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Sharp inequalities for the coefficients of concave schlicht functions

F. G. Avkhadiev, Ch. Pommerenke and K.-J. Wirths

Abstract. Let D denote the open unit disc and let f : D → C be holomorphic and injective
in D. We further assume that f (D) is unbounded and C \ f (D) is a convex domain. In this
article, we consider the Taylor coefficients an(f ) of the normalized expansion

f (z) = z +
∞∑

n=2

an(f )zn, z ∈ D,

and we impose on such functions f the second normalization f (1) = ∞. We call these functions
concave schlicht functions, as the image of D is a concave domain. We prove that the sharp
inequalities ∣∣∣∣an(f ) − n + 1

2

∣∣∣∣ ≤ n − 1

2
, n ≥ 2,

are valid. This settles a conjecture formulated in [2].
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Let D denote the open unit disc and let f : D → C be holomorphic and injective in D.
In the last century, much research in geometric function theory was motivated by the
Bieberbach conjecture, which assures that for such functions f the sharp inequalities
|an(f )| ≤ n, n ≥ 2, are valid, if f is normalized by the expansion

f (z) = z +
∞∑

n=2

an(f )zn, z ∈ D.

Long before the proof of the Bieberbach conjecture by de Branges in 1985, Löwner
had obtained in 1917 that the inequalities |an(f )| ≤ 1 hold for convex functions f .

In the present paper, we prove sharp inequalities bridging the gap between these
two theorems. We consider functions f of the above type for which f (D) is un-
bounded and C \ f (D) is a convex set. We impose on these functions f the second
normalizationf (1) = ∞ and we call such functions concave schlicht functions. In [1]
it was conjectured that for concave schlicht functions the inequalities |an(f )| ≥ 1,
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n ≥ 2, are valid. This conjecture was proved in [2] and we also conjectured in the
same article that the inequalities

∣∣∣∣an(f ) − n + 1

2

∣∣∣∣ ≤ n − 1

2
(1)

are valid for concave schlicht functions f and for n ≥ 2. For θ ∈ [0, 2π ] \ {π} the
conformal maps

fθ (z) = 1

2
(
1 + eiθ

)
( (

1 + eiθ z

1 − z

)2

− 1

)
= z − 1

2

(
1 − eiθ

)
z2

(1 − z)2 (2)

map D onto the complex plane minus a (possibly skew) halfline, whereas

fπ(z) = z

1 − z
(3)

maps D onto a half plane. It is easy to check that equality holds in (1) for every n if
f = fθ , θ ∈ [0, 2π ].

Concerning the history of the conjecture (1) we mention that (1) is the limiting
case of another conjecture from [2] that seems to be more difficult to prove than (1).
That conjecture concerns functions f : D → C meromorphic and injective in D such
that C \f (D) is convex, f has a simple pole at the point p ∈ (0, 1) and a normalized
expansion

f (z) = z +
∞∑

n=2

an(f )zn, |z| < p.

These functions are called concave univalent functions with pole p. The family of
all such functions is denoted by Co(p). It was conjectured in [2] that

∣∣∣∣an(f ) − 1 − p2n+2

pn−1(1 − p4)

∣∣∣∣ ≤ p2(1 − p2n−2)

pn−1(1 − p4)
(4)

for f ∈ Co(p), p ∈ (0, 1) and n ≥ 2. The limiting case for p → 1 of (4) is (1) and
any concave schlicht function can be approximated by concave univalent functions
with pole in the unit disc (compare [1]).

J. Miller proved (4) for n = 2 in [7]. A. E. Livingston showed in [5] that

Re(a3(f )) ≥ 1 + p6

p2(1 + p2)

for f ∈ Co(p) and conjectured for f ∈ Co(p) and n ≥ 2 the validity of the inequality

Re(an(f )) ≥ 1 + p2n

pn−1(1 + p2)
.
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The case n = 3 of (4) was proved in [2] and the cases n = 4 and n = 5 in
[9]. According to the above observation this implies that (1) has been proved for
n = 2, 3, 4, 5.

In the sequel we will show that (1) holds for all n ≥ 2. This is the content of the
following theorem.

Theorem. For any concave schlicht function f (z) = z + · · · and any n ≥ 2 the
inequality (1) is valid. Equality in (1) is attained if and only if f = fθ for some
θ ∈ [0, 2π ].

The proof will show that (1) also holds for all functions in the closed convex
hull of the family of concave schlicht functions. First, we reduce our problem to
a question concerning the convex hull of certain products. This question has been
studied by Brickman, Hallenbeck, MacGregor, and Wilken in [3]. Their results allow
us to prove the following proposition.

Proposition. If f (z) = z + · · · is a concave schlicht function then

f ′(z) = 1 + zω(z)

(1 − z)3 , z ∈ D, (5)

where ω : D → D is holomorphic.

Proof. First we observe that the boundary of f (D) may be approximated by concave
polygons Cm, m ∈ N, that form an angle πα, α ∈ [1, 2], at infinity and have m

vertices zk ∈ C, k = 1, . . . , m, such that πβk , k = 1, . . . , m, 0 < βk ≤ 1, is the
change in the direction of Cm at the vertex zk . In the case α = 1, we only have to
consider a straight line.

Now we prove the proposition for the concave schlicht functions that map D onto
the concave domain bounded by Cm. According to the Schwarz–Christoffel formula
for these maps f we get the existence of m preimages

exp(−itk), k = 1, . . . , m, 0 < t1 < · · · < tm < 2π,

for the vertices of Cm such that

f ′(z) = (1 − z)−α−1
m∏

k=1

(1 − eitk z)βk ,

where
m∑

k=1

βk = α − 1.
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Now we consider the function

g(z) = 1

f ′(z)(1 − z)3 = 1

(1 − z)2−α
∏m

k=1(1 − eitk z)βk
.

In Lemma 1 and Theorem 1 of [3] it was shown that products of the form

g(z) =
m+1∏
k=1

(1 − eitk z)−δk ,

m+1∑
k=1

δk = 1, δk > 0,

have a representation

g(z) =
∫

∂D

dμ(x)

1 − xz
,

where μ is a probability measure on ∂D. Hence,

Re(g(z)) >
1

2
, z ∈ D.

Therefore, there exists a holomorphic function ω : D → D such that

g(z) = 1

1 + zω(z)
,

which yields the representation formula (5) for the polygon mappings.
To complete the proof we use that the set of functions

{
1+zω(z)

(1−z)3 | ω : D → D holomorphic
}

.

is convex and closed in the topology of uniform convergence on compact subsets of D.
Therefore it contains not only the derivatives of the concave polygon mappings, but
also the derivatives of all concave schlicht functions. This proves the proposition.

Proof of the theorem. We write f ′ in the form (5). Let

ω(z) =
∞∑

k=0

ckz
k. (6)

Inserting (6) into (5) leads to the equations

nan(f ) = n(n + 1)

2
+

n−2∑
k=0

ck

(n − k)(n − k − 1)

2
, n ≥ 2.



Vol. 81 (2006) Sharp inequalities for the coefficients of concave schlicht functions 805

Now we prove our theorem by showing that, for holomorphic functions ω : D → D

with the Taylor expansion (6), the inequalities

∣∣∣∣
n−2∑
k=0

ck

(n − k)(n − k − 1)

2

∣∣∣∣ ≤ n(n − 1)

2
(7)

are valid and that equality is attained in (7) if and only if ω(z) ≡ exp(iθ), θ ∈ [0, 2π ].
This implies that (1) is valid even for the functions in the closed convex hull of the
family of concave schlicht functions. The second part of this assertion yields that the
only functions in this hull for which equality is attained in (1) are the functions fθ de-
fined in (2) and (3). Since the derivative of any concave schlicht function satisfies (5),
we conclude that equality in (1) holds precisely for these functions.

To prove (7) it is sufficient to consider those functions ω that are holomorphic in
the closed unit disc. For these we get

n−2∑
k=0

ck

(n − k)(n − k − 1)

2
= 1

2πi

∫
∂D

ω(z)κn(z) dz,

where

κn(z) =
n−2∑
k=0

(n − k)(n − k − 1)

2
z−k−1.

Now we replace the kernel κn by another one that produces the same linear functional
on H∞. To this end let

Pn(z) =
n−3∑
j=0

(j + 2)(j + 1)

2

(
zj + z2n−4−j

) + n(n − 1)

2
zn−2, n ≥ 2,

and
Kn(z) = z−n+1Pn(z).

Since κn and Kn have the same singular parts at the origin, it is evident that

1

2πi

∫
∂D

ω(z)κn(z) dz = 1

2πi

∫
∂D

ω(z)Kn(z) dz.

To consider the polynomials Pn in more detail, we define the functions Qn, n ≥ 2,

by

Qn(ϕ) =
n−3∑
j=0

(j + 2)(j + 1) cos((n − j − 2)ϕ) + n(n − 1)

2
, ϕ ∈ [0, 2π ],
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and observe that

Pn(e
iϕ) = ei(n−2)ϕQn(ϕ), ϕ ∈ [0, 2π ].

Now we show that for n ≥ 2 the inequalities

Qn(ϕ) ≥ 1, ϕ ∈ [0, 2π ],
are valid. For the proof of this inequality we use the fact that the generating function
of the sequence Qn(ϕ), n ≥ 2, is

∞∑
n=1

Qn+1(ϕ)zn = 1

2

z

(1 − z)3

(
1 + eiϕz

1 − eiϕz
+ 1 + e−iϕz

1 − e−iϕz

)
.

Representing this function by the sum of its singular parts at the poles z1 = 1,
z2 = eiϕ, and z3 = e−iϕ and using the Taylor expansions of these singular parts, we
obtain for n ≥ 2 and ϕ ∈ [0, 2π ]

Qn(ϕ) =
2n − 1 − sin((2n−1)

ϕ
2 )

sin( ϕ
2 )

2(1 − cos(ϕ))
= 1 +

n−1∑
j=2

1 − cos(jϕ)

1 − cos(ϕ)
≥ 1 > 0.

After these preparations we can prove the inequality (7) by the following chain of
relations:

∣∣∣∣ 1

2πi

∫
∂D

ω(z)Kn(z) dz

∣∣∣∣ ≤ 1

2π

∫ 2π

0

∣∣eiϕKn(e
iϕ)

∣∣ dϕ ‖ω‖∞

= 1

2π

∫ 2π

0
Qn(ϕ) dϕ ‖ω‖∞ ≤ 1

2π

∫ 2π

0
Qn(ϕ) dϕ

= 1

2πi

∫
∂D

Kn(z) dz = n(n − 1)

2
.

We see that equality is attained everywhere if ω(z) ≡ 1.
To prove the above uniqueness statement we apply the theory of extremum prob-

lems for linear functionals on Hp, 1 ≤ p ≤ ∞, due to Macintyre, Rogosinski,
and Shapiro (see [6], [8], and Duren’s book [4] on Hp spaces, Ch. 8) to the linear
functional �n defined on H∞ by

�n(ω) =
n−2∑
k=0

ck

(n − k)(n − k − 1)

2
.

This theory (compare in particular [4], Theorem 8.1) assures that there is a unique
extremal function ωE such that

max
{|�n(ω)| | ω ∈ H∞, ‖ω‖∞ ≤ 1

} = �n(ωE).



Vol. 81 (2006) Sharp inequalities for the coefficients of concave schlicht functions 807

The above considerations show that in our case ωE(z) ≡ 1. Hence, equality in (7) is
attained only in the specified cases. This concludes the proof of our theorem.

We want to add that the theory of Macintyre, Rogosinski, and Shapiro and its
representation in Duren’s book encouraged and enabled us to find the above simple
solution of the extremum problem (7).
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