Configurations of saddle connections of quadratic differentials on $\mathbb{C P}{ }^{1}$ and on hyperelliptic Riemann surfaces

Corentin Boissy

Abstract

Configurations of rigid collections of saddle connections are connected component invariants for strata of the moduli space of quadratic differentials. They have been classified for strata of Abelian differentials by Eskin, Masur and Zorich. Similar work for strata of quadratic differentials has been done by Masur and Zorich, although in that case the connected components were not distinguished.

We classify the configurations for quadratic differentials on $\mathbb{C P}^{1}$ and on hyperelliptic connected components of the moduli space of quadratic differentials. We show that, in genera greater than five, any configuration that appears in the hyperelliptic connected component of a stratum also appears in the non-hyperelliptic one. For such genera, this enables to classify the configurations that appear for each connected component of each stratum.

Mathematics Subject Classification (2000). Primary 32G15; Secondary 30F30, 57R30.
Keywords. Quadratic differentials, configuration, homologous saddle connections.

1. Introduction

We study flat surfaces having isolated conical singularities of angle integer multiple of π and $\mathbb{Z} / 2 \mathbb{Z}$ linear holonomy. The moduli space of such surfaces is isomorphic to the moduli space of quadratic differentials on Riemann surfaces and is naturally stratified. Flat surfaces corresponding to squares of Abelian differentials are often called translation surfaces. Flat surfaces appear in the study of billiards in rational polygons since these can be "unfolded" to give a translation surface (see [KaZe]).

A sequence of quadratic differentials or Abelian differentials leaves any compact set of a stratum when the length of a saddle connection tends to zero. This might force some other saddle connections to shrink. In the case of an Abelian differential they correspond to homologous saddle connections. In the general case of quadratic differentials, the corresponding collections of saddle connections on a flat surface are said to be homologous ${ }^{1}$ (pronounced "hat-homologous"). According to Masur and

[^0]Smillie [MS] (see also [EMZ], [MZ]), a "typical degeneration" corresponds to the case when all the "short" saddle connections are pairwise homologous. Therefore the study of configurations of homologous saddle connections (or homologous saddle connection in the case of Abelian differential) is a first step for the study of the compactification of a given stratum. A configuration of homologous saddle connections on a generic surface is also a natural invariant of a connected component of the ambient stratum.

In a recent article, Eskin, Masur and Zorich [EMZ] study collections of homologous saddle connections for Abelian differentials. They describe configurations for each connected component of the strata of Abelian differentials. Collections of homologous saddle connections are studied for quadratic differentials by Masur and Zorich [MZ]: they describe all the configurations that can arise in any given stratum of quadratic differentials, but they do not distinguish connected components of such strata.

According to Lanneau [L2], the non-connected strata of quadratic differentials admit exactly two connected components. They are of one of the following two types:

- "hyperelliptic" stratum: the stratum admits a connected component that consists of hyperelliptic quadratic differentials (note that some of these strata are connected);
- exceptional stratum: there exist four non-connected strata that do not belong to the previous case.

In this article, we give the classification of the configurations that appear in the hyperelliptic connected components (Theorem 3.1). This gives therefore a necessary condition for a surface to be in a hyperelliptic connected component. Then we show that any configuration that appears in a hyperelliptic connected component also appears in the other component of the stratum when the genus is greater than five (Theorem 4.2). Hence the list of configurations corresponding to this other component is precisely the list of configuration corresponding to the ambient stratum.

For such genera, any non-connected stratum contains a hyperelliptic connected component. Hence the configurations for each connected component of each stratum, when the genus is greater than or equal to five, are given by Theorem 3.1, Theorem 4.2 and Main Theorem of [MZ]. We address the description of configurations for low dimension strata to a next article.

We deduce configurations for hyperelliptic components from configurations for strata of quadratic differentials on $\mathbb{C} \mathbb{P}^{1}$ (Theorem 2.2). Configurations for $\mathbb{C} \mathbb{P}^{1}$ are deduced from general results on configurations that appear in [MZ]. Note that these configurations are needed in the study of asymptotics in billiards in polygons with "right" angles [AEZ]. For such a polygon, there is a simple unfolding procedure that consists in gluing along their boundaries two copies of the polygon. This gives a flat
surface of genus zero with conical singularities, whose angles are multiples of π (i.e. a quadratic differential on $\mathbb{C} \mathbb{P}^{1}$). Then a generalized diagonal or a periodic trajectory in the polygon gives a saddle connection on the corresponding flat surface.

We also give in appendix an explicit formula that gives a relation between the genus of a surface and the ribbon graph of connected components associated to a collection of homologous saddle connections.

Some particular splittings are sometimes used to compute the closure of $\operatorname{SL}(2, \mathbb{R})$ orbits of surfaces (see [Mc], [HLM]). These splittings of surfaces can be reformulated as configurations of homologous or homologous saddle connections on these surfaces. It would be interesting to find some configurations that appear in any surface of a connected component of a stratum, as was done in [Mc].

Acknowledgements. I would like to thank Anton Zorich for encouraging me to write this paper, and for many discussions. I also thank Erwan Lanneau and the Referee for their comments on the paper.
1.1. Basic definitions. Here we first review standard facts about moduli spaces of quadratic differentials. We refer to [HM], [M], [V1] for proofs and details, and to [MT], [Z] for general surveys.

Let S be a compact Riemann surface of genus g. A quadratic differential q on S is locally given by $q(z)=\phi(z) d z^{2}$, for (U, z) a local chart with ϕ a meromorphic function with at most simple poles. We define the poles and zeroes of q in a local chart to be the poles and zeroes of the corresponding meromorphic function ϕ. It is easy to check that they do not depend on the choice of the local chart. Slightly abusing vocabulary, a pole will be referred to as a zero of order -1 , and a marked point will be referred to as a zero of order 0 . An Abelian differential on S is a holomorphic 1-form.

Outside its poles and zeroes, q is locally the square of an Abelian differential. Integrating this 1 -form gives a natural atlas such that the transition functions are of the kind $z \mapsto \pm z+c$. Thus S inherits a flat metric with singularities, where a zero of order $k \geq-1$ becomes a conical singularity of angle $(k+2) \pi$. The flat metric has trivial holonomy if and only if q is globally the square of an Abelian differential. If not, then the holonomy is $\mathbb{Z} / 2 \mathbb{Z}$ and (S, q) is sometimes called a half-translation surface since the transition functions are either translations, or half-turns. In order to simplify the notation, we will usually denote by S a surface with such flat structure.

We associate to a quadratic differential the set $\left\{k_{1}, \ldots, k_{r}\right\}$ of orders of its poles and zeroes. The Gauss-Bonnet formula asserts that $\sum_{i} k_{i}=4 g-4$. Conversely, if we fix a collection $\left\{k_{1}, \ldots, k_{r}\right\}$ of integers greater than or equal to -1 satisfying the previous equality, we denote by $\mathcal{Q}\left(k_{1}, \ldots, k_{r}\right)$ the (possibly empty) moduli space of quadratic differentials which are not globally the square of any Abelian differential, and having $\left\{k_{1}, \ldots, k_{r}\right\}$ as orders of poles and zeroes. It is well known that
$Q\left(k_{1}, \ldots, k_{r}\right)$ is a complex analytic orbifold, which is usually called a stratum of the moduli space of quadratic differentials. We mostly restrict ourselves to the subspace $Q_{1}\left(k_{1}, \ldots, k_{r}\right)$ of area one surfaces, where the area is given by the flat metric. In a similar way, we denote by $\mathscr{H}_{1}\left(n_{1}, \ldots, n_{s}\right)$ the moduli space of Abelian differentials of area 1 having zeroes of degree $\left\{n_{1}, \ldots, n_{s}\right\}$, where $n_{i} \geq 0$ and $\sum_{i=1}^{s} n_{i}=2 g-2$.

A saddle connection is a geodesic segment (or geodesic loop) joining two singularities (or a singularity to itself) with no singularities in its interior. Even if q is not globally a square of an Abelian differential we can find a square root of it along the saddle connection. Integrating it along the saddle connection we get a complex number (defined up to multiplication by -1). Considered as a planar vector, this complex number represents the affine holonomy vector along the saddle connection. In particular, its Euclidean length is the modulus of its holonomy vector. Note that a saddle connection persists under small deformation of the surface.

Local coordinates on a stratum of Abelian differentials are obtained by integrating the holomorphic 1 -form along a basis of the relative homology $H_{1}(S$, sing, $\mathbb{Z})$, where "sing" is the set of conical singularities. Equivalently, this means that local coordinates are defined by the relative cohomology $H^{1}(S$, sing, $\mathbb{C})$.

Local coordinates in a stratum of quadratic differentials are obtained by the following way (see [HM]): one can naturally associate to a quadratic differential $(S, q) \in \mathcal{Q}\left(k_{1}, \ldots, k_{r}\right)$ a double cover $p: \widehat{S} \rightarrow S$ such that $p^{*} q$ is the square of an Abelian differential ω. The surface \widehat{S} admits a natural involution τ, that induces on the relative cohomology $H^{1}(S, \operatorname{sing}, \mathbb{C})$ an involution τ^{*}. It decomposes $H^{1}(S$, sing, $\mathbb{C})$ into an invariant subspace $H_{+}^{1}(S$, sing, $\mathbb{C})$ and an anti-invariant subspace $H_{-}^{1}(S$, sing, $\mathbb{C})$. One can show that the anti-invariant subspace $H_{-}^{1}(S$, sing, $\mathbb{C})$ gives local coordinates for the stratum $\mathcal{Q}\left(k_{1}, \ldots, k_{r}\right)$. The Lebesgue measure on these coordinates defines a measure μ on the stratum $Q_{1}\left(k_{1}, \ldots, k_{r}\right)$. This measure is finite (see [V3], Theorem 0.2).

A hyperelliptic quadratic differential is a quadratic differential such that there exists an orientation preserving involution τ with $\tau^{*} q=q$ and such that S / τ is a sphere. We can construct families of hyperelliptic quadratic differentials by the following way: to all quadratic differentials on $\mathbb{C} \mathbb{P}^{1}$, we associate a double covering ramified over some singularities satisfying some fixed combinatorial conditions. The resulting Riemann surfaces naturally carry hyperelliptic quadratic differentials.

Some strata admit an entire connected component that is made of hyperelliptic quadratic differentials. These components arise from the previous construction and have been classified by Kontsevich and Zorich in case of Abelian differentials [KZ] and by Lanneau in case of quadratic differentials [L1].

Theorem (M. Kontsevich, A. Zorich). The strata of Abelian differentials having a hyperelliptic connected component are the following ones.
(1) $\mathscr{H}(2 g-2)$, where $g \geq 1$. It arises from $\mathcal{Q}\left(2 g-3,-1^{2 g+1}\right)$. The ramifications
points are located over all the singularities.
(2) $\mathscr{H}(g-1, g-1)$, where $g \geq 1$. It arises from $\mathcal{Q}\left(2 g-2,-1^{2 g+2}\right)$. The ramifications points are located over all the poles.
In the above presented list, the strata $\mathscr{H}(0), \mathscr{H}(0,0), \mathscr{H}(1,1)$ and $\mathscr{H}(2)$ are the ones that are connected.

Theorem (E. Lanneau). The strata of quadratic differentials that have a hyperelliptic connected component are the following ones.
(1) $Q(2(g-k)-3,2(g-k)-3,2 k+1,2 k+1)$ where $k \geq-1, g \geq 1$ and $g-k \geq 2$. It arises from $\mathcal{Q}\left(2(g-k)-3,2 k+1,-1^{2 g+2}\right)$. The ramifications points are located over $2 g+2$ poles.
(2) $\mathcal{Q}(2(g-k)-3,2(g-k)-3,4 k+2)$ where $k \geq 0, g \geq 1$ and $g-k \geq 1$. It arises from $\mathcal{Q}\left(2(g-k)-3,2 k,-1^{2 g+1}\right)$. The ramifications points are located over $2 g+1$ poles and over the zero of order $2 k$.
(3) $\mathcal{Q}(4(g-k)-6,4 k+2)$ where $k \geq 0, g \geq 2$ and $g-k \geq 2$. It arises from $\mathcal{Q}\left(2(g-k)-4,2 k,-1^{2 g}\right)$. The ramifications points are located over all the singularities
In the above presented list, the strata $\mathcal{Q}(-1,-1,1,1), \mathcal{Q}(-1,-1,2), \mathcal{Q}(1,1,1,1)$, $Q(1,1,2)$ and $\mathcal{Q}(2,2)$ are the ones that are connected.
1.2. Homologous saddle connections. Let $S \in \mathcal{Q}\left(k_{1}, \ldots, k_{r}\right)$ be a flat surface and let us denote by $p: \widehat{S} \rightarrow S$ its canonical double cover and by τ the corresponding involution. Let Σ denote the set of singularities of S and let $\widehat{\Sigma}=p^{-1}(\Sigma)$.

To an oriented saddle connection γ on S, one can associate γ_{1} and γ_{2} its preimages by p. If the relative cycle $\left[\gamma_{1}\right]$ satisfies $\left[\gamma_{1}\right]=-\left[\gamma_{2}\right] \in H_{1}(\widehat{S}, \widehat{\Sigma}, \mathbb{Z})$, then we define $[\hat{\gamma}]=\left[\gamma_{1}\right]$. Otherwise, we define $[\hat{\gamma}]=\left[\gamma_{1}\right]-\left[\gamma_{2}\right]$. Note that in all cases, the cycle [$\hat{\gamma}$] is anti-invariant with respect to the involution τ.

Definition 1.1. Two saddle connections γ and γ^{\prime} are homologous if $[\hat{\gamma}]= \pm\left[\hat{\gamma^{\prime}}\right]$.
Example 1.2. Consider the flat surface $S \in \mathbb{Q}(-1,-1,-1,-1)$ given in Figure 1 (a "pillowcase"), it is easy to check from the definition that γ_{1} and γ_{2} are homologous since the corresponding cycles for the double cover \widehat{S} are homologous.

Example 1.3. Consider the flat surface given in Figure 4 (at the end of Section 1.2), the reader can check that the saddle connections γ_{1}, γ_{2} and γ_{3} are pairwise homologous.

Theorem (H. Masur, A. Zorich). Consider two distinct saddle connections γ, γ^{\prime} on a half-translation surface. The following assertions are equivalent:

Figure 1. An unfolded flat surface S with two homologous saddle connections γ_{1} and γ_{2}.

- The two saddle connections γ and γ^{\prime} are homologous.
- The ratio of their lengths is constant under any small deformation of the surface inside the ambient stratum.
- They have no interior intersection and one of the connected components of $S \backslash\left\{\gamma \cup \gamma^{\prime}\right\}$ has trivial linear holonomy.

Furthermore, if γ and γ^{\prime} are homologous, then the ratio of their lengths belongs to $\left\{\frac{1}{2}, 1,2\right\}$.

Consider a set of homologous saddle connections $\gamma=\left\{\gamma_{1}, \ldots, \gamma_{s}\right\}$ on a flat surface S. Slightly abusing notation, we will denote by $S \backslash \gamma$ the subset $S \backslash\left(\bigcup_{i=1}^{s} \gamma_{i}\right)$. This subset is a finite union of connected half-translation surfaces with boundaries.

Definition 1.4. Let S be a flat surface and $\gamma=\left\{\gamma_{1}, \ldots, \gamma_{s}\right\}$ a collection of homologous saddle connections. The graph of connected components, denoted by $\Gamma(S, \gamma)$, is the graph defined by the following way:

- The vertices are the connected components of $S \backslash \gamma$, labelled by "०" if the corresponding surface is a cylinder, by " + " if it has trivial holonomy (but is not a cylinder), and otherwise by "-" if it has non-trivial holonomy.
- The edges are given by the saddle connections in γ. Each γ_{i} is located on the boundary of one or two connected components of $S \backslash \gamma$. In the first case it becomes an edge joining the corresponding vertex to itself. In the second case, it becomes an edge joining the two corresponding vertices.

In [MZ], Masur and Zorich describe the set of all possible graphs of connected components for a quadratic differential. This set is roughly given by Figure 2, where dot lines are chains of " + " and "०" vertices of valence two. The next theorem gives a more precise statement of this description. It can be skipped in a first reading.

Theorem (H. Masur, A. Zorich). Let (S,q) be quadratic differential; let γ be a collection of homologous saddle connections $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$, and let $\Gamma(S, \gamma)$ be the graph of connected components encoding the decomposition $S \backslash\left(\gamma_{1} \cup \cdots \cup \gamma_{n}\right)$.

The graph $\Gamma(S, \gamma)$ either has one of the basic types listed below or can be obtained from one of these graphs by placing additional " \circ "-vertices of valence two at any subcollection of edges subject to the following restrictions. At most one "०"-vertex may be placed at the same edge; a "○"-vertex cannot be placed at an edge adjacent to a " \circ "-vertex of valence 3 if this is the edge separating the graph.

The graphs of basic types, presented in Figure 2, are given by the following list:
a) An arbitrary (possibly empty) chain of "+"-vertices of valence two bounded by a pair of "-"-vertices of valence one;
b) A single loop of vertices of valence two having exactly one "-"-vertex and arbitrary number of "+"-vertices (possibly no "+"-vertices at all);
c) A single chain and a single loop joined at a vertex of valence three. The graph has exactly one "-"-vertex of valence one; it is located at the end of the chain. The vertex of valence three is either a " + "-vertex, or a " \circ "-vertex (vertex of the cylinder type). Both the chain, and the cycle may have in addition an arbitrary number of "+"-vertices of valence two (possibly no "+"-vertices at all);
d) Two nonintersecting cycles joined by a chain. The graph has no "-"-vertices. Each of the two cycles has a single vertex of valence three (the one where the chain is attached to the cycle); this vertex is either a "+"-vertex or a " \circ "-vertex. If both vertices of valence three are " \circ "-vertices, the chain joining two cycles is nonempty: it has at least one "+"-vertex. Otherwise, each of the cycles and the chain may have arbitrary number of " + "-vertices of valence two (possibly no " + "-vertices of valence two at all);
e) "Figure-eight" graph: two cycles joined at a vertex of valence four, which is either a "+"-vertex or a "○"-vertex. All the other vertices (if any) are the "+"vertices of valence two. Each of the two cycles may have arbitrary number of such "+"-vertices of valence two (possibly no "+"-vertices of valence two at all).

Each graph listed above corresponds to some flat surface S and to some collection of saddle connections γ.
a)

b)

d)

e)

Figure 2. Classification of admissible graphs.

Remark 1.5. Two homologous saddle connections are not necessary of the same length. The additional parameters 1 or 2 written along the vertices in Figure 2 represent the lengths of the saddle connections in the collection $\gamma=\left\{\gamma_{1}, \ldots, \gamma_{s}\right\}$ after suitably rescaling the surface.

Each connected component of $S \backslash \gamma$ is a non-compact surface which can be naturally compactified (for example considering the distance induced by the flat metric on a connected component of $S \backslash \gamma$, and the corresponding completion). We denote this compactification by S_{j}. We warn the reader that S_{j} might differ from the closure of the component in the surface S : for example, if γ_{i} is on the boundary of just one connected component S_{j} of $S \backslash \gamma$, then the compactification of S_{j} carries two copies of γ_{i} in its boundary, while in the closure of the corresponding connected component of $S \backslash \gamma$, these two copies are identified. The boundary of each S_{i} is a union of saddle connections; it has one or several connected components. Each of them is homeomorphic to \mathbb{S}^{1} and therefore defines a cyclic order in the set of boundary saddle connections. Each consecutive pair of saddle connections for that cyclic order defines a boundary singularity with an associated angle which is a integer multiple of π (since the boundary saddle connections are parallel). The surface with boundary S_{i} might have singularities in its interior. We call them interior singularities.

Definition 1.6. Let $\gamma=\left\{\gamma_{1}, \ldots, \gamma_{r}\right\}$ be a maximal collection of homologous saddle connections. Then a configuration is the following combinatorial data:

- The graph $\Gamma(S, \gamma)$.
- For each vertex of this graph, a permutation of the edges adjacent to the vertex (encoding the cyclic order of the saddle connections on each connected component of the boundary of S_{i}).
- For each pair of consecutive elements in that cyclic order, an integer $k \geq 0$ such that the angle between the two corresponding saddle connections is $(k+1) \pi$. This integer will be referred as the order of the boundary singularity.
- For each S_{i}, a collection of integers corresponding to the orders of the interior singularities of S_{i}.

Following [MZ], we will encode the permutation of the edges adjacent to each vertex by a ribbon graph.

Example 1.7. Figure 3 represents a configuration on a flat surface. The corresponding collection $\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$ of homologous saddle connections decomposes the surface into three connected components. The first connected component $\Theta-$ has four interior singularities of order -1 , and its boundary consists of a single saddle connection with the corresponding boundary singularity of angle $(2+1) \pi=3 \pi$. The second

Figure 3. An example of configuration.
connected component $-\uparrow$ has no interior singularities. It has two boundary components, one consisting of a single saddle connection with corresponding singularity of angle $(2+1) \pi$, and the other consists of a union of two saddle connections with corresponding boundary singularities of angle $(0+1) \pi$ and $(2+1) \pi$. The last connected component - ary components that consists each of a single saddle connection with corresponding boundary singularities of angles $(2+1) \pi$.

Figure 4 represents a flat surface with a collection of three homologous saddle connections realizing this configuration.

Figure 4. Unfolded flat surface realizing configuration of Figure 3.

Remark 1.8. When describing the configuration of a collection of homologous saddle connections $\gamma=\left\{\gamma_{1}, \ldots, \gamma_{r}\right\}$, we will always assume that each saddle connection parallel to an element γ_{i} is actually homologous to γ_{i}. This condition is satisfied for a subset of full measure in the ambient stratum (see [MZ]).

Remark 1.9. A maximal collection of homologous saddle connections and the associated configuration persist under any small deformation of the flat surface inside
the ambient stratum. They also persist under the well know $S L(2, \mathbb{R})$ action on the stratum which is ergodic with respect to the Lebesgue measure μ (see [M], [V1], [V2]). Hence, every admissible configuration that exists in a connected component is realized in almost all surfaces of that component. Furthermore, the number of collections realizing a given configuration in a generic surface has quadratic asymptotics (see [EM]).

2. Configurations for the Riemann sphere

In this section we describe all admissible configurations of homologous saddle connections that arise on $\mathbb{C} \mathbb{P}^{1}$. To avoid confusion of notation, we specify the following convention: we denote by $\left\{k_{1}^{\alpha_{1}}, \ldots, k_{r}^{\alpha_{r}}\right\}$ the set with multiplicities $\left\{k_{1}, k_{1}, \ldots, k_{r}\right\}$, where α_{i} is the multiplicity of k_{i}. We assume that $k_{i} \neq k_{j}$ for $i \neq j$. For example the notation $\mathcal{Q}\left(1^{2},-1^{6}\right)$ means $\mathcal{Q}(1,1,-1,-1,-1,-1,-1,-1)$.

Let $\mathcal{Q}\left(k_{1}^{\alpha_{1}}, \ldots, k_{r}^{\alpha_{r}},-1^{s}\right)$ be a stratum of quadratic differentials on $\mathbb{C} \mathbb{P}^{1}$ different from $\mathcal{Q}\left(-1^{4}\right)$. We give in the next example four families of admissible configurations for this stratum. In the next example, γ is always assumed to be a maximal collection of homologous saddle connections. We give in Table 1 the corresponding graphs and "topological pictures". The existence of each of these configurations is a direct consequence of Main Theorem of [MZ].

Example 2.1. a) Let $\left\{k, k^{\prime}\right\} \subset\left\{k_{1}^{\alpha_{1}}, \ldots, k_{r}^{\alpha_{r}},-1^{s}\right\}$ be an unordered pair of integers with $\left(k, k^{\prime}\right) \neq(-1,-1)$. The set γ consists of a single saddle connection joining a singularity of order k to a distinct singularity of order k^{\prime}.
b) Let $\left\{a_{1}, a_{2}\right\}$ be an unordered pair of positive integers such that $a_{1}+a_{2}=k \in$ $\left\{k_{1}, \ldots, k_{r}\right\}$ (with $k \neq 1$), and let $A_{1} \sqcup A_{2}$ be a partition of $\left\{k_{1}^{\alpha_{1}}, \ldots, k_{r}^{\alpha_{r}}\right\} \backslash\{k\}$. The set γ consists of a simple saddle connection that decomposes the sphere into two one-holed spheres S_{1} and S_{2}, such that each S_{i} has interior singularities of positive order given by A_{i} and $s_{i}=\left(\sum_{a \in A_{i}} a\right)+a_{i}+2$ poles, and has a single boundary singularity of order a_{i}.
c) Let $\left\{a_{1}, a_{2}\right\} \subset\left\{k_{1}^{\alpha_{1}}, \ldots, k_{r}^{\alpha_{r}}\right\}$ be an unordered pair of integers. Let $A_{1} \sqcup A_{2}$ be a partition of $\left\{k_{1}^{\alpha_{1}}, \ldots, k_{r}^{\alpha_{r}}\right\} \backslash\left\{a_{1}, a_{2}\right\}$. The set γ consists of two closed saddle connections that decompose the sphere into two one-holed spheres S_{1} and S_{2} and a cylinder, and such that each S_{i} has interior singularities of positive orders given by A_{i} and $s_{i}=\left(\sum_{a \in A_{i}} a\right)+a_{i}+2$ poles and has a boundary singularity of order a_{i}.
d) Let $k \in\left\{k_{1}, \ldots, k_{r}\right\}$. The set γ is a pair of saddle connections of different lengths, and such that the largest one starts and ends from a singularity of order k and decompose the surface into a one-holed sphere and a "half-pillowcase", while the shortest one joins a pair of poles and lies on the other end of the half-pillowcase.

Table 1. Configurations in genus zero.
(Topological picture

Theorem 2.2. Let $\mathcal{Q}\left(k_{1}^{\alpha_{1}}, \ldots, k_{r}^{\alpha_{r}},-1^{s}\right)$ be a stratum of quadratic differentials on $\mathbb{C} \mathbb{P}^{1}$ different from $\mathcal{Q}\left(-1^{4}\right)$ and such that $k_{i} \neq 0$ for all i, and let γ be a maximal collection of homologous saddle connections on a flat surface in this stratum. Then all possible configurations for γ are the ones described in Example 2.1.

Remark 2.3. The hypothesis $k_{i} \neq 0$ appears here for simplicity. The possible configurations for a collection of saddle connections in a flat surface of genus zero that contains marked point are easily deduced from Theorem 2.2.

We first start with several preliminary lemmas which are applicable to flat surfaces of arbitrary genus. Let S be a generic flat surface of genus $g \geq 0$ in some stratum of quadratic differentials, and let γ be a maximal collection of homologous saddle connections on it. Taking the natural compactification of each connected component of $S \backslash \gamma$, we get a collection $\left\{S_{i}\right\}_{i \in I}$ of compact surfaces with boundaries. The boundary of each S_{i} is topologically a union of disjoint circles. We can glue a disc to each connected component of the boundary of S_{i} and get a closed surface \bar{S}_{i}; we denote by g_{i} the genus of \bar{S}_{i}.

Lemma 2.4. Let g be the genus of S, then $g \geq \sum_{i \in I} g_{i}$.
Proof. For each S_{i}, we consider a collection of paths $\left(c_{i, 1}, \ldots, c_{i, 2 g_{i}}\right)$ of S_{i} that represent a symplectic basis of $H_{1}\left(\bar{S}_{i}, \mathbb{R}\right)$ and that avoid the boundary of S_{i}. When we glue the $\left\{S_{i}\right\}$ together, the $c_{i, j}$ provides a collection of cycles of $H_{1}(S, \mathbb{R})$. It forms a symplectic family because two paths arising from two different surfaces do not intersect each other. Therefore we get a free family of $H_{1}(S, \mathbb{R})$, thus:

$$
2 g=\operatorname{dim}\left(H_{1}(S, \mathbb{R})\right) \geq \sum_{i \in I} \operatorname{dim}\left(H_{1}\left(\bar{S}_{i}, \mathbb{R}\right)\right)=\sum_{i \in I} 2 g_{i}
$$

Remark. In the appendix, we will improve Lemma 2.4 and give an exact formula in terms of the graph $\Gamma(S, \gamma)$ and the ribbon graph.

Lemma 2.5. If $S_{i_{0}}$ is not a cylinder and has trivial holonomy, then $g_{i_{0}}>0$.
Proof. Recall that the initial collection of homologous saddle connections is assumed to be maximal, therefore there are no interior saddle connections homologous to any boundary saddle connection. Let $\left\{k_{1}, \ldots, k_{s}\right\}$ be the orders of the interior conical singularities of $S_{i_{0}}$ and $\left\{l_{1}, \ldots, l_{s^{\prime}}\right\}$ be the orders of the boundary singularities. Let X be the closed flat surface obtained by gluing $S_{i_{0}}$ and a copy of itself taken with opposite orientation along their boundaries. If m denotes the number of connected components of the boundary of $S_{i_{0}}$ and g_{X} denotes the genus of X, one can see that $g_{X}=2 g_{i_{0}}+$ $m-1$. The singularities of X are of orders $\left\{k_{1}, \ldots, k_{s}, k_{1}, \ldots, k_{s}, 2 l_{1}, \ldots, 2 l_{s^{\prime}}\right\}$.

Furthermore, k_{i}, l_{j} are nonnegative integers since X has trivial holonomy. Applying the Gauss-Bonnet formula for quadratic differentials, one gets:

$$
g_{X}=1+\sum_{j=1}^{s} \frac{k_{j}}{2}+\sum_{i=1}^{s^{\prime}} \frac{l_{i}}{2}=2 g_{i_{0}}+m-1
$$

which obviously gives

$$
2 g_{i_{0}} \geq 2-m+\sum_{i=1}^{s^{\prime}} \frac{l_{i}}{2}
$$

To conclude, we need few elementary remarks (which are already written in [MZ]) about the order of the conical singularities of the boundary:
a) If a connected component of the boundary is just a single saddle connection, then the corresponding angle cannot be π otherwise the saddle connection would then be a boundary component of a cylinder. Then the other boundary component of that cylinder would be a saddle connection homologous to the previous one (see remark 1.8). So S_{i} would be that cylinder contradicting the hypothesis. Furthermore, the holonomy of a path homotopic to the saddle connection is trivial if and only if the conical angle of the boundary singularity is an odd multiple of π.
Therefore that angle is greater than or equal to 3π, and hence, the corresponding order l_{j} of the boundary singularity has order at least 2 .
b) If a connected component of the boundary is given by two saddle connections, then as before, the two corresponding conical angles cannot be both equal to π (otherwise S_{i} would be a cylinder) and are of the same parity (otherwise S_{i} would have nontrivial holonomy).

Now we complete the proof of the lemma. We recall that the vertex corresponding to $S_{i_{0}}$ in $\Gamma(S, \gamma)$ is of valence at most four, and hence $m \leq 4$. The case $m=1$ is trivial. If $m=2$ then there is a connected component of the boundary of $S_{i_{0}}$ with one or two saddle connections. In both cases, the remarks a) and b) imply that $S_{i_{0}}$ admits a boundary singularity of order $l_{1}>0$, and therefore $2 g_{i_{0}} \geq l_{1 / 2}>0$.

If $m \in\{3,4\}$, then there are at least two boundary components that consist of a single saddle connection. From remark a), this implies that $S_{i_{0}}$ admits two boundary singularities l_{1} and l_{2} of order greater than or equal to two. Applying remarks a) and b) on the other boundary components, we show that $S_{i_{0}}$ admits at least an other boundary singularity of order $l_{3}>0$. Therefore

$$
2 g_{i_{0}}>2-m+l_{1} / 2+l_{2} / 2 \geq 4-m \geq 0
$$

Finally, $g_{i_{0}}>0$ and the lemma is proven.

Now, we describe all the possible configurations when the genus g of the surface is zero.

Proof of Theorem 2.2. It follows from Lemmas 2.4 and 2.5 that $\Gamma(S, \gamma)$ has no " + " components. Furthermore, a loop of the graph $\Gamma(S, \gamma)$ cannot have any cylinder since this would add a handle to the surface. Now using the description from [MZ] of admissible graphs (see Figure 2), we can list all possible graphs. For each graph we now describe the corresponding admissible configurations.
a) A single "一" vertex of valence two and an edge joining it to itself. This can represent two possible cases: either the boundary of the closure of $S \backslash \gamma$ has two connected components, or it has only one. In the first case each connected component of the boundary is a single saddle connection. Gluing these two boundary components together adds a handle to the surface. So this case does not appear for genus zero. In the other case, the single boundary component consists of two saddle connections. The surface S is obtained after gluing these two saddle connections, so γ consists of a single saddle connection γ_{1} joining a singularity of order k to a distinct singularity of order k^{\prime}. If k and k^{\prime} were both equal to -1 , then γ_{1} would bound a cylinder. Then the other end of that cylinder would consist of one or several saddle connections parallel to γ_{1}. Because of remark 1.8, these saddle connections would be in the collection γ, which is a contradiction.
b) Two "-" vertices of valence one joined by a single edge. That means that γ consists of a single closed saddle connection γ_{1} which separates the surface in two parts. We get an unordered pair $\left\{S_{1}, S_{2}\right\}$ of one-holed spheres with boundary singularities of angles $\left(a_{1}+1\right) \pi$ and $\left(a_{2}+1\right) \pi$ correspondingly. The saddle connection of the initial surface is adjacent to a singularity of order $a_{1}+a_{2}=k$. None of the a_{i} is null otherwise the saddle connection would bound a cylinder, and there would exist a saddle connection homologous to γ_{1} on the other boundary component of this cylinder.

Now considering the interior singularities of positive order of S_{1} and S_{2} respectively, this defines a partition $A_{1} \sqcup A_{2}$ of $\left\{k_{1}^{\alpha_{1}}, \ldots, k_{r}^{\alpha_{r}}\right\} \backslash\{k\}$. Each S_{i} also have s_{i} poles, with $s_{1}+s_{2}=s$. If we decompose the boundary saddle connection of S_{i} in two segments starting from the boundary singularity, and glue together these two segments, we then get a closed flat surface with $A_{i} \sqcup\left\{a_{1}-1,-1\right\} \sqcup\left\{-1^{s_{i}}\right\}$ for the order of the singularities. The Gauss-Bonnet theorem implies:

$$
\left(\sum_{a \in A_{i}} a\right)+a_{1}-2-s_{i}=-4
$$

c) Two "-" vertices of valence one and a " \circ " vertex of valence 2 . This case is analogous to the previous one.
d) A"-" vertex of valence one, joined by an edge to a valence three " \circ " vertex and an edge joining the "०" vertex to itself. The "-" vertex represents a one-holed
sphere. It has a single boundary component which is a closed saddle connection. The cylinder has two boundary components of equal lengths. One has two saddle connections of length 1 (after normalization) the other component has a single saddle connection of length 2 . So, the only possible configuration is obtained by gluing the two saddle connections of length 1 together (creating a "half-pillowcase") and gluing the other one with the boundary of the "-" component. The boundary singularity of the "-" component has an angle of $(k+2-1) \pi$ (equivalently, has order k) for some $k \in\left\{k_{1}, \ldots, k_{r}\right\}$.
e) A valence four " "' vertex with two edges joining the vertex to itself. The cylinder has two boundary components, each of them is composed of two saddle connections. All the saddle connections have the same length. If we glue a saddle connection with one of the other connected component of the boundary, we get a flat torus, which has trivial holonomy and genus greater than zero. So, we have to glue each saddle connection with the other saddle connection of its boundary component. That means that we get a (twisted) "pillowcase" and the surface belongs to $\mathcal{Q}(-1,-1,-1,-1)$.

In each of the first four cases, the surface necessary has a singularity of order at least one. So, they cannot appear in $\mathcal{Q}(-1,-1,-1,-1)$, which means that the fifth case is the only possibility in that stratum.

3. Configurations for hyperelliptic connected components

In this section, we describe the configurations of homologous saddle connections in a hyperelliptic connected component. We first reformulate Lanneau's description of such components, see [L1].

Theorem (E. Lanneau). The hyperelliptic connected components are given by the following list:
(1) The subset of surfaces in $\mathcal{Q}\left(k_{1}, k_{1}, k_{2}, k_{2}\right)$, that are a double covering of a surface in $\mathcal{Q}\left(k_{1}, k_{2},-1^{s}\right)$ ramified over s poles. Here k_{1} and k_{2} are odd, $k_{1} \geq-1$ and $k_{2} \geq 1$, and $k_{1}+k_{2}-s=-4$.
(2) The subset of surfaces in $\mathcal{Q}\left(k_{1}, k_{1}, 2 k_{2}+2\right)$, that are a double covering of a surface in $\mathcal{Q}\left(k_{1}, k_{2},-1^{s}\right)$ ramified over s poles and over the singularity of order k_{2}. Here k_{1} is odd and k_{2} is even, $k_{1} \geq-1$ and $k_{2} \geq 0$, and $k_{1}+k_{2}-s=-4$.
(3) The subset of surfaces in $\mathcal{Q}\left(2 k_{1}+2,2 k_{2}+2\right)$, that are a double covering of a surface in $\mathcal{Q}\left(k_{1}, k_{2},-1^{s}\right)$ ramified over all the singularities. Here k_{1} and k_{2} are even, $k_{1} \geq 0$ and $k_{2} \geq 0$, and $k_{1}+k_{2}-s=-4$.

Taking a double covering of the configurations arising on $\mathbb{C P} \mathbb{P}^{1}$, one can deduce configurations for hyperelliptic components. This leads to the following theorem:

Theorem 3.1. In the notations of the classification theorem above, the admissible configurations of homologous saddle connections for hyperelliptic connected components are given by Tables 2, 3, 4 and 5. No other configuration can appear.

Remark 3.2. Integer parameters $k_{1}, k_{2} \geq-1$ in Tables $2,3,4$ are allowed to take values -1 and 0 as soon as this does not contradict explicit restrictions. In Table 5, we list several additional configurations which appear only when at least one of k_{1}, k_{2} is equal to zero.

Remark 3.3. In the description of configurations for the hyperelliptic connected component $\mathbb{Q}^{\text {hyp }}\left(k_{1}, k_{1}, k_{2}, k_{2}\right)$ with $k_{1}=k_{2}$, the notation k_{i}, k_{i} (resp. $\left.k_{j}, k_{j}\right)$ still represents the orders of a pair of singularities that are interchanged by the hyperelliptic involution. For example in a generic surface in the hyperelliptic component $Q^{\text {hyp }}(k, k, k, k)$, for $k \geq 1$, the second line of Table 3 means that, between any pair of singularities that are interchanged by the hyperelliptic involution on S, there exists a saddle connection with no other saddle connections homologous to it. But if γ is a saddle connection between two singularities that are not interchanged by the involution τ, then $\tau(\gamma)$ is a saddle connection homologous to γ (see below), and which is different from γ.

Proof. Let $\mathcal{Q}^{\text {hyp }}$ be a hyperelliptic connected component as in the list of the previous theorem and $\mathcal{Q}=\mathcal{Q}\left(k_{1}, k_{2},-1^{s}\right)$ the corresponding stratum on $\mathbb{C} \mathbb{P}^{1}$. The projection $p: \widetilde{S} \rightarrow \widetilde{S} / \tau=S$, where $\widetilde{S} \in \mathcal{Q}^{\text {hyp }}$ and τ is the corresponding hyperelliptic involution, induces a covering from $\mathcal{Q}^{\text {hyp }}$ to \mathcal{Q}. This is not necessarily a one-to-one map because there might be a choice of the ramification points on $\mathbb{C P} \mathbb{P}^{1}$. But if we fix the ramification points, there is a locally one-to-one correspondence.

Recall that theorem of Masur and Zorich cited after Definition 1.1 says that two saddle connections are homologous if and only if the ratio of their length is constant under any small perturbation of the surface inside the ambient stratum. Therefore, two saddle connections in $\widetilde{S} \in \mathcal{Q}^{\text {hyp }}$ are homologous if and only if the corresponding saddle connections in S are homologous. Hence the image under p of a maximal collection $\tilde{\gamma}$ of homologous saddle connections on \widetilde{S} is a collection γ of homologous saddle connections on S. Note that γ is not necessary maximal since the preimage of a pole by p is a marked point on \widetilde{S} and we do not consider saddle connections starting from a marked point. However, we can deduce all configurations for $\mathcal{Q}^{\text {hyp }}$ from the list of configurations for \mathcal{Q}.

We give details for a few configurations, the other ones are similar and the proofs are left to the reader.

First line of Table 2: the configuration for $\mathcal{Q}=\mathcal{Q}\left(k_{1}, k_{2},-1^{s}\right)$ corresponds to a single saddle connection γ on a surface S that joins a singularity P_{1} of degree k_{1} to the distinct singularity P_{2} of degree k_{2}. The double covering is ramified over P_{2} but not over P_{1}. Therefore, the preimage of γ in \widetilde{S} is a pair $\left\{\tilde{\gamma}_{1}, \tilde{\gamma}_{2}\right\}$ of saddle

Table 2. Configurations for $\mathcal{Q}^{\text {hyp }}\left(k_{1}, k_{1}, 2 k_{2}+2\right)$.
Q($\left.k_{1}, k_{2},-1^{s}\right)\left(\mathbb{C P}^{1}\right)$

Table 3. Configurations for $\mathcal{Q}^{\text {hyp }}\left(k_{1}, k_{1}, k_{2}, k_{2}\right)$.
$Q\left(k_{1}, k_{2},-1^{s}\right)\left(\mathbb{P}^{1}\right)$

Table 4. Configurations for $\mathcal{Q}^{\text {hyp }}\left(2 k_{1}+2,2 k_{2}+2\right)$.
Q $\left.k_{1}, k_{2},-1^{s}\right)\left(\mathbb{P P}^{1}\right)$
connections of the same lengths that join each preimage of P_{1} to the preimage of P_{2}. The boundary of compactification of $\widetilde{S} \backslash\left\{\tilde{\gamma}_{1}, \tilde{\gamma}_{2}\right\}$ admits only one connected component that consists of four saddle connections. The angles of the boundary singularities corresponding to the preimages of P_{1} are both $\left(k_{1}+2\right) \pi$, and the angles of the other boundary singularities are $\left(k_{2}+2\right) \pi$ since $\left\{\tilde{\gamma}_{1}, \tilde{\gamma}_{2}\right\}$ are interchanged by the hyperelliptic involution.

Fourth line of Table 2: the configuration for $\mathcal{Q}=\mathcal{Q}\left(k_{1}, k_{2},-1^{s}\right)$ corresponds to a single closed saddle connection γ on a flat surface S that separates the surface into two parts S_{1} and S_{2}. Each S_{i} contains some ramification points, so the preimage of γ separates \widetilde{S} into two parts \widetilde{S}_{1} and \tilde{S}_{2} that are double covers of S_{1} and S_{2}. One of the \widetilde{S}_{i} has an interior singularity of order $2 k_{2}+2$, while the other one does not have interior singularities. The description from Masur and Zorich of possible graphs of connected components (see Figure 2) implies that \widetilde{S}_{1} and \widetilde{S}_{2} cannot have the same holonomy. Let \widetilde{S}_{2} be the component with trivial holonomy, and choose ω a square root of the quadratic differential that defines its flat structure. If \widetilde{S}_{2} has two boundary components, each consisting of a single saddle connection, then the corresponding boundary singularities must be of even order a_{2}. If \widetilde{S}_{2} has a single boundary component, then integrating ω along that boundary must give zero (ω is closed), which is only possible if the order a_{2} of the boundary singularities are odd. Applying Lemma 3.4 below, we see that \widetilde{S}_{2} does not have interior singularity. Hence, \widetilde{S}_{1} has an interior singularity of order $2 k_{2}+2$. The order of the boundary singularities of \widetilde{S}_{1} are both $a_{1}=k_{1}-a_{2}$, which is of parity opposite to the one of a_{2}. Applying again Lemma 3.4, we get the number of boundary components of \widetilde{S}_{1}.

Last line of Table 2: the configuration for $\mathcal{Q}=\mathcal{Q}\left(k_{1}, k_{2},-1^{s}\right)$ corresponds to a pair of saddle connections on a surface $S \in Q$ that separate the surface into a cylinder C and a one-holed sphere S_{1}. The double cover \widetilde{S}_{1} of S_{1} is connected, and applying Lemma 3.4 we see that it has two boundary components. The double cover \tilde{C} of the cylinder C admits no ramification points. So a priori, there are two possibilities: \tilde{C} is either a cylinder of the same length and a width twice bigger than the width of C, or it is a pair of copies of C. Here, the first possibility is not realizable otherwise the double covering $\widetilde{S} \rightarrow S$ would be necessary ramified over k_{1}. Finally we get \widetilde{S} by gluing a boundary component of each cylinder to each boundary component of \widetilde{S}_{1}, and gluing together the remaining boundary components of the cylinders.
Note that the preimage of the saddle connection joining a pair of poles on S is a regular closed geodesic in \widetilde{S}, and hence in our convention, we do not consider such a saddle connection in the collection of homologous saddle connections on \widetilde{S}.

When at least one of k_{1} or k_{2} equals zero, there is a marked point on $\mathbb{C} \mathbb{P}^{1}$ that is a ramification point of the double covering. Hence we have to start from a configuration of saddle connections on $\mathbb{C} \mathbb{P}^{1}$ that might have marked points as end points:

- If a maximal collection of homologous saddle connection on $\mathbb{C P}{ }^{1}$ does not in-
tersect a marked point, then the collection has already been described in Theorem 2.2, and hence, the corresponding configuration in $Q^{\text {hyp }}$ is already presented in Tables 2 and 4.
- If a non-closed saddle connection in a collection admits a marked point as end point, then this saddle connection is simple since we can move freely that marked point. Hence the corresponding configuration in $Q^{\text {hyp }}$ is already written in Tables 2 and 4.
- If a closed saddle connection admits a marked point as end point, then it is a closed geodesic. This corresponds to a new configuration on $\mathbb{C P}^{1}$ and the corresponding configuration in $Q^{\text {hyp }}$ is described in Table 5. The proof is analogous to the other cases.

Table 5. Additional configurations which appears when at least one of k_{1} or k_{2} equals 0 .
Q $\left(k_{i}, 0,-1^{s}\right) \quad 1$

This concludes the proof of Theorem 3.1.
Lemma 3.4. Let S_{i} be a flat surface whose boundary consists of a single closed saddle connection and let $a>0$ be the order of the corresponding boundary singularity. Let \widetilde{S}_{i} be a connected ramified double cover of the interior of S_{i} and let $\left(\tilde{k}_{1}, \ldots, \tilde{k}_{l}\right)$ be the orders of the interior singularities. The sum $\sum_{i} \tilde{k}_{i}$ is even and:

- If $\frac{\sum_{i} \tilde{k}_{i}}{2}+a$ is even, then the compactification of \tilde{S}_{i} has two boundary components, each of them consists of a single saddle connection, with corresponding
boundary singularity of order a.
- If $\frac{\sum_{i} \tilde{k}_{i}}{2}+a$ is odd, then the compactification of \tilde{S}_{i} has a single boundary component which consists of a pair of saddle connections of equal lengths, with corresponding boundary singularities of order a.

Proof. By construction, the boundary of the compactification of \widetilde{S}_{i} necessary consists of two saddle connections of equal lengths. It has one or two connected components.

Now we claim that

$$
\sum_{i} \tilde{k}_{i}+2 a \equiv 2 r \quad \bmod 4
$$

where r is the number of connected components of the boundary of \widetilde{S}_{i}. This equality (that already appears in [MZ]) clearly implies the lemma. To prove the claim, we consider as in Lemma 2.5 the surface \tilde{X} of genus $g_{\tilde{X}}$ obtained by gluing \widetilde{S}_{i} and a copy of itself with opposite orientation along their boundaries. The orders of the singularities of \tilde{X} are $\left\{\tilde{k}_{1}, \ldots, \tilde{k}_{l}, \tilde{k}_{1}, \ldots, \tilde{k}_{l}, 2 a, 2 a\right\}$, so we get

$$
4 g_{\tilde{X}}-4=2 \sum_{i} \tilde{k}_{i}+4 a=4\left(2 \tilde{g}_{i}+r-1\right)-4
$$

and therefore

$$
\sum_{i} \tilde{k}_{i}+2 a=4 g_{i}-4+2 r \equiv 2 r \quad \bmod 4
$$

Given a concrete flat surface, we do not necessary see at once whether it belongs or not to a hyperelliptic connected component. Indeed, there exists hyperelliptic flat surfaces that are not in a hyperelliptic connected component. As a direct corollary of Theorem 3.1, we have the following quick test.

Corollary 3.5. Let S be a flat surface with non-trivial holonomy and let γ be a collection of homologous saddle connections on S. If one of the following property holds, then the surface S does not belong to a hyperelliptic connected component.

- $S \backslash \gamma$ admits three connected components and neither of them is a cylinder.
- $S \backslash \gamma$ admits four connected components or more.

4. Configurations for non-hyperelliptic connected components

Following [MZ], given a fixed stratum, one can get a list of all realizable configurations of homologous saddle connections. Nevertheless it is not clear which configuration realizes in which component. In the previous section we have described configurations for hyperelliptic components.

In the section we show that any configuration realizable for a stratum is realizable in its non-hyperelliptic connected component, provided the genus g is sufficiently large.

We will use the following theorem which is a reformulation of the theorem of Kontsevich-Zorich and the theorem of Lanneau cited in Section 1.1.

Theorem (M. Kontsevich, A. Zorich; E. Lanneau). The following strata consists entirely of hyperelliptic surfaces and are connected.

- $\mathscr{H}(0), \mathscr{H}(0,0), \mathscr{H}(1,1)$ and $\mathscr{H}(2)$ in the moduli spaces of Abelian differentials.
- $\mathcal{Q}(-1,-1,1,1), \mathcal{Q}(-1,-1,2), \mathcal{Q}(1,1,1,1), \mathcal{Q}(1,1,2)$ and $\mathcal{Q}(2,2)$ in the moduli spaces of quadratic differentials.

Any other stratum that contains a hyperelliptic connected component admits at least one other connected component. Each of these other components contains a subset of full measure of flat surfaces that do not admit any isometric involution.

Lemma 4.1. Let \mathcal{Q} be a non-connected stratum that contains a hyperelliptic connected component. If the set of order of singularities defining \mathcal{Q} contains $\{k, k\}$, for some $k \geq 1$, then there exists a non-hyperelliptic flat surface in \mathcal{Q} having a simple saddle connection joining two different singularities of the same order k.

Here we call a saddle connection "simple" when there are no other saddle connections homologous to it.

Proof. According to Masur and Smillie [MS], any stratum is nonempty except the following four exceptions: $\mathcal{Q}(\emptyset), \mathcal{Q}(1,-1), \mathcal{Q}(3,1)$ and $\mathcal{Q}(4)$.

By Masur and Zorich [MZ] (see also [EMZ]), if $S \in \mathcal{Q}\left(k_{1}+k_{2}, k_{3}, \ldots, k_{r}\right)$, then there is a continuous path $\left(S_{t}\right)_{t \in[0,1]}$ in the moduli space of quadratic differentials, such that $S_{0}=S$ and S_{t} is in $\mathcal{Q}\left(k_{1}, k_{2}, k_{3}, \ldots, k_{r}\right)$ for $t>0$, and such that the smallest saddle connection on S_{t}, for $t>0$ is simple and joins a singularity of order k_{1} to a singularity of order k_{2}. We say that we "break up" the singularity of order $k_{1}+k_{2}$ into two singularities of order k_{1} and k_{2}.

We first consider the stratum $\mathcal{Q}=\mathcal{Q}\left(k_{1}, k_{1}, k_{2}, k_{2}\right)$. By assumption, \mathcal{Q} is nonconnected, so, either the genus is greater than 3 , or $k_{1}=3$ and $k_{2}=-1$. Hence the stratum $\mathcal{Q}\left(2 k_{1}+k_{2}, k_{2}\right)$ is nonempty. Now, we start from a surface S_{0} in that stratum, and break up the singularity P of order $2 k_{1}+k_{2}$ into two singularities P_{1} and P_{2} of orders $2 k_{1}$ and k_{2} respectively (see Figure 5). We get a surface S_{1} with a short vertical saddle connection γ_{1} between P_{1} and P_{2}. Since the "singularity breaking up" procedure is continuous, there are no other short saddle connections on S_{1}. Then, we break up the singularity P_{1} of order $2 k_{1}$ into a pair of singularities $P_{1,1}$ and $P_{1,2}$ of orders k_{1}. We get by construction a surface S_{2} in the stratum \mathcal{Q} with a simple

Figure 5. Construction of a simple saddle connection in a non-hyperelliptic surface.
saddle connection γ_{2} between $P_{1,1}$ and $P_{1,2}$, and of length very small compared to the length of γ_{1}.

The fact that the "singularity breaking up" procedure is continuous implies that there persists a saddle connection γ_{1}^{\prime} between P_{2} and one of the $P_{1, i}$ (see Figure 5). By construction, we can assume there are no other saddle connections of length $\kappa l\left(\gamma_{1}^{\prime}\right)$, where $l\left(\gamma_{1}^{\prime}\right)$ denotes the length of γ_{1}^{\prime} and $\kappa \in\left\{\frac{1}{2}, 1,2\right\}$. Hence, γ_{1}^{\prime} is simple by theorem of Masur and Zorich cited after Definition 1.1. According to Theorem 3.1, this cannot exist in the hyperelliptic connected component since the corresponding configuration is not present in Table 3. Thus S_{2} belongs to the non-hyperelliptic connected component and we can assume, after a slight perturbation, than S_{2} is not hyperelliptic. Since by construction, the saddle connection γ_{2} is simple and joins two singularities of order $k=k_{1} \geq 1$, the lemma is proven for the stratum Q $\left(k_{1}, k_{1}, k_{2}, k_{2}\right)$.

The proofs for $\mathcal{Q}\left(k_{1}, k_{1}, 2 k_{2}+2\right)$ and for $\mathcal{Q}\left(2 k_{1}+2,2 k_{2}+2\right)$ are analogous: note that these case do not occur for the genera 1 or 2 , because all corresponding strata are connected. Therefore the genus is greater than or equal to 3 and the stratum $Q\left(2 k_{1}+2 k_{2}+2\right)$ is nonempty.

Theorem 4.2. Let \mathcal{Q} be a stratum of meromorphic quadratic differentials with at most simple poles on a Riemann surface of genus $g \geq 5$. If \mathcal{Q} admits a hyperelliptic connected component, then \mathcal{Q} is non-connected and any configuration for \mathcal{Q} is realized for a surface in the non-hyperelliptic connected component of \mathcal{Q}.

Proof. The fact that \mathcal{Q} is non-connected follows directly from the Theorem of Lanneau. Let S be a flat surface in the hyperelliptic component of Q and let $\gamma=$ $\left\{\gamma_{1}, \ldots, \gamma_{r}\right\}$ be a maximal collection of homologous saddle connections. The hyperelliptic involution τ maps γ to itself and hence, induces an involution on the set of connected components of $S \backslash \gamma$. Recall that the map $S \mapsto S / \tau$ corresponds to a
covering from the hyperelliptic connected component to a stratum of quadratic differentials on $\mathbb{C} \mathbb{P}^{1}$. Let us denote by p the double cover that maps $x \in S$ to (x $\bmod \tau) \in S / \tau$. The collection $p(\gamma)=p\left(\gamma_{1} \cup \cdots \cup \gamma_{r}\right)$ is a collection of homologous saddle connections on $p(S)=S / \tau$. Let S_{0} be a connected component of $S \backslash \gamma$. By definition, S_{0} and $S_{1}:=\tau\left(S_{0}\right)$ are isometric and are projected to the same component of $p(S) \backslash p(\gamma)$. This is still true in a neighborhood of S in the ambient stratum. Hence S_{0} and S_{1} must keep being isometric if we continuously deform S. If they were two different components of $S \backslash \gamma$, then one could deform S_{0} outside a neighborhood of its boundary and reconstruct a new flat surface S^{\prime} close to S, contradicting the previous assertion. Therefore, if S is in a hyperelliptic component, then τ must induce an isometric and orientation preserving involution on each connected component of $S \backslash \gamma$.

Using the formula for the genus of a compound surface proved in the appendix and the list of configurations for hyperelliptic connected components given in the previous section, we derive the following fact: if S has genus $g \geq 5$ and if γ is a maximal collection of homologous saddle connections, then at least one of the following three propositions is true. We first specify two conventions. In the next statements, we indicate each case by the number of the table and the line. For instance, case 3.2 corresponds to the second line of Table 3. When a case appears in two different statements, we mean that there is always at least one of the two statements which is true for this case.
a) $S \backslash \gamma$ admits a connected component S_{0} of genus $g_{0} \geq 3$, that has a single boundary component and whose corresponding vertex in the graph $\Gamma(S, \gamma)$ is of valence 2. This corresponds to the cases 2.2, 2.4b, 2.7, 3.2, 3.3b, 3.4, 4.5, 5.1, and 2.5, 2.6, 4.3.
b) $S \backslash \gamma$ admits a connected component S_{0} of genus $g_{0} \geq 2$, that has exactly two boundary components and whose corresponding vertex in the graph $\Gamma(S, \gamma)$ is of valence 2. This corresponds to the cases 2.3, 2.4a, 2.8, 3.3a, 3.5, 4.2, 4.4, 5.2, and 2.5, 2.6, 4.3.
c) $S \backslash \gamma$ is connected and the corresponding vertex in the graph $\Gamma(S, \gamma)$ is of valence 4 . This corresponds to the cases $2.1,3.1$, and 4.1.
Remark that the only case that is not listed previously is case 5.3 , but it corresponds to the genus 2. The proof now follows from Lemmas 4.3, 4.4, 4.5 to situations a), b), c) correspondingly.

Lemma 4.3. Let S be a flat surface in a hyperelliptic connected component and let γ be a maximal collection of homologous saddle connections. We assume that $S \backslash \gamma$ admits a connected component S_{0} of genus $g_{0} \geq 3$, whose corresponding vertex in the graph $\Gamma(S, \gamma)$ is of valence 2 , and such that S_{0} has a single boundary component.

Then there exists $\left(S^{\prime}, \gamma^{\prime}\right)$ that has the same configuration as (S, γ), with S^{\prime} in the complementary component of the same stratum.

Proof. The boundary components of S_{0} consists of two saddle connections of the same length and the corresponding boundary singularities have the same orders $k \geq 1$. Identifying together these two boundary saddle connections, we get a hyperelliptic surface \bar{S}_{0}. If we continuously deform this surface, it keeps being hyperelliptic since we can perform the reverse surgery and get a continuous deformation of S. Hence, \bar{S}_{0} belongs to a hyperelliptic component, and the hyperelliptic involution interchange two singularities of order $k-1$.

The genus of \bar{S}_{0} is greater than 3 , so the corresponding stratum admits an other connected component. Now we start from a closed flat surface X in this other connected component. According to Lemma 4.1, we can choose X such that it admits a simple saddle connection between the two singularities of order $k-1$. Now we cut X along that saddle connection and we get a surface S_{1} that have, after rescaling, the same boundary as S_{0}. By construction, S_{1} admits no interior saddle connections homologous to one of its boundary saddle connections. So, we can reconstruct a pair ($S^{\prime}, \gamma^{\prime}$) such that γ^{\prime} has the same configuration as γ in S.

The surface S_{1} admits a nontrivial isometric involution if and only if X shares this property. So, we can choose X in such a way it admits no nontrivial isometric involutions, and therefore the surface S^{\prime} is non-hyperelliptic.

This argument also works when \bar{S}_{0} is in the stratum $\mathcal{Q}(3,3,-1,-1)$ (here $g_{0}=2$ and $k=4$). In any other case for $g_{0} \leq 2$, it is not possible to replace S_{0} by a surface S_{1} with no involutions.

Lemma 4.4. Let S be a flat surface in a hyperelliptic connected component and let γ be a maximal collection of homologous saddle connections. We assume that $S \backslash \gamma$ admits a connected component S_{0} of genus $g_{0} \geq 2$, that has two boundary components, and whose corresponding vertex in the $\operatorname{graph} \Gamma(S, \gamma)$ is of valence 2.

Then there exists $\left(S^{\prime}, \gamma^{\prime}\right)$ that has the same configuration as (S, γ), with S^{\prime} in the complementary component of the same stratum.

Proof. Each boundary component of S_{0} consists of one saddle connection and the corresponding boundary singularities have the same orders $k \geq 1$. Now we start from a closed flat surface X with the same holonomy as S_{0} and whose singularities consists of the interior singularities of S_{0} and two singularities P_{1} and P_{2} of order $k-2$. We can always choose X such that it admits a saddle connection η between P_{1} and P_{2}.

Now we construct a pair of holes by removing a parallelogram as in Figure 6 and gluing together the two long sides. Note that the holes can be chosen arbitrarily small, and therefore, the resulting surface with boundary does not have any interior saddle connection homologous to one of its boundary components. We denote by S_{1} this surface, and up to rescaling, we can assume that S_{0} and S_{1} have isometric boundaries. Hence replacing S_{0} by S_{1} in the decomposition of S, we get a new pair ($S^{\prime}, \gamma^{\prime}$) that have the same configuration as (S, γ).

Figure 6. Construction of a pair of holes.

We denote by l the saddle connection joining the two boundary singularities and corresponding to the two sides of the parallelogram in the previous surgery (see Figure 6). For each hole, the separatrices parallel to l are naturally ordered by turning counterclockwise around the boundary singularity (starting from the hole). For this order, the separatrix corresponding to l is the second one.

We now assume that S_{1} admits a nontrivial isometric (orientation preserving) involution τ. Then this involution interchanges the two boundary components of the surface. This involution preserves the previous order, hence it fixes globally the saddle connection l. Then we can perform the reverse surgery as the one described previously and we get a closed surface that admits a nontrivial involution. Hence if X belongs to a stratum that does not consist entirely of hyperelliptic flat surfaces, then we can choose X such that S^{\prime} is not in a hyperelliptic connected component.

The hypothesis on the genus, the theorem of Kontsevich-Zorich and the theorem of Lanneau imply that this argument works except when X belongs to $\mathscr{H}(1,1)$, $\mathcal{Q}(2,1,1), \mathcal{Q}(1,1,1,1)$, or $\mathcal{Q}(2,2)$.

We remark that if $X \in Q(2,2)$, then S_{0} must have nontrivial linear holonomy and no interior singularities. According to the list of configurations for hyperelliptic connected components given in section 3, this cannot happen.

We exhibit in Figure 7 three explicit surfaces with boundary that corresponds to the three cases left. We represent these three surfaces as having a one-cylinder decomposition and by describing the identifications on the boundary of that cylinder. The length parameters can be chosen freely under the obvious condition that the sum of the lengths corresponding to the top of the cylinder must be equal to the sum of the lengths corresponding to the bottom of the cylinder. Bold lines represents the boundary of the flat surface. Now we remark that a nontrivial isometric involution must preserve the interior of the cylinder, and must exchange the boundary components. This induces some additional relations on the length parameters. Therefore, we can choose them such that there are no nontrivial isometric involutions.

Lemma 4.5. Let S be a flat surface of genus $g \geq 3$ with nontrivial linear holonomy that belongs to a hyperelliptic connected component and let $\gamma=\left\{\gamma_{1}, \gamma_{2}\right\}$ be a

Figure 7. Surfaces with two boundary components and no involutions in low genus.
maximal collection of homologous saddle connections on S. If $S \backslash \gamma$ is connected, then there exists $\left(S^{\prime}, \gamma^{\prime}\right)$ that has the same configuration as (S, γ), with S^{\prime} in the complementary component of the same stratum.

Proof. Since $S \backslash \gamma$ is connected, the graph $\Gamma(S, \gamma)$ contains a single vertex, and it has valence four. According to Theorem 3.1, two different cases appear:
a) The surface $\overline{S \backslash \gamma}$ has one boundary component. In this case, k_{1} is odd and k_{2} is even, we start from a surface in $\mathscr{H}\left(k_{1}+k_{2}+1\right)$ and perform a local surgery in a neighborhood of the singularity as described in Figure 8 (see also [MZ], Section 5). We get a surface and a pair of small saddle connections of length δ that have the same configuration as γ. The stratum $\mathscr{H}\left(k_{1}+k_{2}+1\right)$ admits non-hyperelliptic components and the same argument as in the previous lemmas works: if we start from a generic surface in a non-hyperelliptic component, then the resulting surface after surgery does not have any nontrivial involution.

Figure 8. Breaking up a zero in three ones.
b) The surface $\overline{S \backslash \gamma}$ has two boundary components, each of them consists of a
pair of saddle connections with boundary singularities of order $k_{1}+1$ and $k_{2}+1$. We construct explicit surfaces with the same configuration as γ, but that have no nontrivial involutions. Let $2 n=k_{1}+k_{2}+2$ and we start from a surface S_{0} of genus n in $\mathscr{H}(n-1, n-1)$, that have a one-cylinder decomposition and such as identification on the boundary of that cylinder is given by the permutation

$$
\left(\begin{array}{cccc}
1 & 2 & \ldots & 2 n \\
2 n & 2 n-1 & \ldots & 1
\end{array}\right)
$$

when n is even, and otherwise by the permutation

$$
\left(\begin{array}{cccccccccc}
1 & 2 & \ldots & n-1 & n & n+1 & n+2 & \ldots & 2 n-1 & 2 n \\
n-1 & n-2 & \ldots & 1 & n & 2 n-1 & 2 n-2 & \ldots & n+1 & 2 n
\end{array}\right)
$$

We assume that k_{1} and k_{2} are odd and we perform a surgery on S_{0} to get a surface S_{1} with boundary as pictured on Figure 9. The surface S_{1} admits two boundary components that consist of two saddle connections each and which are represented by the bold segments. Each symbol $\circ, \bullet, \square, \square$ represents a different boundary singularity. It is easy to check that the boundary angles corresponding to \square and \square are both $\left(k_{1}+2\right) \pi$ and that the angles corresponding to \bullet and \circ are $\left(k_{2}+2\right) \pi$. Hence after suitable identifications of the boundary of S_{1}, we get a surface S^{\prime} and a pair of homologous saddle connections γ^{\prime} that have the same configuration as (S, γ). However, S^{\prime} does not admit any nontrivial involution if the length parameters are chosen generically. Note that this construction does not work when $n=2$, but according to section 3, and since k_{1} and k_{2} are odd, we have $n=g$, which is greater than or equal to 3 by assumption.

The case k_{1} and k_{2} even is analogous and left to the reader (note that in this case, $g=n+1$, and the construction works also for $n=2$).

Appendix. Computation of the genus in terms of a configuration

Here we improve Lemma 2.4 and give the relation between the genus of a surface and the genera of the connected components of $S \backslash \gamma$, where γ is a collection of homologous saddle connections.

We first remark that this relation depends not only on the graph of connected components, but also on the permutation on each of its vertices (i.e. on the ribbon graph). Indeed, let us consider a pair of homologous saddle connections that decompose the surface into two connected components S_{1} and S_{2}. Then either both S_{1} and S_{2} have only one boundary component, or at least one of them has two boundary components. In the first case, S is the connected sum of \widetilde{S}_{1} and \widetilde{S}_{2}, so $g=g_{1}+g_{2}$, while in the second case, one has $g=g_{1}+g_{2}+1$.

Figure 9. Valence four component with no involutions.

Definition 1. Let (S, γ) be a flat surface with a collection of homologous saddle connections. The pure ribbon graph associated to (S, γ) is the 2-dimensional topological manifold obtained from the ribbon graph by forgetting the graph $\Gamma(S, \gamma)$, as in Figure 10.

Proposition 2. Let χ_{1} be the Euler characteristic of $\Gamma(S, \gamma)$, let χ_{2} (resp. n) be the Euler characteristic (resp. the number of connected components) of the pure ribbon graph associated to the configuration.

- If the pure ribbon graph has only one connected component and does not embed into the plane (see Figure 11), then

$$
g=\left(\sum_{i} g_{i}\right)+1
$$

- In any other case,

$$
g=\left(\sum_{i} g_{i}\right)+\left(\chi_{2}-n\right)-\left(\chi_{1}-1\right) .
$$

Figure 10. Pure ribbon graph.

Figure 11. Example of a ribbon graph that does not embed into \mathbb{R}^{2}.

Remark 3. Simply connected components of the pure ribbon graph do not contribute to the term $\left(n-\chi_{2}\right)$, since the Euler characteristic of a disc is 1 .

Note also that in the first case, we have $\chi_{1}=-1$ and $\chi_{2}=-1$, and therefore $\left(\sum_{i} g_{i}\right)+1 \neq\left(\sum_{i} g_{i}\right)+\left(\chi_{2}-n\right)-\left(\chi_{1}-1\right)$.

Proof. Here we do not assume that the collection γ is necessary maximal. When $\Gamma(S, \gamma)$ has a single vertex, then we prove the proposition using direct computation and the description of the boundary components corresponding to each possible ribbon graph. We refer to [MZ] for this description. Then our goal is to reduce ourselves to that case by removing successively from the collection $\gamma=\left\{\gamma_{1}, \ldots, \gamma_{k}\right\}$ some γ_{i} whose corresponding edges joins a vertex to a distinct one.

We define a new graph $G(S, \gamma)$, which is a deformation retract of the pure ribbon graph: the vertices of $G(S, \gamma)$ are the boundary components of each S_{i}, while the edges correspond to the saddle connections in γ (see Figure 12). For each vertex, there is a cyclic order on the set of edges adjacent to the vertex consistent with the orientation of the plane. If the initial pure ribbon graph does not embed into the plane, then it is also the case for $G(S, \gamma)$. By construction, the Euler characteristic of $G(S, \gamma)$ is the same as the pure ribbon graph associated to (S, γ), and is easier to compute.

$G\left(S,\left\{\gamma_{1}, \gamma_{2}\right\}\right)$

$G\left(S,\left\{\gamma_{2}\right\}\right)$

Figure 12. Removing successively some elements of a collection $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$.

Let us assume that $\Gamma(S, \gamma)$ contains at least two vertices. Choose a saddle connection representing an edge joining two distinct vertices of $\Gamma(S, \gamma)$, and up to reenumeration, we can assume that this saddle connection is γ_{1}. Let us study the resulting configuration of $\gamma^{\prime}=\gamma \backslash\left\{\gamma_{1}\right\}$. The saddle connection γ_{1} is on the boundary of two surfaces S_{1} and S_{2}. Then the connected components of $S \backslash \gamma^{\prime}$ are the same as the connected component of $S \backslash \gamma$ except that the surfaces S_{1} and S_{2} are now glued along γ_{1}, and hence define a single surface $S_{1,2}$. The genus of $S_{1,2}$ (after gluing disks on its boundary) is $g_{1}+g_{2}$.

The graph $G\left(S, \gamma^{\prime}\right)$ is obtained from $G(S, \gamma)$ by shrinking an edge that joins two different vertices, so these two graphs have the same Euler characteristic χ_{1}.

Further, if γ_{1} was in a boundary component of S_{1} (resp. S_{2}) defined by the ordered collection $\left(\gamma_{1}, \gamma_{i_{1}}, \ldots, \gamma_{i_{s}}\right)$ (resp. $\left(\gamma_{1}, \gamma_{j_{1}}, \ldots, \gamma_{j_{t}}\right)$). Then the cyclic order in the corresponding boundary component of $S_{1,2}$ is defined by ($\gamma_{i_{1}}, \ldots, \gamma_{i_{s}}, \gamma_{j_{1}}, \ldots, \gamma_{j_{t}}$). Therefore $G\left(S, \gamma^{\prime}\right)$ is obtained from $G(S, \gamma)$ by shrinking the edge corresponding to γ_{1} and removing an isolated vertex that might appear (see Figure 12). It is clear that the difference $\left(\chi_{2}-n\right)$ between the Euler characteristic of $G(S, \gamma)$ and its number of connected component is constant under this procedure. One can also remark that if $G(S, \gamma)$ is connected and does not embed into the plane (case 1 of the proposition), then this is also true for $G\left(S, \gamma^{\prime}\right)$.

Forgetting successively these γ_{i} will lead to the case when $\Gamma(S, \gamma)$ has a single vertex. At each steps of the removing procedure, the numbers χ_{1} and $\chi_{2}-n$ do not change, and the sum of the genera associated to the vertices does not change either. This concludes the proof.

References

[AEZ] J. Athreya and A. Eskin, A. Zorich, Rectangular billiards and volume of spaces of quadratic differentials. In progress.
[EM] A. Eskin and H. Masur, Asymptotic formulas on flat surfaces. Ergodic Theory Dynam. Systems 21 (2) (2001), 443-478. Zbl 1096.37501 MR 1827113
[EMZ] A. Eskin, H. Masur and A. Zorich, Moduli spaces of Abelian differentials: the principal boundary, counting problems, and the Siegel-Veech constants. Publ. Math. Inst. Hautes Études Sci. 97 (2003), 61-179. Zbl 1037.32013 MR 2010740
[HLM] P. Hubert, E. Lanneau and M. Möller, The Arnoux-Yoccoz Teichmüller disc. Geom. Funct. Anal. 18 (2009), 1988-2016. MR 2491696
[HM] J. Hubbard and H. Masur, Quadratic differentials and foliations. Acta Math. 142 (1979), 221-274. Zbl 0415.30038 MR 0523212
[KaZe] A. Katok and A. Zemlyakov. Topological transitivity of billiards in polygons. Math. Notes 18, (1975), 760-764. Zbl 0323.58012 MR 0399423
[KZ] M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities. Invent. Math. 153 (2003), 631-678. Zbl 1087.32010 MR 2000471
[L1] E. Lanneau, Hyperelliptic components of the moduli spaces of quadratic differentials with prescribed singularities. Comment. Math. Helv. 79 (2004), 471-501. Zbl 1054.32007 MR 2081723
[L2] E. Lanneau, Connected components of the strata of the moduli spaces of quadratic differentials. Ann. Sci. École Norm. Sup. (4) 41 (2008), 1-56. Zbl 1161.30033 MR 2423309
[M] H. Masur, Interval exchange transformations and measured foliations. Ann. of Math. 115 (1982), 169-200. Zbl 0497.28012 MR 0644018
[MS] H. Masur and J. Smillie, Hausdorff dimension of sets of nonergodic measured foliations. Ann. of Math. 134 (1991), 455-543. Zbl 0774.58024 MR 1135877
[MT] H. Masur and S. Tabachnikov, Rational billiards and flat structures. In Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam 2002, 1015-1089. Zbl 1057.37034 MR 1928530
[MZ] H. Masur and A. Zorich, Multiple saddle connections on flat surfaces and the principal boundary of the moduli spaces of quadratic differentials. Geom. Funct. Anal. 18 (2008), 919-987. Zbl 05565918 MR 2439000
[Mc] C. McMullen, Dynamics of $\mathrm{SL}_{2}(\mathbb{R})$ over moduli space in genus two. Ann. of Math. 165 (2007), 397-456. Zbl 1131.14027 MR 2299738
[V1] W. A. Veech, Gauss measures for transformations on the space of interval exchange maps. Ann. of Math. 115 (1982), 201-242. Zbl 0486.28014 MR 0644019
[V2] W. A. Veech, The Teichmüller geodesic flow. Ann. of Math. 124 (1986), 441-530. Zbl 0658.32016 MR 0866707
[V3] W. A. Veech Moduli spaces of quadratic differentials. J. Analyse Math. 55 (1990), 117-171 Zbl 0722.30032 MR 1094714
[Z] A. Zorich, Flat surfaces. In Frontiers in Number Theory, Physics and Geometry, Vol. 1: On random matrices, zeta functions and dynamical systems, ed. by P. Cartier, B. Julia, P. Moussa and P. Vanhove, Springer-Verlag, Berlin 2006, 437-583. Zbl 1129.32012 MR 2261104

Received November 8, 2007
Corentin Boissy, Laboratoire d'Analyse Topologie, Faculté de Saint Jérôme,
Avenue Escadrille Normandie-Niemen, 13397 Marseille cedex 20, France
E-mail: corentin.boissy@latp.univ-mrs.fr

[^0]: ${ }^{1}$ The corresponding cycles are in fact homologous on the canonical double cover of S, usually denoted as \widehat{S}, see Section 1.2.

