Some Novikov rings that are von Neumann finite and knot-like groups

Dessislava H. Kochloukova*

Abstract

We show that for a finitely generated group G and for every discrete character $\chi: G \rightarrow \mathbb{Z}$ any matrix ring over the Novikov ring $\widehat{\mathbb{Z}}_{\chi}$ is von Neumann finite. As a corollary we obtain that if G is a non-trivial discrete group with a finite $K(G, 1)$ CW-complex Y of dimension n and Euler characteristics zero and N is a normal subgroup of G of type FP_{n-1} containing the commutator subgroup G^{\prime} and such that G / N is cyclic-by-finite, then N is of homological type FP_{n} and G / N has finite virtual cohomological dimension $$
\operatorname{vcd}(G / N)=\operatorname{cd}(G)-\operatorname{cd}(N) .
$$

This completes the proof of the Rapaport Strasser conjecture that for a knot-like group G with a finitely generated commutator subgroup G^{\prime} the commutator subgroup G^{\prime} is always free and generalises an earlier work by the author where the case when G^{\prime} is residually finite was proved. Another corollary is that a finitely presentable group G with $\operatorname{def}(G)>0$ and such that G^{\prime} is finitely generated and perfect can be only \mathbb{Z} or \mathbb{Z}^{2}, a result conjectured by A. J. Berrick and J. Hillman in [1].

Mathematics Subject Classification (2000). 20C07, 46L10.
Keywords. Knot-like groups, von Neumann rings, cohomological dimension.

Introduction

Let G be a finitely generated group and $\chi: G \rightarrow \mathbb{R}$ a group homomorphism, i.e. a character of G. For any non-zero character χ there is a Novikov ring $\widehat{\mathbb{Z}}_{\chi}$ containing precisely those (in general infinite sums) $\lambda=\sum_{g \in G, z_{g} \in \mathbb{Z}} z_{g} g$ such that the intersection of the support of λ in G with the set $\chi^{-1}(-\infty, j]$ is finite for any choice of a natural number j. The Novikov ring has strong relation with the homological Σ-invariants. More precisely a non-zero character χ represents a class of the homological invariant $\Sigma^{m}(G, \mathbb{Z})$ (here G is of homological type $\left.\mathrm{FP}_{m}\right)$ if and only if $\operatorname{Tor}_{j}^{\mathbb{Z}[G]}\left(\widehat{\mathbb{Z} G}_{\chi}, \mathbb{Z}\right)=0$ for all $0 \leq j \leq m[7$, Thm. B.4.6], a homotopical version can

[^0]be found in [5, Thm. 14.4, 14.5]. Detailed proofs of [7, Thm. B.4.6] can be found in [4, Appendix]. In the case when χ is a discrete character the above criterion for $m=\infty$ was rediscovered and further generalised in [17, Thm. 2 and last paragraph of the introduction], where finite domination of generally non-acyclic free complexes is considered. More generalisations in this direction can be found in [11, Section 3].

The homological invariant $\Sigma^{m}(G, \mathbb{Z})$ defined in [6] for groups G of type FP_{m} is important in determining the homological type of a subgroup N of G containing the commutator subgroup. By definition $\Sigma^{m}(G, \mathbb{Z})$ contains some classes $[\chi]=\mathbb{R}_{>0} \chi$ of characters $\chi \in \operatorname{Hom}(G, \mathbb{R}) \backslash\{0\}$ and by $\left[6\right.$, Thm. B] N is of homological type FP_{m} if and only if for every $\chi \in \operatorname{Hom}(G, \mathbb{R}) \backslash\{0\}$ with $\chi(N)=0$ we have $[\chi] \in \Sigma^{m}(G, \mathbb{Z})$.

A ring R with unity is said to be von Neumann finite if whenever for some $a, b \in R$ we have $a b=1$ this implies that $b a=1$, i.e., every left inverse is a right inverse. In [13] the terminology used was slightly different, a ring R was said to have the Kaplansky property if for every natural number n the matrix ring $M_{n}(R)$ is von Neumann finite. The group algebra $k G$ of any group G and any field k of characteristic zero is von Neumann finite [12, p. 122], [16, Ch. 2, Cor. 1.9], [15]. Using the theory of von Neumann dimension of Hilbert G-modules we show the same result holds for some Novikov rings.

Theorem 1. Let G be a finitely generated group, $\chi: G \rightarrow \mathbb{Z}$ a non-zero discrete character of G. Then every matrix ring $M_{n}\left(\widehat{\mathbb{Z}}_{\chi}\right)$ is von Neumann finite.

The problem whether a matrix ring over $\widehat{\mathbb{Z} G}_{\chi}$ is von Neumann finite was first studied in [13, Thm. 3], where the case when $N=\operatorname{ker}(\chi)$ is residually finite was treated with techniques different from the ones used in the present paper. In this paper we treat two consequences of Theorem 1 (see Corollary 1 and Corollary 2). New applications of Theorem 1 to Poincaré duality groups can be found in [11]. The following theorem is one of the main results of [13].

Theorem 2 ([13, Thm. 1, Cor. 1]). Let G be a non-trivial discrete group of geometric dimension n with a finite $K(G, 1) C W$-complex Y of dimension n such that the Euler characteristics of Y is zero. Suppose that N is a normal subgroup of G containing the commutator subgroup such that N is of homological type FP_{n-1} and N is residually finite. Then
a) N is of homological type FP_{n};
b) G / N has finite virtual cohomological dimension

$$
\operatorname{vcd}(G / N)=\operatorname{cd}(G)-\operatorname{cd}(N)
$$

In particular either N has finite index in G or N has cohomological dimension at most $\operatorname{cd}(G)-1$.

In [13] Theorem 2 was stated for $G / N \simeq \mathbb{Z}$ but the proof there requires only that G / N is abelian. In this paper we will use Theorem 2 for G / N cyclic-by-finite.

Furthermore the proof of Theorem 2 works in a more general setting, it requires only that every matrix ring over a Novikov ring $\widehat{\mathbb{Z}}_{\chi}$ is von Neumann finite for any non-zero character of G (not necessarily discrete) such that $\chi(N)=0$. The condition that n is exactly the geometric dimension of G is redundant, the proof of Theorem 2 requires only that the trivial $\mathbb{Z}[G]$-module \mathbb{Z} has a resolution of length n of free modules F_{i} of finite rank m_{i} where the alternating sum $\sum_{0 \leq i \leq n}(-1)^{i} m_{i}$ is 0 . These remarks together with Theorem 1 give the following result.

Theorem 3. Let G be a non-trivial discrete group with a finite $K(G, 1)$ CW-complex Y of dimension n such that the Euler characteristics of Y is zero. Suppose that N is a normal subgroup of G containing the commutator subgroup such that N is of homological type FP_{n-1} and G / N is cyclic-by-finite. Then
a) N is of homological type FP_{n};
b) G / N has finite virtual cohomological dimension

$$
\operatorname{vcd}(G / N)=\operatorname{cd}(G)-\operatorname{cd}(N) .
$$

In particular either N has finite index in G or N has cohomological dimension $\operatorname{cd}(G)-1$.

To be able to apply Theorem 1, we cannot omit the assumption that G / N is cyclic-by-finite, since we need every character with $\chi(N)=0$ to be either discrete or zero. It is important to note that the condition in Theorem 3 on the Euler characteristic cannot be removed as there is an example of a group G of cohomological dimension 2 and type FP_{∞} with a finitely generated normal subgroup N such that $G / N \simeq \mathbb{Z}$ but N is not free [3, Thm. B and Remark 5.4]. The deficiency of this group G is not 1 . More examples of groups G of cohomological dimension n and type FP_{∞} with normal subgroups N of homological type FP_{n-1} but not FP_{n} such that $G / N \simeq \mathbb{Z}$ can be found in [14].

Corollary 1. Let G be a non-trivial discrete group with a finite $K(G, 1)$ CW-complex Y of dimension n such that the Euler characteristics of Y is zero. Suppose that N is a normal subgroup of G containing the commutator subgroup such that N is of homological type FP_{n-1}. Then G / N has finite virtual cohomological dimension

$$
\operatorname{vcd}(G / N)=\operatorname{cd}(G)-\operatorname{cd}(N) .
$$

and N is of homological type FP_{∞}.
To see how the above corollary follows from Theorem 3 consider a subgroup N_{0} of G such that $N \subseteq N_{0}$ and $G / N_{0} \simeq \mathbb{Z}$ (if such N_{0} does not exist then N has
finite index in G and there is nothing to prove). As N_{0} / N is a finitely generated abelian group it is of homological type FP_{∞}, so N being of homological type FP_{n-1} forces N_{0} to be of homological type FP_{n-1} [2, Exer. p. 23]. Then by Theorem 3 $\operatorname{cd}\left(N_{0}\right)=\operatorname{cd}(G)-1 \leq n-1$ and N_{0} is of homological type FP_{n}. By [13, Prop. 3] applied for the normal subgroup N of N_{0} we get $\operatorname{cd}(N)=\operatorname{cd}\left(N_{0}\right)-\operatorname{vcd}\left(N_{0} / N\right)$, hence $\operatorname{cd}(N)=\operatorname{cd}(G)-1-\operatorname{vcd}\left(N_{0} / N\right)=\operatorname{cd}(G)-\operatorname{vcd}(G / N) \leq \operatorname{cd}(G)-1 \leq n-1$. The last property together with the fact that N is of homological type FP_{n-1} implies that N is of type FP_{∞}.

Theorem 3 is linked to a long lasting conjecture due to E. Rapaport Strasser that for a knot-like group G if the commutator subgroup G^{\prime} is finitely generated then G^{\prime} should be free [19]. A discrete group is called a knot-like group if G / G^{\prime} is the infinite cyclic group and G is finitely presented of deficiency 1 . By [13, Cor. 2] the Rapaport conjecture holds when the commutator subgroup is residually finite. The Rapaport conjecture in its general form can be deduced as a corollary of Theorem 3. Indeed by [10, Thm. 2 and Lemma 2] a knot-like group G with finitely generated commutator subgroup G^{\prime} has geometric dimension at most 2 , hence the cohomological dimension $\operatorname{cd}(G)$ is at most 2 . Without loss of generality we can assume that both the cohomological and geometric dimensions of G are 2, otherwise $\operatorname{cd}(G)=1$ and by the Stallings theorem G is free [20]. Finally by Theorem 3 for $N=G^{\prime}$ we conclude that $\operatorname{cd}\left(G^{\prime}\right)=1$, using again Stallings' result G^{\prime} is free.

Corollary 2. Let G be a knot-like group with a finitely generated commutator subgroup G^{\prime}. Then G^{\prime} is free, i.e. the Rapaport conjecture holds.

By [1, Thm. 3.11] every finitely presentable group G with positive deficiency and finitely generated perfect commutator subgroup has deficiency 1 , geometric dimension at most 2 and the abelianisation of G is \mathbb{Z} or \mathbb{Z}^{2}. Furthermore if G^{\prime} is of homological type FP_{2} then G is either \mathbb{Z} or \mathbb{Z}^{2}. As pointed out to me by J. Hillman, the above results together with Theorem 3 imply the following corollary.

Corollary 3. Let G be a finitely presentable group with $\operatorname{def}(G)>0$ and such that G^{\prime} is finitely generated and perfect. Then G is isomorphic to \mathbb{Z} or \mathbb{Z}^{2}.

Indeed let N be a subgroup of G containing G^{\prime} and such that $G / N \simeq \mathbb{Z}$. As G^{\prime} is finitely generated N is finitely generated and by Theorem $3 \operatorname{cd}(N) \leq 1$, so N is a free group, possibly trivial. Then the subgroup G^{\prime} of N is free and perfect, so G^{\prime} is the trivial group.

1. Matrix rings over the Novikov ring

Let G be a finitely generated group and $\chi: G \rightarrow \mathbb{Z}$ a non-zero character. In this section we discuss the ring $M_{n}\left(\widehat{\mathbb{Z}}_{\chi}\right)$ assuming that it is not von Neumann finite.

Denote by N the kernel of χ. Then $G \simeq N \rtimes\langle t\rangle$, where $\chi(t)=1$. The definition of the Novikov ring $\widehat{\mathbb{Z} G} \not \subset$ was given in the introduction for the coefficient ring \mathbb{Z}. In general we can define $\widehat{R G}_{\chi}$ for any ring with unity R as a particular completion of the group ring $R[G]$ (here G commutes with the elements of R) i.e. $\widehat{R G}_{\chi}$ contains precisely those (in general infinite sums) $\lambda=\sum_{g \in G, r_{g} \in R} r_{g} g$ such that the intersection of the support of λ in G with the set $\chi^{-1}(-\infty, j]$ is finite for any choice of a natural number j. The Novikov ring we consider here is a special case of a more general definition [18, Def. 5.1 (ii)]. Using the above definition of the Novikov ring as a completion of the group ring $R[G]$ for $R=M_{n}(\mathbb{Z})$ we get a natural isomorphism of rings with unity

$$
M_{n}\left(\widehat{\mathbb{Z} G_{\chi}}\right) \simeq{\widehat{M_{n}(\mathbb{Z})} G_{\chi}}
$$

Let α, β be elements of $\widehat{M_{n}(\mathbb{Z}) G_{\chi}}$ such that $\alpha \beta=1$ but

$$
\beta \alpha \neq 1 .
$$

Then $0 \neq 1-\beta \alpha=\delta=\sum t^{i} \delta_{i}$ (note the sum can be infinite) and $\delta_{i} \in M_{n}(\mathbb{Z}[N]) \simeq$ $M_{n}(\mathbb{Z})[N]$ are not all zero. Let i_{0} be the smallest integer such that

$$
\delta_{i_{0}} \neq 0
$$

By the definition of the Novikov ring we have

$$
\alpha=\sum_{j \geq a} \alpha_{j} t^{j} \text { and } \beta=\sum_{j \geq b} \beta_{j} t^{j},
$$

where the sums are in general infinite, $\alpha_{j}, \beta_{j} \in M_{n}(\mathbb{Z}[N])$ and a, b are natural numbers such that $\alpha_{a} \neq 0, \beta_{b} \neq 0$. Substituting α with $t^{-a} \alpha$ and β by βt^{a} we can assume that $a=0$. As $1=\alpha \beta=\left(\sum_{j \geq 0} \alpha_{j} t^{j}\right)\left(\sum_{j \geq b} \beta_{j} t^{j}\right)=$ $\sum_{j \geq b}\left(\sum_{0 \leq i \leq j-b} \alpha_{i} \beta_{j-i}\right) t^{j}$ the coefficient $\sum_{0 \leq i \leq-b} \alpha_{i} \beta_{-i}$ is 1 and the index set $\{i \mid 0 \leq i \leq-b\}$ is not empty, hence $b \leq 0$. We define

$$
k=-b \geq 0, \gamma=\beta t^{k}=\sum_{j \geq 0} \gamma_{j} t^{j},
$$

where $\gamma_{j} \in M_{n}(\mathbb{Z}[N])$ and so

$$
\alpha \gamma=\alpha \beta t^{k}=t^{k} .
$$

From now on let d be a natural number bigger than or equal to $k+i_{0}+c$, where $c=\max \left\{k,-i_{0}\right\} \geq 0$. Define

$$
V^{(d)}=\bigoplus_{0 \leq i \leq d} t^{i} M_{n}(S)
$$

where $S=\mathbb{Z}[N]$. We view $V^{(d)}$ as a free right $M_{n}(S)$-module and define several endomorphisms of $V^{(d)}$ as such a module:

$$
\begin{aligned}
& T\left(\sum_{0 \leq i \leq d} t^{i} \mu_{i}\right)=\sum_{0 \leq i \leq d-1} t^{i+1} \mu_{i} \\
& T^{*}\left(\sum_{0 \leq i \leq d} t^{i} \mu_{i}\right)=\sum_{1 \leq i \leq d} t^{i-1} \mu_{i}
\end{aligned}
$$

where all $\mu_{i} \in M_{n}(S)$. For $\lambda \in M_{n}(S)$ we define the endomorphism $\theta(\lambda)$ on $V^{(d)}$ by

$$
\theta(\lambda)\left(\sum_{0 \leq i \leq d} t^{i} \mu_{i}\right)=\sum_{0 \leq i \leq d} t^{i}\left(\lambda^{t^{i}}\right) \mu_{i}
$$

where $\lambda^{t^{i}} \in M_{n}(S) \simeq M_{n}(\mathbb{Z})[N]$ is the result of the conjugation (on the right) of the elements of N with t^{i}. Note that for $\lambda \in M_{n}(S)$

$$
T^{*} \theta(\lambda)=\theta\left(\lambda^{t}\right) T^{*} \text { and } T \theta(\lambda)=\theta\left(\lambda^{t^{-1}}\right) T
$$

We think of $V^{(d)}$ as a subset of

$$
\bigoplus_{i \in \mathbb{Z}} t^{i} M_{n}(S)=M_{n}(S) \rtimes\langle t\rangle \simeq M_{n}(\mathbb{Z})[N \rtimes\langle t\rangle] \simeq M_{n}(\mathbb{Z}[G])
$$

and define

$$
\pi^{(d)}: M_{n}(S) \rtimes\langle t\rangle \simeq \bigoplus_{i \in \mathbb{Z}} t^{i} M_{n}(S) \rightarrow V^{(d)}
$$

to be the projection that is identity on $V^{(d)}$ and sends

$$
\left(\bigoplus_{i<0} t^{i} M_{n}(S)\right) \oplus\left(\bigoplus_{i>d} t^{i} M_{n}(S)\right)
$$

to zero. Then $\theta(\lambda)$ can be viewed as the composition $\pi^{(d)} s_{\lambda} i^{(d)}$, where $i^{(d)}$ is the embedding of $V^{(d)}$ in $M_{n}(S) \rtimes\langle t\rangle$ and s_{λ} is the left multiplication with λ in the ring $M_{n}(S) \rtimes\langle t\rangle$.

Now we define two endomorphisms of the free right $M_{n}(S)$-module $V^{(d)}$

$$
\alpha^{(d)}=\sum_{0 \leq j \leq d} \theta\left(\alpha_{j}\right) T^{j}, \beta^{(d)}=\left(\sum_{0 \leq j \leq d} \theta\left(\gamma_{j}\right) T^{j}\right)\left(T^{*}\right)^{k}
$$

Lemma 1. The restriction of the composition $\alpha^{(d)} \beta^{(d)}$ to $\bigoplus_{0 \leq i \leq k-1} t^{i} M_{n}(S)$ is the zero map and the restriction of $\alpha^{(d)} \beta^{(d)}$ to $\bigoplus_{k \leq i \leq d} t^{i} M_{n}(S)$ is the identity map.

Proof. First note that $\bigoplus_{0 \leq i \leq k-1} t^{i} M_{n}(S)$ is the kernel of $\left(T^{*}\right)^{k}$, so

$$
\alpha^{(d)} \beta^{(d)}\left(\bigoplus_{0 \leq i \leq k-1} t^{i} M_{n}(S)\right)=0 .
$$

By the way the operators T, T^{*} and $\theta\left(M_{n}(S)\right)$ are defined we have that the operator

$$
\left(\sum_{0 \leq j \leq d} \theta\left(\alpha_{j}\right) T^{j}\right)\left(\sum_{0 \leq j \leq d} \theta\left(\gamma_{j}\right) T^{j}\right)
$$

acts on $V^{(d)}$ as the composition of the embedding $i^{(d)}$ followed by multiplication on the left in $M_{n}(S) \rtimes\langle t\rangle$ with

$$
\left(\sum_{0 \leq j \leq d} \alpha_{j} t^{j}\right)\left(\sum_{0 \leq j \leq d} \gamma_{j} t^{j}\right)=t^{k}
$$

and then applying the projection $\pi^{(d)}$ i.e. dropping out the factors that have an exponent of t not in the range $0 \leq j \leq d$. Thus the composition $\alpha^{(d)} \beta^{(d)}$ is $T^{k}\left(T^{*}\right)^{k}$ and the restriction of $T^{k}\left(T^{*}\right)^{k}$ on $\bigoplus_{k \leq i \leq d} t^{i} M_{n}(S)$ is the identity map.

Note that N is a normal subgroup of G, hence for $S=\mathbb{Z}[N]$ we have $t^{-i} S t^{i}=S$ for every $i \in \mathbb{Z}$. For every matrix $\left(a_{j k}\right) \in M_{n}(S)$ we define $t^{-i}\left(a_{j k}\right) t^{i}=\left(t^{-i} a_{j k} t^{i}\right)$.

We remind the reader that $d \geq k+c+i_{0}$ and $c=\max \left\{k,-i_{0}\right\} \geq 0$. The following technical result will be used in the proof of Lemma 4.

Lemma 2. For $c \leq s \leq d-k-i_{0}$

$$
\left(I^{(d)}-\beta^{(d)} \alpha^{(d)}\right)\left(t^{s}\right) \in t^{i_{0}+s} \delta_{i_{0}}^{t^{s}}+\bigoplus_{i_{0}+s+1 \leq i \leq d} t^{i} M_{n}(S)
$$

where $I^{(d)}$ is the identity operator of $V^{(d)}$ and $\delta_{i_{0}}^{t^{s}}=t^{-s} \delta_{i_{0}} t^{s}$ is the conjugate of $\delta_{i_{0}}$ by t^{s} in $M_{n}(S)$ defined above.

Proof. Note that

$$
\begin{aligned}
\beta^{(d)} \alpha^{(d)} & =\left(\sum_{0 \leq j \leq d} \theta\left(\gamma_{j}\right) T^{j}\right)\left(T^{*}\right)^{k}\left(\sum_{0 \leq j \leq d} \theta\left(\alpha_{j}\right) T^{j}\right) \\
& =\left(\sum_{0 \leq j \leq d} \theta\left(\gamma_{j}\right) T^{j}\right)\left(\sum_{0 \leq j \leq d} \theta\left(\alpha_{j}^{t^{k}}\right)\left(T^{*}\right)^{k} T^{j}\right) .
\end{aligned}
$$

Then using that

$$
T^{j}\left(t^{s}\right)=0 \quad \text { for } d-s+1 \leq j
$$

and that

$$
\left(T^{*}\right)^{k} T^{j}\left(t^{s}\right)=T^{j}\left(T^{*}\right)^{k}\left(t^{s}\right) \text { for } k \leq s \leq d-j
$$

we get

$$
\begin{align*}
\left(I^{(d)}-\right. & \left.\beta^{(d)} \alpha^{(d)}\right)\left(t^{s}\right) \\
= & \left.\left(I^{(d)}-\left(\sum_{0 \leq j \leq d} \theta\left(\gamma_{j}\right) T^{j}\right)\left(\sum_{0 \leq j \leq d} \theta\left(\alpha_{j}^{t^{k}}\right)\left(T^{*}\right)^{k} T^{j}\right)\right)\right)\left(t^{s}\right) \\
= & \left(I^{(d)}-\left(\sum_{0 \leq j \leq d} \theta\left(\gamma_{j}\right) T^{j}\right)\left(\sum_{0 \leq j \leq d-s} \theta\left(\alpha_{j}^{t^{k}}\right)\left(T^{*}\right)^{k} T^{j}\right)\right)\left(t^{s}\right) \\
& -\left(\sum_{0 \leq j \leq d} \theta\left(\gamma_{j}\right) T^{j}\right)\left(\sum_{d-s+1 \leq j \leq d} \theta\left(\alpha_{j}^{t^{k}}\right)\left(T^{*}\right)^{k} T^{j}\right)\left(t^{s}\right) \\
= & \left(I^{(d)}-\left(\sum_{0 \leq j \leq d} \theta\left(\gamma_{j}\right) T^{j}\right)\left(\sum_{0 \leq j \leq d-s} \theta\left(\alpha_{j}^{t^{k}}\right)\left(T^{*}\right)^{k} T^{j}\right)\right)\left(t^{s}\right) \\
= & \left(I^{(d)}-\left(\sum_{0 \leq j \leq d} \theta\left(\gamma_{j}\right) T^{j}\right)\left(\sum_{0 \leq j \leq d-s} \theta\left(\alpha_{j}^{t^{k}}\right) T^{j}\left(T^{*}\right)^{k}\right)\right)\left(t^{s}\right) . \tag{*}
\end{align*}
$$

Now we define an element $\delta^{(d)} \in M_{n}(\mathbb{Z})[N \rtimes\langle t\rangle] \simeq M_{n}(\mathbb{Z}[G])$ by

$$
\begin{aligned}
\delta^{(d)} & =1-\left(\sum_{0 \leq j \leq d} \gamma_{j} t^{j}\right) t^{-k}\left(\sum_{0 \leq j \leq d} \alpha_{j} t^{j}\right) \\
& =1-\left(\sum_{0 \leq j \leq d} \gamma_{j} t^{j}\right)\left(\sum_{0 \leq j \leq d}\left(\alpha_{j}^{t^{k}}\right) t^{j}\right) t^{-k} \\
& \in t^{i_{0}} \delta_{i_{0}}+\left(\bigoplus_{j \geq i_{0}+1} t^{j} M_{n}(S)\right),
\end{aligned}
$$

the last inclusion follows from the fact that $d-k \geq i_{0}$. As $\delta_{i_{0}} \neq 0$ follows that $\delta^{(d)} \neq 0$. Now let μ be the endomorphism of $V^{(d)}$ defined as the composition of $i^{(d)}$ with the left multiplication with $\delta^{(d)}$ in $M_{n}(\mathbb{Z})[N \rtimes\langle t\rangle]$ and then applying the projection $\pi^{(d)}$. By ($*$)

$$
\begin{aligned}
\mu\left(t^{s}\right) & -\left(I^{(d)}-\beta^{(d)} \alpha^{(d)}\right)\left(t^{s}\right) \\
& =\mu\left(t^{s}\right)-\left(I^{(d)}-\left(\sum_{0 \leq j \leq d} \theta\left(\gamma_{j}\right) T^{j}\right)\left(\sum_{0 \leq j \leq d-s} \theta\left(\alpha_{j}^{t^{k}}\right) T^{j}\left(T^{*}\right)^{k}\right)\right)\left(t^{s}\right) \\
& =-\left(\sum_{0 \leq j \leq d} \theta\left(\gamma_{j}\right) T^{j}\right)\left(\sum_{d-s+1 \leq j \leq d} \theta\left(\alpha_{j}^{t^{k}}\right) T^{j}\left(T^{*}\right)^{k}\right)\left(t^{s}\right) \\
& \in \bigoplus_{s-k+(d-s+1)=d-k+1 \leq i \leq d} t^{i} M_{n}(S) \\
& \subseteq \bigoplus_{i_{0}+s+1 \leq i \leq d} t^{i} M_{n}(S) .
\end{aligned}
$$

The last inclusion comes from the fact that $s \leq d-k-i_{0}$. Finally, as $0 \leq i_{0}+s \leq d$,

$$
\mu\left(t^{s}\right) \in t^{i_{0}+s} \delta_{i_{0}}^{t^{s}}+\bigoplus_{i_{0}+s+1 \leq i \leq d} t^{i} M_{n}(S)
$$

Lemma 3. $e=\beta^{(d)} \alpha^{(d)}$ is idempotent, i.e. $e^{2}=e$.
Proof. As proved in Lemma $1, \alpha^{(d)} \beta^{(d)}$ is an idempotent of a special type. Let $v \in$ $V^{(d)}, \alpha^{(d)}(v)=w_{1}+w_{2}$, where $w_{1} \in \bigoplus_{0 \leq i \leq k-1} t^{i} M_{n}(S), w_{2} \in \bigoplus_{k \leq i \leq d} t^{i} M_{n}(S)$. Then $\alpha^{(d)} \beta^{(d)}\left(w_{1}+w_{2}\right)=w_{2}$ and

$$
e^{2}(v)=\beta^{(d)} \alpha^{(d)} \beta^{(d)} \alpha^{(d)}(v)=\beta^{(d)} \alpha^{(d)} \beta^{(d)}\left(w_{1}+w_{2}\right)=\beta^{(d)}\left(w_{2}\right)
$$

Since $\left(T^{*}\right)^{k}\left(w_{1}\right)=0$ we get $\beta^{(d)}\left(w_{1}\right)=\left(\sum_{0 \leq j \leq d} \theta\left(\gamma_{j}\right) T^{j}\right)\left(T^{*}\right)^{k}\left(w_{1}\right)=0$ and

$$
e(v)=\beta^{(d)} \alpha^{(d)}(v)=\beta^{(d)}\left(w_{1}+w_{2}\right)=\beta^{(d)}\left(w_{1}\right)+\beta^{(d)}\left(w_{2}\right)=\beta^{(d)}\left(w_{2}\right)
$$

2. Proof of Theorem 1

We define $A_{0}^{(d)}$ and $B_{0}^{(d)}$ to be the matrices in $M_{d+1}\left(M_{n}(S)\right) \simeq M_{n(d+1)}(S)$ that represent the operators $\alpha^{(d)}$ and $\beta^{(d)}$ respectively. For example if $A_{0}^{(d)}=\left(a_{j, i}\right)$, $a_{j, i} \in M_{n}(S)$ we have $\alpha^{(d)}\left(t^{i}\right)=\sum_{j} t^{j} a_{j, i}$. We remind the reader that $S=\mathbb{Z}[N]$.

By Lemma $3 B_{0}^{(d)} A_{0}^{(d)}$ is an idempotent matrix, hence $I_{n(d+1)}-B_{0}^{(d)} A_{0}^{(d)} \in$ $M_{n(d+1)}(\mathbb{Z}[N])$ is an idempotent matrix, so its columns generate a projective right submodule P of $\mathbb{R}[N]^{n(d+1)}$, where $I_{n(d+1)}$ is the identity $n(d+1) \times n(d+1)$-matrix. We think of the elements of $\mathbb{R}[N]^{n(d+1)}$ as columns of length $n(d+1)$ and entries in $\mathbb{R}[N]$. By definition $l_{2}(N)$ is the Hilbert space with orthonormal basis N i.e. square norm summable functions on N with coefficients in \mathbb{R}. Then $P \otimes_{\mathbb{R}[N]} l_{2}(N)$ is a Hilbert N-submodule of $l_{2}(N)^{n(d+1)}$ via the multiplication of N on $l_{2}(N)$ on the right.

Lemma 4. The von Neumann dimension $\operatorname{dim}_{N}\left(P \otimes_{\mathbb{R}[N]} l_{2}(N)\right)$ is kn.
Proof. Let Q be the projective right $\mathbb{R}[N]$-submodule in $\mathbb{R}[N]^{n(d+1)}$ generated by the columns of $B_{0}^{(d)} A_{0}^{(d)}$. Then $P \oplus Q=\mathbb{R}[N]^{n(d+1)}$,

$$
\left(P \otimes_{\mathbb{R}[N]} l_{2}(N)\right) \oplus\left(Q \otimes_{\mathbb{R}[N]} l_{2}(N)\right)=l_{2}(N)^{n(d+1)}
$$

and

$$
\operatorname{dim}_{N}\left(P \otimes_{\mathbb{R}[N]} l_{2}(N)\right)+\operatorname{dim}_{N}\left(Q \otimes_{\mathbb{R}[N]} l_{2}(N)\right)=n(d+1)
$$

Note that the matrix $B_{0}^{(d)} A_{0}^{(d)}$ defining Q is an idempotent, that in general is not self-adjoint, still its von Neumann trace (the sum of Kaplansky traces of all diagonal
elements) is exactly the von Neumann dimension of $Q \otimes_{\mathbb{R}[N]} l_{2}(N)$ (see [8, Sect. 2] for the case of matrices of size 1 , the general case is exactly the same), i.e.

$$
\operatorname{trace}\left(B_{0}^{(d)} A_{0}^{(d)}\right)=\operatorname{dim}_{N}\left(Q \otimes_{\mathbb{R}[N]} l_{2}(N)\right)
$$

and similarly

$$
\operatorname{trace}\left(I_{n(d+1)}-B_{0}^{(d)} A_{0}^{(d)}\right)=\operatorname{dim}_{N}\left(P \otimes_{\mathbb{R}[N]} l_{2}(N)\right)
$$

By [9, Cor. 3.1.4]

$$
\operatorname{trace}\left(B_{0}^{(d)} A_{0}^{(d)}\right)=\operatorname{trace}\left(A_{0}^{(d)} B_{0}^{(d)}\right)
$$

and by Lemma 1

$$
\operatorname{trace}\left(A_{0}^{(d)} B_{0}^{(d)}\right)=n(d+1-k)
$$

Hence

$$
\begin{aligned}
\operatorname{dim}_{N}\left(P \otimes_{\mathbb{R}[N]} l_{2}(N)\right) & =n(d+1)-\operatorname{dim}_{N}\left(Q \otimes_{\mathbb{R}[N]} l_{2}(N)\right) \\
& =n(d+1)-\operatorname{trace}\left(B_{0}^{(d)} A_{0}^{(d)}\right) \\
& =n(d+1)-\operatorname{trace}\left(A_{0}^{(d)} B_{0}^{(d)}\right) \\
& =n(d+1)-n(d+1-k) \\
& =n k .
\end{aligned}
$$

Let P_{0} be the submodule of P generated by the columns

$$
\rho_{c n+1}, \rho_{c n+2}, \ldots, \rho_{n\left(d+1-k-i_{0}\right)}
$$

of the matrix $I_{n(d+1)}-B_{0}^{(d)} A_{0}^{(d)} \in M_{(d+1) n}(\mathbb{Z}[N])$, here ρ_{i} is the i th column. Let $P_{0} \otimes_{\mathbb{R}[N]} l_{2}(N) \rightarrow P \otimes_{\mathbb{R}[N]} l_{2}(N)$ be the map induced by the embedding of P_{0} in P and $W^{(d)}$ be the closure of the image of this map. Then $W^{(d)}$ is a Hilbert N-submodule of $l_{2}(N)^{n(d+1)}$ via the right N action on $l_{2}(N)$.

For $c=\max \left\{k,-i_{0}\right\} \leq j \leq d-k-i_{0}$ let e_{j} be the matrix of size $((d+1) n) \times n$ with columns $\rho_{j n+1}, \rho_{j n+2}, \ldots, \rho_{(j+1) n}$. Define square matrices $\left(e_{j}\right)_{i} \in M_{n}(\mathbb{Z}[N])$ for $1 \leq i \leq d$, where $\left(e_{j}\right)_{i}$ has as consecutive rows the $(1+i n)$-th, $\left.\ldots,(i+1) n\right)$-th rows of e_{j}. By Lemma 2,
if $c \leq j \leq d-k-i_{0}, i<j+i_{0}$, then the matrix $\left(e_{j}\right)_{i}$ is zero;

$$
\left(e_{c}\right)_{c+i_{0}}=\delta_{i_{0}}^{t^{c}} \in M_{n}(\mathbb{Z}[N]) ;
$$

if $c+1 \leq j \leq d-k-i_{0}$, then we have $\left(e_{j}\right)_{j+i_{0}}=\left(e_{j-1}\right)_{j-1+i_{0}}^{t}=\delta_{i_{0}}^{j^{j}}, \quad(* *)$ where upper index t is conjugation on the right side with the element t.

For $c \leq j \leq d-k-i_{0}$ let $W_{j}^{(d)}$ be the closure of the image of

$$
\left(P_{0}\right)_{j} \otimes_{\mathbb{R}[N]} l_{2}(N) \rightarrow P \otimes_{\mathbb{R}[N]} l_{2}(N) \subseteq l_{2}(N)^{n(d+1)}
$$

where $\left(P_{0}\right)_{j}$ is the submodule of P_{0} generated by all the columns in the matrices $e_{j}, \ldots, e_{d-k-i_{0}}$.

For $i \geq 0$ define $V_{i}^{(d)}$ as the Hilbert N-submodule of $l_{2}(N)^{n(d+1)}$ consisting of the elements with 0 coordinates in the first in positions. Then by $(* *)$ for $c \leq j \leq$ $d-k-i_{0}$

$$
W_{j}^{(d)} \subseteq V_{j+i_{0}}^{(d)} \text { and } W_{j}^{(d)} \nsubseteq V_{j+i_{0}+1}^{(d)}
$$

Then the composition map

$$
\varphi_{j}^{(d)}: W_{j}^{(d)} \rightarrow V_{j+i_{0}}^{(d)} \rightarrow V_{j+i_{0}}^{(d)} / V_{j+i_{0}+1}^{(d)} \simeq l_{2}(N)^{n}
$$

of the inclusion and the canonical projection map has $W_{j+1}^{(d)}$ in its kernel. Then the closure of the image of $\varphi_{j}^{(d)}$ is a quotient of $W_{j}^{(d)} / W_{j+1}^{(d)} . \mathrm{By}(* *)$ the closure of the image of $\varphi_{j}^{(d)}$ is some t-power conjugate of the closure \bar{Y} of the image Y of $X \otimes_{\mathbb{R}[N]} l_{2}(N)$ in $\mathbb{R}[N]^{n} \otimes_{\mathbb{R}[N]} l_{2}(N) \simeq l_{2}(N)^{n}$, where X is the right $\mathbb{R}[N]$-submodule of $\mathbb{R}[N]^{n}$ generated by the columns of $\delta_{i_{0}}^{t^{c}} \in M_{n}(\mathbb{R}[N])$.

Lemma 5. Let H be a countable group, M a Hilbert H-submodule of $l_{2}(H)^{m}$ for some natural number m, ϵ an automorphism of the Hilbert space $l_{2}(H)$ that extends a group automorphism of H, and let

$$
v: l_{2}(H)^{m} \rightarrow l_{2}(H)^{m}
$$

be the isometry whose restriction on every coordinate is ϵ. Then the von Neumann dimensions $\operatorname{dim}_{H}(M)$ and $\operatorname{dim}_{H}(\nu(M))$ are equal.

Proof. Let π_{M} and $\pi_{\nu(M)}$ be the orthogonal projections of $l_{2}(H)^{m}$ to M and $v(M)$ respectively. Then π_{M} and $\pi_{\nu(M)}$ can be thought as elements of $M_{m}(N(H))$ where $N(H)$ is the von Neumann algebra of H. By definition $\operatorname{dim}_{H}(M)=\operatorname{trace}\left(\pi_{M}\right)$ and $\operatorname{dim}_{H}(\nu(M))=\operatorname{trace}\left(\pi_{\nu(M)}\right)$. Let x_{i} be the element of $l_{2}(H)^{m}$ with just one non-zero entry 1 on the i th place. Then

$$
v\left(x_{i}\right)=x_{i}, \pi_{v(M)}\left(x_{i}\right)=v\left(\pi_{M}\left(x_{i}\right)\right)
$$

Using again that v is an isometry it follows that

$$
\begin{aligned}
\operatorname{trace}\left(\pi_{v(M)}\right) & =\sum_{1 \leq i \leq m}\left\langle\pi_{v(M)}\left(x_{i}\right), x_{i}\right\rangle=\sum_{1 \leq i \leq m}\left\langle v\left(\pi_{M}\left(x_{i}\right)\right), x_{i}\right\rangle \\
& =\sum_{1 \leq i \leq m}\left\langle v\left(\pi_{M}\left(x_{i}\right)\right), v\left(x_{i}\right)\right\rangle=\sum_{1 \leq i \leq m}\left\langle\pi_{M}\left(x_{i}\right), x_{i}\right\rangle=\operatorname{trace}\left(\pi_{M}\right)
\end{aligned}
$$

As noted before, $W_{j}^{(d)} / W_{j+1}^{(d)}$ is a non-trivial Hilbert N-module that has a quotient obtained from \bar{Y} by applying v from Lemma 5 for ϵ a conjugation by some power of t and $H=N$. Then by Lemma 5 the von Neumann dimension of $W_{j}^{(d)} / W_{j+1}^{(d)}$ is at least the von Neumann dimension of \bar{Y}. As the von Neumann dimension of Hilbert N-modules is additive [9, p. 203] we deduce that

$$
\operatorname{dim}_{N}\left(W^{(d)}\right)=\sum_{j=c}^{d-k-i_{0}} \operatorname{dim}_{N}\left(W_{j}^{(d)} / W_{j+1}^{(d)}\right) \geq\left(d+1-k-c-i_{0}\right) \operatorname{dim}_{N}(\bar{Y})
$$

As the von Neumann dimension preserves inclusion and by Lemma 4
$k n=\operatorname{dim}_{N}\left(P \otimes_{\mathbb{R}[N]} l_{2}(N)\right) \geq \operatorname{dim}_{N}\left(W^{(d)}\right) \geq\left(d+1-k-c-i_{0}\right) \operatorname{dim}_{N}(\bar{Y})>0$.
Then

$$
k n /\left(d+1-k-c-i_{0}\right) \geq \operatorname{dim}_{N}(\bar{Y})
$$

a contradiction as $\operatorname{dim}_{N}(\bar{Y})$ is a fixed positive real number, k, n, i_{0}, c are fixed numbers, $d \geq k+c+i_{0}$ and d can be arbitrary large.

References

[1] A. J. Berrick, J. A. Hillman, Perfect and acyclic subgroups of finitely presentable groups. J. London Math. Soc. (2) 68 (3) (2003), 683-698. Zbl 1064.20051 MR 2009444
[2] R. Bieri, Homological dimension of discrete groups. Second edition, Queen Mary College Mathematical Notes, Queen Mary College, Department of Pure Mathematics, London 1981. MR 0715779
[3] R. Bieri, Normal subgroups in duality groups and in groups of cohomological dimension 2. J. Pure Appl. Algebra 7 (1) (1976), 35-51. Zbl 0322.20024 MR 0390078
[4] R. Bieri, Deficiency and the geometric invariants of a group (with an appendix by P. Schweitzer). Submitted
[5] R. Bieri, R. Geoghegan, Connectivity properties of group actions on non-positively curved spaces. Mem. Amer. Math. Soc. 161 (765) (2003). Zbl 01887478 MR 1950396
[6] R. Bieri, B. Renz, Valuations on free resolutions and higher geometric invariants of groups. Comment. Math. Helv. 63 (1988), 464-497. Zbl 0654.20029 MR 0960770
[7] R. Bieri, R. Strebel, Invariants for Discrete groups. Manuscript, Frankfurt University.
[8] B. Eckmann, Idempotents in a complex group algebra, projective modules, and the von Neumann algebra, Arch. Math. (Basel) 76 (4) (2001), 241-249. Zbl 0992.16020 MR 1825003
[9] B. Eckmann, Introduction to l_{2}-methods in topology: reduced l_{2}-homology, harmonic chains, l_{2}-Betti numbers (Notes prepared by Guido Mislin). Israel J. Math. 117 (2000), 183-219. Zbl 0948.55006 MR 1760592
[10] J. A. Hillman, On L^{2}-homology and asphericity. Israel J. Math. 99 (1997), 271-283. Zbl 0887.57002 MR 1469097
[11] J. A. Hillman, Kochloukova D. H. Finiteness conditions and $P D_{r}$-group covers of $P D_{n}$ complexes. Submitted.
[12] I. Kaplansky, Fields and rings. University Chicago Press, Chicago, Ill., 1969. MR 0269449
[13] D. Kochloukova, On a conjecture of E. Rapaport Strasser about knot-like groups and its pro- p version, J. Pure Appl. Algebra 204 (3) (2006), 536-554. Zbl 02244512 MR 2185616
[14] H. Meinert, The geometric invariants of direct products of virtually free groups, Comment. Math. Helv. 69 (1) (1994), 39-48. Zbl 0834.20039 MR 1259605
[15] M. Susan Montgomery, Left and right inverses in group algebras. Bull. Amer. Math. Soc. 75 (1969), 539-540. Zbl 0174.31204 MR 0238967
[16] D. S. Passman, The algebraic structure of group rings. Robert E. Krieger Publishing Co., Inc., Melbourne, FL, 1985. Zbl 0654.16001 MR 0798076
[17] A. Ranicki, Finite domination and Novikov rings. Topology 34 (3) (1995), 619-632. Zbl 0859.57024 MR 1341811
[18] A. Ranicki, The algebraic construction of the Novikov complex of a circle-valued Morse function, Math. Ann. 322 (4) (2002), 745-785. Zbl 1001.58006 MR 1905105
[19] E. Rapaport Strasser, Knot-like groups. In Knots, groups, and 3-manifolds (Papers dedicated to the memory of R. H. Fox), Ann. of Math. Stud. 84, Princeton University Press, Princeton, N.J., 1975, 119-133. Zbl 0323.55003 MR 0440531
[20] J. R. Stallings, On torsion-free groups with infinitely many ends. Ann. of Math. (2) 88 (1968), 312-334. Zbl 0238.20036 MR 0228573

Received March 15, 2005

Dessislava H. Kochloukova, UNICAMP-IMECC, Cx. P. 6065, 13083-970 Campinas, SP, Brazil
E-mail: desi@ime.unicamp.br

[^0]: *Partially supported by "bolsa de produtividade de pesquisa" from CNPq, Brazil.

