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Erratum to “The Huber theorem for non-compact conformally
flat manifolds”

Gilles Carron and Marc Herzlich

Abstract. An argument in our paper The Huber theorem for non-compact conformally flat
manifolds [Comment. Math. Helv. 77 (2002), 192–220] was not justified. Using recent work by
G. Tian and J. Viaclovsky, we show that our result holds true.

In [4] we consider a complete conformally flat Riemannian manifold (Mn, g) which
satisfies the Sobolev inequality :
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|du|2 for all u ∈ C∞
0 (M), (1)

and whose Ricci tensor is in L
n
2 . On page 208 we then assert that “diameter is

controlled from above and volume growth is controlled from below (from the Sobolev
inequality) on each annulus Mkr −Mk−1r . We can then infer from Anderson–Cheeger
harmonic radius’ theory that the rescaled annuli (Mkri − Mk−1ri

, r−2
i g) are covered

by a finite (and uniformly bounded) number of balls of uniformly bounded size where
the metric coefficients are C1,α-close to the euclidean metric.” In fact, the trivial
extrinsic diameter bound is not enough to ensure Anderson–Cheeger compactness
(one needs an intrinsic diameter control) and this argument needs to be justified. This
is what we intend to do below.

First observe that the needed intrinsic diameter control can be replaced by an upper
bound on the volume growth of geodesic balls. Recently, G. Tian and J. Viaclovsky
[5] investigated an issue closely related to ours, and proved the following result:

Theorem ([5]). Let (Xn, g) be a complete noncompact Riemannian manifold of
dimension n ≥ 3. If there exists a constant C1 > 0 such that vol(B(q, s)) ≥ C1s

n,
for any q ∈ X, s ≥ 0, if furthermore supS(r) |Kg| = o(r−2) as r → ∞, where S(r)

is the sphere of radius r centered at a basepoint p, and if b1(X) < ∞, then there
exists a constant C2 so that

vol(B(p, s)) ≤ C2s
n for any s ≥ 0. (2)
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Using this one can show that our argument remains true. Indeed, the Sobolev
inequality implies that the manifold has an euclidean lower bound on the volume
growth of geodesic balls. Moreover, Sobolev and L

n
2 -integrability of the Ricci cur-

vature imply that the space of L2 harmonic 1-forms

H1(M) = {h ∈ L2(T ∗M), dα = 0, d∗α = 0}
and the first cohomology group with compact support H 1

c (M) have finite dimensions
[2], [3]. In particular M has a finite number of ends. As it is proved in [4] that
supS(r) |Kg| = o(r−2) in our setting, one can apply Tian–Viaclovsky’s theorem if
one has finiteness of the first Betti number.

However the assumption on the first Betti number is only used in their paper to
insure that the manifold has a finite number of ends (which we already have) and a
finite number of bad connected components of annuli, as defined below. This is then
used to prove the upper bound on the volume growth. A bad component of an annulus
is defined as follows: if p is a point in a complete (connected) Riemannian manifold
(M, g), let B(r) be the geodesic ball of radius r centered at p and, for R > r , let the
annulus A(r, R) be the closure of B(R)−B(r). Let (rk) be an unbounded increasing
sequence of positive real numbers and note Ak = A(rk, rk+1).

Definition ([5]). A connected component C of Ak is said to be bad if S(rk) ∩ C is
disconnected. If S(rk) ∩ C is connected, we say that C is good.

We now state:

Claim. The Sobolev inequality and L
n
2 -integrability of the Ricci curvature imply that

the number of bad connected components of any sequence of annuli is finite.

This will follow from the following

Lemma. If the image of H 1
c (M) in H 1(M) is zero ( for instance if H 1

c (M), H 1(M)

or H1(M) is zero) then all connected components of Ak are good.
If the dimension of the image of H 1

c (M) in H 1(M) is finite ( for instance if one
of the spaces H 1

c (M), H 1(M) or H1(M) has finite dimension), then there are only
a finite number of bad connected components.

Proof. To prove the first part, let C be a bad connected component of Ak , then
S(rk) ∩ C has at least two connected components let S1 be one of these connected
components and S2 be the union of the remaining other components ; choose p1 ∈ S1
and p2 ∈ S2. By definition there is a continuous curve c1 in C from p2 to p1. And
because B(rk) is connected there is also a continuous curve c2 in B(rk) from p1 to p2.
Let γC be the loop c2#c1. There also exist a smooth function f on C such that the
support of f is a neighborhood of S1 ⊂ C, such that f is constant near S(rk)∩C and
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such that f = 1 on S1. Then the 1-form αC = df has clearly an extension as a smooth
closed 1-form on M with support in a small thickening of S1 in C. It is clear that∫

γC

αC = 1.

Hence αC defines a non zero class in the first cohomology group with compact support
H 1

c (M) and also in the first cohomology group H 1(M). Now, M. Anderson ([1]) has
noticed that the space Im

(
H 1

c (M) → H 1(M)
)

always injects in the space of L2

harmonic 1-forms H1(M) and this yields the expected result.
To prove the second part of the lemma, let C1, . . . , Ck be different bad connected

components in a sequence (Ai). We can assume that for a non decreasing sequence
(ji) one has Ci ⊂ Arji

. Consider now the loops γi = γCi
and the 1-forms αi = αCi

.
Then it is clear that ∫

γi

αi = 1,

∫
γi

αj = 0 if i < j.

Hence k ≤ dim
[
Im

(
H 1

c (M) → H 1(M)
)]

. �

The proof of the claim is then done since our assumptions imply that the space of
L2 harmonic 1-forms is finite dimensional, as already noticed.
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