclinic, we have "Di

D 0. Thus (b) is a
particular case of Formulas (6a), (5a), (5b), and (5c). We prove (c). Due to (8a), for
all q 2 N we have

Hom.�q.Mi /; �q.Mj // � Hom.pˇDi
.q/Mi ; p

˛Dj
.q/

Mj /

D p
˛Dj

.q/�ˇDi
.q/ Hom.Mi ; Mj /:

From this and making use of (8a) and (8b) we get that there exist a direct summand of
Hom.�q.Mi /; �q.Mj // which is a direct summand of p

˛Dj
.q/�ˇDi

.q/ Hom.Mi ; Mj /

as well. Thus the smallest number s 2 N [ f0g with the property that for all
q 2 N the W.k/-module ps�q.Hom.Mi ; Mj // is included in Hom.Mi ; Mj /, is
maxf0; ˇDi

.q/�˛Dj
.q/ j q 2 Ng. From this and the rule (i) of the Definition 4.1 (c),

we get that (c) holds. �
4.4.1. Example. We assume that D is isoclinic and that d < r � 2d . Thus ˛ WD d

r
2

Q \ Œ1
2
; 1/. For q 2 N we have ˇDt.q/ � ˛D.q/ D q � 2˛D.q/, cf. Fact 4.2.2 (b).

From this and Proposition 4.4 (c) we get that `Dt;D D maxf0; q � 2˛D.q/ j q 2 Ng.
As "D D 0, from Proposition 4.4 (a) and (b) we get that `D˚Dt D maxf`D; `Dt ; `Dt;Dg.
As `D D `Dt D maxfıD.q/ j q 2 Ng (cf. Fact 4.2.1 and Proposition 4.3 (a)), we
conclude that

`D˚Dt D maxfıD.q/; q � 2˛D.q/ j q 2 Ng:
4.5. Proof of 1.4.3. We assume that D D Q

i2I Di is a product of at least two
non-trivial isoclinic p-divisible groups over k. Let M D L

i2I Mi be the direct sum
decomposition defined by the product decomposition D D Q

i2I Di . As nD D `D

and as for i 2 I we have nDi
D `Di

(cf. Corollary 1.4.2), based on Proposition 4.4 a)
and (b), to prove Proposition 1.4.3 it suffices to show that for all i; j 2 I with i ¤ j

we have
`Di ;Dj

� maxf0; `Di
C `Dj

� 1g: .9/
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As `Di ;Dj
D `Dj ;Di

(see Proposition 4.4 (a)), to check the inequality (9) we can
assume that ˛i � j̨ . We have ˛Di

.q/ � q˛i � q j̨ � ˇDj
.q/, cf. Lemma 4.2.3 (a).

Thus ˛Di
.q/ � ˇDj

.q/. Based on Proposition 4.4 (c), to prove the inequality (9) it
suffices to show that for all q 2 N we have ˇDi

.q/�˛Dj
.q/ � maxf0; `Di

C`Dj
�1g.

We have ıDi
.q/ C ıDj

.q/ � `Di
C `Dj

, cf. Proposition 4.3 (a). From this and the
inequality ˛Di

.q/ � ˇDj
.q/ we get:

ˇDi
.q/ � ˛Dj

.q/ D ıDi
.q/ C ˛Di

.q/ C ıDj
.q/ � ˇDj

.q/

� `Di
C `Dj

C ˛Di
.q/ � ˇDj

.q/ � `Di
C `Dj

:
(10)

If we have an equality ˇDi
.q/ � ˛Dj

.q/ D `Di
C `Dj

, then ˇDj
.q/ D ˛Di

.q/ D
q˛i D q j̨ and therefore also ˇDi

.q/ D q˛i and ˛Dj
.q/ D q j̨ D q˛i (cf.

Lemma 4.2.3 (b)). Thus the assumption that ˇDi
.q/ � ˛Dj

.q/ D `Di
C `Dj

implies
that ˇDi

.q/ � ˛Dj
.q/ D 0 D `Di

C `Dj
� maxf0; `Di

C `Dj
� 1g. From this and

(10) we get that the inequality ˇDi
.q/ � ˛Dj

.q/ � maxf0; `Di
C `Dj

� 1g always
holds; therefore the inequality (9) holds. This ends the proof of Proposition 1.4.3.�

4.6. Proof of 1.5.2. Let D D Q
i2I Di be a product decomposition into isoclinic

quasi-special p-divisible groups over k. For i 2 I , let ci and di be the codimension
and the dimension (respectively) of Di , and let ˛i WD di

ri
. Let M D L

i2I Mi be
the direct sum decomposition such that .Mi ; �/ is the Dieudonné module of Di . As
each Di is isoclinic, we have nDi

D `Di
and nD D `D (cf. Corollary 1.4.2). For

i 2 I we have �ri .Mi / D pdi Mi , cf. Definition 1.5.1 (e). Let m0
i 2 N be the

greatest divisor of g.c.d.fci ; dig such that for .ci2; di2; ri2/ WD . ci

m0
i

; di

m0
i

; ri

m0
i

/ we have

�ri2.Mi / D pdi2Mi . This identity implies that

(i) we have ˛Di
.ri2/ D ˇDi

.ri2/ D di2 and for all q 2 N we have ˛Di
.qCri2/ D

˛Di
.q/ C di2 and ˇDi

.q C ri2/ D ˇDi
.q/ C di2.

From (i) we get that for all q 2 N we have ıDi
.q C ri2/ D ıDi

.q/. From this
and Proposition 4.3 (a) applied to Di , we get that

(ii) nDi
D `Di

D maxfıDi
.q/ j q 2 Ng D maxfıDi

.q/ j q 2 f1; : : : ; ri2gg.

As the function ˇDi
.�/ defined for � 2 N is increasing, for all q 2 f1; : : : ; ri2g

we have ıDi
.q/ � ˇDi

.q/ � ˇDi
.ri2/ D di2. From this and (ii) we get that

nDi
D `Di

� di2. It is easy to see that the p-divisible group Dt
i is isoclinic quasi-

special and that the analogue of the triple .ri2; di2; ci2/ for it is .ri2; ci2; di2/. Thus
we have nDt

i
� ci2. As nDi

D nDt
i

(see Fact 4.2.1), we have nDi
� ci2. Thus

nDi
D `Di

� minfci2; di2g � minfci ; dig: .11a/

This proves Theorem 1.5.2 if D D Di i.e., if I D fig.
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We assume that I has at least two elements. From Proposition 1.4.3 we get that
nD D `D � maxf1; nDi

C nDj
j i 2 I; j 2 I n figg. From this and (11a) we get

that
nD � maxf1; minfci2 C cj 2; di2 C dj 2g j i; j 2 I; i ¤ j g: .11b/

As ci2 Ccj 2 � c and di2 Cdj 2 � d , we have minfci2 Ccj 2; di2 Cdj 2g � minfc; dg.
From this and (11b) we get that nD D `D � maxf1; minfc; dgg. But if minfc; dg D 0

(i.e., if cd D 0), then nD D `D D 0. Thus, regardless of what the product cd is, we
have nD D `D � minfc; dg. This ends the proof of Theorem 1.5.2. �

4.6.1. Scholium. Let � be a permutation of Jr D f1; : : : ; rg. Let o be the order of
� . We assume that .D; �/ is .C� ; ��/; thus D is F -cyclic and therefore (cf. Lemma
4.2.4 (a)) quasi-special. We will translate the property 4.6 (ii) and Proposition 4.4 (a)
and (b) in terms only of the permutation � . Let � D Q

i2I �i be the product
decomposition of the permutation � into cycles. As in Section 1.5, we write �i D
.es1

; : : : ; esri
/ for some number ri 2 N (which can be 1). Let Mi be the W.k/-span

of fes1
; : : : ; esri

g. We have pMi � ��.Mi / � Mi , cf. the definition of �� . Thus we
have a direct sum decomposition .M; ��/ D L

i2I .Mi ; ��/ of Dieudonné modules.
Let D D Q

i2I Di be the product decomposition that corresponds to the direct sum
decomposition .M; ��/ D L

i2I .Mi ; ��/. Each p-divisible group Di is F -circular
and quasi-special. Let ci ; di D ri � ci ; ˛i D di

ri
2 N [ f0g be as in Section 1.5.

Due to the property 4.6 (i), the difference ıDi
.q/ D ˇDi

.q/ � ˛Di
.q/ depends

only on q modulo o. For s 2 Jr and q 2 f1; : : : ; og, let �q.s/ 2 N [ f0g be such
that we have ��.es/ D p�q.s/e�q.s/. Thus �q.s/ is the number of elements of the
sequence es; �.es/; : : : ; �q�1.es/ that belong to the set fe1; : : : ; ed g. We have

˛Di
.q/ D minf�q.sj / j j 2 f1; : : : ; rigg (12a)

and

ˇDi
.q/ D maxf�q.sj / j j 2 f1; : : : ; rigg: (12b)

The W.k/-basis B D fe1; : : : ; erg for M is a disjoint union of W.k/-basis for Mi ’s.
We consider the standard W.k/-basis fes ˝ e�

t j s; t 2 Jrg for End.M/ defined by
B. We have �

q
�.es ˝ e�

t / D p�q.s/��q.t/e�q.s/ ˝ e�
�q.t/

. If �o.s/ > �o.t/ (resp.
�o.s/ D �o.t/ or �o.s/ < �o.t/), then es ˝ e�

t belongs to LC (resp. to L0 or L�) and
therefore the number `.es; et / defined in Scholium 3.5.1 is maxf0; �q.t/ � �q.s/ j
q 2 f1; : : : ; ogg (resp. is maxf0; �q.s/ � �q.t/jq 2 f1; : : : ; ogg). From Formula (6a)
we get that

`C�
D maxf"C�

; `.es; et / j s; t 2 Jrg: .12c/

4.6.2. Example. We assume that c D d D 8; thus r D 16. Let � D �1�2,
where �1 D .9 10 5 11 12 6 7 8/ and �2 D .1 2 13 3 4 14 15 16/ are
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8-cycles. We have o D 8. Let D D C� D D1 ˚ D2 be the product decom-
position corresponding to the cycle decomposition � D �1�2. All Newton poly-
gon slopes of D1 and D2 are 1

2
and it is easy to see that Dt

1 is isomorphic to D1.
We have .ıD1

.1/; : : : ; ıD1
.8// D .1; 2; 2; 2; 2; 2; 1; 0/; thus nD1

D 2 (cf. prop-
erty 4.6 (ii)). From Fact 4.2.1 we get that nD2

D 2. We have .�1.9/; : : : ; �8.9// D
.0; 0; 1; 1; 1; 2; 3; 4/ and .�1.1/; : : : ; �8.1// D .1; 2; 2; 3; 4; 4; 4; 4/. Therefore
.�1.9/ � �1.1/; : : : ; �8.9/ � �8.1// D .�1; �2; �1; �2; �3; �2; �1; 0/ and thus
`.e9; e1/ D `.e1; e9/ D 3. This implies that nD D `D � 3. From Proposition 1.4.3
we get that nD � 3. Thus nD1˚D2

D nD D 3 D nD1
C nD2

� 1.
Plenty of similar examples can be constructed in which the identity nD1˚D2

D
nD1

C nD2
� 1 holds and D1 and D2 are isoclinic of equal height and different

dimension.

4.7. Proof of 1.4.4. The Dieudonné module of zD is . zM; �/, where zM is a W.k/-
submodule of M which contains p�M . Let zO D zOC ˚ zO0 ˚ zO� be the level
module of . zM ; �/. If D and zD are ordinary, then Proposition 1.4.4 is trivial. Thus
to prove Proposition 1.4.4, we can assume that D and zD are not ordinary; thus from
Remark 4.1.1 we get that `D (resp. ` zD/ is the smallest natural number such that we
have p`D End.M/ � O (resp. we have p` zD End. zM/ � zO). As p�M � zM � M ,
we have

p2� End.M/ � p� End. zM/ � End.M/: .13/

For q 2 N we have �q.p� zOC/ � p� zOC � End. zM/ \ LC. As p� zOC � End.M/

(cf. (13)), we get that p� zOC � OC. A similar argument shows that p� zO0 � O0 and
p� zO� � O�. Thus p� zO � O . From this, the inclusion p` zD End. zM/ � zO , and
(13) we get that

p2�C` zD End.M/ � p�C` zD End. zM/ � p� zO � O � End.M/:

Thus `D � 2� C ` zD . Based on this inequality, Proposition 1.4.4 follows from
Corollary 1.4.2. This ends the proof of Proposition 1.4.4. �

4.7.1. Example. We assume that c D d . We have r D 2d . Let � WD .12 : : : r/;
its cyclic decomposition is � D �i (with i as an index). As �r

�.M/ D p
r
2 .M/, the

F -circular p-divisible group C� is supersingular. If d � 2, then �2.M/ ¤ pM

and therefore C� is not special. As �d
� .e1/ D pd edC1 and �d

� .edC1/ D e1, we
have ˛D.d/ D 0 and ˇD.d/ D d . This implies ıD.d/ D d and therefore from
Proposition 4.3 (a) we get that nC�

D `C�
� d . As nC�

� d (cf. Theorem 1.5.2),
we have nC�

D d . See [NV, Example 3.3] for a simpler proof that nC�
D d (in

loc. cit. C� is denoted as Cd ). Let E be a supersingular p-divisible group over k of
height 2. From [NV, Remark 2.6 and Example 3.3] we get that the smallest number
� 2 N [ f0g such that we have an isogeny C� � Ed is � WD dd�1

2
e. It is well

known that Ed is uniquely determined up to isomorphism by Ed Œp� (for instance,
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see [NV, Scholium 2.3] or see Formula (12c) applied to the minimal permutation
.1 d C 1/ : : : .d r/ of Jr ). Thus nEd D 1. If d is odd, then � D d�1

2
and therefore

nC�
D d D nEd C 2�. This implies that in general, Proposition 1.4.4 is optimal.

4.7.2. Example. We assume that r > 0 and that D is isoclinic. Let M0 and zM0 be as in
Proposition 4.3 (c). Let D0 and zD0 be the p-divisible groups over k whose Dieudonné
modules are isomorphic to .M0; �/ and . zM0; �/ (respectively), cf. Remark 4.3.1. To
the inclusions M0 � M and zM0 � M correspond isogenies D � D0 and D � zD0

whose kernels are annihilated by puD D p QuD and pvD D p QvD (respectively), cf.
Proposition 4.3 (c). Let jD WD nD0

and QjD WD n zD0
. From Propositions 1.4.4 and

4.3 (f) we get that

uD � nD D `D � minfjD C 2uD; QjD C 2vDg: .14a/

If .c1; d1; r1/ is as in Definition 4.1 (b), then jD � minfc1; d1g (cf. (11a)). From this
and (14a) we get

uD � nD � 2uD C minfc1; d1g: .14b/

5. On Main Theorem B

In Section 5.1 we prove Main Theorem B. Sections 5.2 and 5.3 present two ap-
plications of Main Theorem B. For instance, Theorem 5.3 presents applications to
extensions between two minimal p-divisible groups over k. We recall that .M; �/ is
the Dieudonné module of D.

5.1. The proof of Main Theorem B. If nD � 1, then DŒp� is minimal (cf. Definition
1.5.1 (d)). If DŒp� is minimal, then there exists a p-divisible group zD over k such
that n zD � 1 and zDŒp� is isomorphic to DŒp�; the codimension and the dimension of
zD are c and d (respectively) and thus from the very definition of n zD we get that D

is isomorphic to zD and therefore that we have nD D n zD � 1. Thus we have nD � 1

if and only if DŒp� is minimal. As nD � `D (see Corollary 1.4.2), 1.6 (a) implies
1.6 (b). Thus to end the proof of Main Theorem B, it suffices to show that 1.6 (b)
implies 1.6 (c) and that 1.6 (c) implies 1.6 (a).

5.1.1. On 1.6 (b) ) 1.6 (c). Let �1; #1 W M=pM ! M=pM be the reductions
modulo p of �; # W M ! M . In [Kr] (see also [Oo1, Section (2.3) and Lemma (2.4)]
and [Mo, Section 2.1]) it is shown that there exists a k-basis fb1; : : : ; brg for M=pM

and a permutation � of Jr D f1; : : : ; rg such that the following two properties hold:

(i) if s 2 f1; : : : ; dg, then �1.bs/ D 0 and #1.b�.s// D bs , and

(ii) if s 2 fd C 1; : : : ; rg, then �1.bs/ D b�.s/ and #1.b�.s// D 0.
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Let #� WD p��1
� W M ! M ; if s 2 f1; : : : ; dg, then #�.e�.s// D es , and if

s 2 fd C 1; : : : ; rg, then #�.e�.s// D pes . Properties (i) and (ii) imply that the
k-linear map M=pM ! M=pM that takes bs to es modulo p, is an isomorphism
between .M=pM; �1; #1/ and the reduction modulo p of .M; �� ; #�/. This means
that DŒp� is isomorphic to C� Œp�, cf. the classical Dieudonné theory. As nD � 1, we
get that D is isomorphic to C� .

We check that � is a minimal permutation in the sense of Definition 1.5.1 (b).
Let � D Q

i2I �i be the product decomposition of � into cycles. We write �i D
.es1

; : : : ; esri
/, where ri 2 N. Let ci , di D ri � ci , and ˛i D di

ri
be as in Section 1.5.

Let Mi WD Lri

uD1 W.k/esu
. Let D D Q

i2I Di be the product decomposition
defined by the direct sum decomposition .M; ��/ D L

i2I .Mi ; ��/. Each Di is an
F -circular p-divisible group over k and therefore isoclinic. From Proposition 4.4 (b)
we get that nDi

� nD � 1. But nDi
D `Di

D maxfıDi
.q/ j q 2 Ng, cf.

Corollary 1.4.2 and Proposition 4.3 (a). From the last two sentences we get that for
all q 2 N we have ıDi

.q/ 2 f0; 1g. Thus either ˛Di
.q/ D ˇDi

.q/ or ˛Di
.q/ C 1 D

ˇDi
.q/. If ˛Di

.q/ D ˇDi
.q/, then from Lemma 4.2.3 (a) we get that ˛Di

.q/ D
ˇDi

.q/ D q˛i . If ˛Di
.q/C1 D ˇDi

.q/, then from Lemma 4.2.3 (a) we get that either
.˛Di

.q/; ˇDi
.q// D .Œq˛i �; Œq˛i � C 1/ or .˛Di

.q/; ˇDi
.q// D .q˛i � 1; q˛i /. But

the second possibility is excluded by Lemma 4.2.3 (b). We conclude that in all cases
we have ˛Di

.q/; ˇDi
.q/ 2 fŒq˛i �; Œq˛i � C 1g. Therefore pŒq˛i �C1Mi � �q.Mi / �

pŒq˛i �Mi . Thus for each u 2 f1; : : : ; rig, we have �
q
�.esu

/ D pŒq˛i �C"q.su/e�q.su/

for some number "q.su/ 2 f0; 1g. As this property holds for all pairs .q; i/ 2 N � I ,
� is a minimal permutation. As D is isomorphic to C� , we get that D is minimal.
Thus 1.6 (b) implies 1.6 (c).

5.1.2. On 1:6 .c/ ) 1:6 .a/. To prove that 1.6 (c) implies 1.6 (a), we can assume
that � is a minimal permutation of Jr , that D D C� , and that � D �� . Let � DQ

i2I �i , M D L
i2I Mi , and D D Q

i2I Di be the decompositions obtained as in
Section 5.1.1. For i 2 I , let �i D .es1

; : : : ; esri
/, ci , di D ri � ci , and ˛i D di

ri
be

as in Section 1.5. As the permutation � is minimal, for all u 2 f1; : : : ; rig we have
�

q
�.esu

/ D pŒq˛i �C"q.su/e�q.su/ for some number "q.su/ 2 f0; 1g. This implies that
pŒq˛i �C1Mi � �

q
�.Mi / � pŒq˛i �Mi . Thus

˛Di
.q/; ˇDi

.q/ 2 fŒq˛i �; Œq˛i � C 1g: .15/

From (15) and the fact that ıDi
.q/ � 0, we get that ıDi

.q/ 2 f0; 1g. From this
and Proposition 4.3 (a), we get that nDi

D `Di
� 1. If D D Di (i.e., if I D fig),

then `D � 1 and thus 1.6 (a) holds. If I has at least two elements, then from
Proposition 1.4.3 we get that `D D nD � 1. Thus regardless of what I is, we have
`D � 1. This ends the argument that the implication 1.6 (c) ) 1.6 (a) holds. This
ends the proof of Main Theorem B. �
5.2. Corollary. We assume that `D � 2. Then nD D `D .



200 A. Vasiu CMH

Proof. If nD � 1, then D is minimal (cf. Main Theorem B) and therefore F -cyclic;
thus nD D `D (cf. Theorem 1.5.2). As nD � `D � 2, we have nD D `D even if
nD D 2. �

The next theorem generalizes and refines [Va1, Proposition 4.5.1].

5.3. Theorem. We assume that we have a short exact sequence 0 ! D1 ! D !
D2 ! 0 of p-divisible groups over k, with D1 and D2 as minimal p-divisible groups.

(a) Then we have nD � `D � 3.

(b) We assume that d D c � 3 and that D1 and D2 are isoclinic of Newton polygon
slopes 1

d
and d�1

d
(respectively). Then nD D `D � 2.

Proof. Let 0 ! D1 ! zD ! D2 ! 0 be the pull forward of our initial short exact
sequence via the multiplication by p isogeny D1 � D1. The kernel of the resulting
isogeny D � zD is annihilated by p. The p-divisible group D12 WD D1 ˚ D2 is
minimal. As zDŒp� is isomorphic to D12Œp�, from the equivalence between 1.6 (b)
and (c) we get that zD is isomorphic to D12 and that n zD � 1. As zD is F -cyclic and
thus a direct sum of isoclinic p-divisible groups, we have nD � `D � n zD C 2 � 3

(cf. Proposition 1.4.4). Thus (a) holds.
We prove (b). We know that there exists an isogeny D12 � D whose kernel K is

annihilated by p. We will choose such an isogeny of the smallest degree possible. It
is well known that up to isomorphisms, there exists a unique p-divisible group over k

of height d and Newton polygon slope �
d

, where � 2 f1; d � 1g (see [De, Chapter IV,
Section 8]). Thus if K has a proper subgroup scheme K1 (resp. K2) whose image
in D1 (resp. in D2) is trivial, then D0

12 WD D12=K1 (resp. D0
12 WD D12=K2) is

isomorphic to D12 and thus we would get an isogeny D12 �!� D0
12 � D of smaller

degree. This implies that the projections of K on D1 and D2 are monomorphisms.
Thus the codimension and the dimension of K are both at most 1. Based on the last
two sentences, as d � 3 we easily get that K is either trivial or isomorphic to p̨ .
If K is trivial, then D is minimal and therefore we have nD � 1 (in fact we have
nD D 1). Thus to prove (b), we can assume that K is isomorphic to p̨ . We reached
the case when we have isogenies

D12 �� D12= p̨ ��!� D �� D12=. p̨ �k p̨/ D D1= p̨ �k D2= p̨:

At the level of Dieudonné modules, this means the following things. Let N12 WDL2d
sD1 W.k/es be a free W.k/-module of rank r D 2d . Let � W N12 ! N12 be

the � -linear endomorphism such that it takes .e1; : : : ; ed / and .edC1; : : : ; e2d / to
.pe2; e3; : : : ; ed ; e1/ and .pedC2; : : : ; pe2d ; edC1/ (respectively). We can assume
that .N12; �/ is the Dieudonné module of D1= p̨ �k D2= p̨ (cf. the mentioned
uniqueness property). As D � D12=. p̨ �k p̨/ D D1= p̨ �k D2= p̨ is an isogeny
of kernel p̨ and as K maps monomorphically to both D1 and D2, there exists an
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invertible element � 2 W.k/ such that we can identify M with N12 C W.k/. �
p

e1 C
1
p

edC1/. Moreover, if M12 WD N12 C W.k/ 1
p

e1 C W.k/ 1
p

edC1, then .M12; �/ is
the Dieudonné module of D12.

We check that `D � 2. We have

p2 End.M/ � p Hom.M12; N12/CW.k/Œ.p�e1CpedC1/˝e�
1 � � End.M/: .16/

The latticed F -isocrystal .Hom.M12; N12/; �/ is isomorphic to End.M12; �/ and
moreover we have `D12

� 1. From this and the fact that Hom.M12; N12/ � End.M/,
we get that O contains p Hom.M12; N12/. It is easy to see that for all q 2 N we
have �q..p�e1 C pedC1/ ˝ e�

1 / 2 End.M/; like �..p�e1 C pedC1/ ˝ e�
1 / D

.p�.�/e2 CpedC2/˝e�
2 , �2..p�e3 CpedC1/˝e�

1 / D .p�2.�/e3 Cp2edC3/˝e�
3 ,

etc. Thus .p�e1 C pedC1/ ˝ e�
1 2 OC ˚ O0, cf. Lemma 2.4. Based on (16) we

conclude that p2 End.M/ � O . Thus `D � 2. From Corollary 5.2 we get that
nD D `D � 2. Thus (b) holds. �
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