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Some Novikov rings that are von Neumann finite and knot-like
groups

Dessislava H. Kochloukova∗

Abstract. We show that for a finitely generated group G and for every discrete character
χ : G → Z any matrix ring over the Novikov ring ẐGχ is von Neumann finite. As a corollary
we obtain that if G is a non-trivial discrete group with a finite K(G, 1) CW-complex Y of
dimension n and Euler characteristics zero and N is a normal subgroup of G of type FPn−1
containing the commutator subgroup G′ and such that G/N is cyclic-by-finite, then N is of
homological type FPn and G/N has finite virtual cohomological dimension

vcd(G/N) = cd(G) − cd(N).

This completes the proof of the Rapaport Strasser conjecture that for a knot-like group G with
a finitely generated commutator subgroup G′ the commutator subgroup G′ is always free and
generalises an earlier work by the author where the case when G′ is residually finite was proved.
Another corollary is that a finitely presentable group G with def(G) > 0 and such that G′ is
finitely generated and perfect can be only Z or Z2, a result conjectured by A. J. Berrick and
J. Hillman in [1].
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Introduction

Let G be a finitely generated group and χ : G → R a group homomorphism, i.e.
a character of G. For any non-zero character χ there is a Novikov ring ẐGχ con-
taining precisely those (in general infinite sums) λ = ∑

g∈G,zg∈Z zgg such that the

intersection of the support of λ in G with the set χ−1(−∞, j ] is finite for any choice
of a natural number j . The Novikov ring has strong relation with the homological
�-invariants. More precisely a non-zero character χ represents a class of the ho-
mological invariant �m(G, Z) (here G is of homological type FPm) if and only if

TorZ[G]
j (ẐGχ, Z) = 0 for all 0 ≤ j ≤ m [7, Thm. B.4.6], a homotopical version can
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be found in [5, Thm. 14.4, 14.5]. Detailed proofs of [7, Thm. B.4.6] can be found
in [4, Appendix]. In the case when χ is a discrete character the above criterion for
m = ∞ was rediscovered and further generalised in [17, Thm. 2 and last paragraph
of the introduction], where finite domination of generally non-acyclic free complexes
is considered. More generalisations in this direction can be found in [11, Section 3].

The homological invariant �m(G, Z) defined in [6] for groups G of type FPm is
important in determining the homological type of a subgroup N of G containing the
commutator subgroup. By definition �m(G, Z) contains some classes [χ ] = R>0χ

of characters χ ∈ Hom(G, R)\{0} and by [6, Thm. B] N is of homological type FPm if
and only if for every χ ∈ Hom(G, R)\{0} with χ(N) = 0 we have [χ ] ∈ �m(G, Z).

A ring R with unity is said to be von Neumann finite if whenever for some
a, b ∈ R we have ab = 1 this implies that ba = 1, i.e., every left inverse is a right
inverse. In [13] the terminology used was slightly different, a ring R was said to
have the Kaplansky property if for every natural number n the matrix ring Mn(R)

is von Neumann finite. The group algebra kG of any group G and any field k of
characteristic zero is von Neumann finite [12, p. 122], [16, Ch. 2, Cor. 1.9], [15].
Using the theory of von Neumann dimension of Hilbert G-modules we show the
same result holds for some Novikov rings.

Theorem 1. Let G be a finitely generated group, χ : G → Z a non-zero discrete
character of G. Then every matrix ring Mn(ẐGχ) is von Neumann finite.

The problem whether a matrix ring over ẐGχ is von Neumann finite was first
studied in [13, Thm. 3], where the case when N = ker(χ) is residually finite was
treated with techniques different from the ones used in the present paper. In this
paper we treat two consequences of Theorem 1 ( see Corollary 1 and Corollary 2).
New applications of Theorem 1 to Poincaré duality groups can be found in [11]. The
following theorem is one of the main results of [13].

Theorem 2 ([13, Thm. 1, Cor. 1]). Let G be a non-trivial discrete group of geometric
dimension n with a finite K(G, 1) CW-complex Y of dimension n such that the Euler
characteristics of Y is zero. Suppose that N is a normal subgroup of G containing the
commutator subgroup such that N is of homological type FPn−1 and N is residually
finite. Then

a) N is of homological type FPn;
b) G/N has finite virtual cohomological dimension

vcd(G/N) = cd(G) − cd(N).

In particular either N has finite index in G or N has cohomological dimension at
most cd(G) − 1.
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In [13] Theorem 2 was stated for G/N � Z but the proof there requires only that
G/N is abelian. In this paper we will use Theorem 2 for G/N cyclic-by-finite.

Furthermore the proof of Theorem 2 works in a more general setting, it requires
only that every matrix ring over a Novikov ring ẐGχ is von Neumann finite for any
non-zero character of G (not necessarily discrete) such that χ(N) = 0. The condition
that n is exactly the geometric dimension of G is redundant, the proof of Theorem 2
requires only that the trivial Z[G]-module Z has a resolution of length n of free
modules Fi of finite rank mi where the alternating sum

∑
0≤i≤n(−1)imi is 0. These

remarks together with Theorem 1 give the following result.

Theorem 3. Let G be a non-trivial discrete group with a finite K(G, 1) CW-com-
plex Y of dimension n such that the Euler characteristics of Y is zero. Suppose that N
is a normal subgroup of G containing the commutator subgroup such that N is of
homological type FPn−1 and G/N is cyclic-by-finite. Then

a) N is of homological type FPn;
b) G/N has finite virtual cohomological dimension

vcd(G/N) = cd(G) − cd(N).

In particular either N has finite index in G or N has cohomological dimension
cd(G) − 1.

To be able to apply Theorem 1, we cannot omit the assumption that G/N is cyclic-
by-finite, since we need every character with χ(N) = 0 to be either discrete or zero. It
is important to note that the condition in Theorem 3 on the Euler characteristic cannot
be removed as there is an example of a group G of cohomological dimension 2 and
type FP∞ with a finitely generated normal subgroup N such that G/N � Z but N is
not free [3, Thm. B and Remark 5.4]. The deficiency of this group G is not 1. More
examples of groups G of cohomological dimension n and type FP∞ with normal
subgroups N of homological type FPn−1 but not FPn such that G/N � Z can be
found in [14].

Corollary 1. Let G be a non-trivial discrete group with a finite K(G, 1) CW-com-
plex Y of dimension n such that the Euler characteristics of Y is zero. Suppose that N
is a normal subgroup of G containing the commutator subgroup such that N is of
homological type FPn−1. Then G/N has finite virtual cohomological dimension

vcd(G/N) = cd(G) − cd(N).

and N is of homological type FP∞.

To see how the above corollary follows from Theorem 3 consider a subgroup N0
of G such that N ⊆ N0 and G/N0 � Z (if such N0 does not exist then N has
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finite index in G and there is nothing to prove). As N0/N is a finitely generated
abelian group it is of homological type FP∞, so N being of homological type FPn−1
forces N0 to be of homological type FPn−1 [2, Exer. p. 23]. Then by Theorem 3
cd(N0) = cd(G) − 1 ≤ n − 1 and N0 is of homological type FPn. By [13, Prop. 3]
applied for the normal subgroup N of N0 we get cd(N) = cd(N0) − vcd(N0/N),
hence cd(N) = cd(G)−1−vcd(N0/N) = cd(G)−vcd(G/N) ≤ cd(G)−1 ≤ n−1.
The last property together with the fact that N is of homological type FPn−1 implies
that N is of type FP∞.

Theorem 3 is linked to a long lasting conjecture due to E. Rapaport Strasser
that for a knot-like group G if the commutator subgroup G′ is finitely generated
then G′ should be free [19]. A discrete group is called a knot-like group if G/G′
is the infinite cyclic group and G is finitely presented of deficiency 1. By [13,
Cor. 2] the Rapaport conjecture holds when the commutator subgroup is residually
finite. The Rapaport conjecture in its general form can be deduced as a corollary of
Theorem 3. Indeed by [10, Thm. 2 and Lemma 2] a knot-like group G with finitely
generated commutator subgroup G′ has geometric dimension at most 2, hence the
cohomological dimension cd(G) is at most 2. Without loss of generality we can
assume that both the cohomological and geometric dimensions of G are 2, otherwise
cd(G) = 1 and by the Stallings theorem G is free [20]. Finally by Theorem 3 for
N = G′ we conclude that cd(G′) = 1, using again Stallings’ result G′ is free.

Corollary 2. Let G be a knot-like group with a finitely generated commutator sub-
group G′. Then G′ is free, i.e. the Rapaport conjecture holds.

By [1, Thm. 3.11] every finitely presentable group G with positive deficiency
and finitely generated perfect commutator subgroup has deficiency 1, geometric di-
mension at most 2 and the abelianisation of G is Z or Z2. Furthermore if G′ is of
homological type FP2 then G is either Z or Z2. As pointed out to me by J. Hillman,
the above results together with Theorem 3 imply the following corollary.

Corollary 3. Let G be a finitely presentable group with def(G) > 0 and such that
G′ is finitely generated and perfect. Then G is isomorphic to Z or Z2.

Indeed let N be a subgroup of G containing G′ and such that G/N � Z. As G′
is finitely generated N is finitely generated and by Theorem 3 cd(N) ≤ 1, so N is a
free group, possibly trivial. Then the subgroup G′ of N is free and perfect, so G′ is
the trivial group.
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1. Matrix rings over the Novikov ring

Let G be a finitely generated group and χ : G → Z a non-zero character. In this
section we discuss the ring Mn(ẐGχ) assuming that it is not von Neumann finite.

Denote by N the kernel of χ . Then G � N � 〈t〉, where χ(t) = 1. The
definition of the Novikov ring ẐGχ was given in the introduction for the coefficient
ring Z. In general we can define R̂Gχ for any ring with unity R as a particular
completion of the group ring R[G] (here G commutes with the elements of R) i.e.
R̂Gχ contains precisely those (in general infinite sums) λ = ∑

g∈G,rg∈R rgg such

that the intersection of the support of λ in G with the set χ−1(−∞, j ] is finite for
any choice of a natural number j . The Novikov ring we consider here is a special
case of a more general definition [18, Def. 5.1 (ii)]. Using the above definition of
the Novikov ring as a completion of the group ring R[G] for R = Mn(Z) we get a
natural isomorphism of rings with unity

Mn(ẐGχ) � ̂Mn(Z)Gχ .

Let α, β be elements of ̂Mn(Z)Gχ such that αβ = 1 but

βα �= 1.

Then 0 �= 1−βα = δ = ∑
t iδi (note the sum can be infinite) and δi ∈ Mn(Z[N]) �

Mn(Z)[N] are not all zero. Let i0 be the smallest integer such that

δi0 �= 0.

By the definition of the Novikov ring we have

α =
∑
j≥a

αj t
j and β =

∑
j≥b

βj t
j ,

where the sums are in general infinite, αj , βj ∈ Mn(Z[N ]) and a, b are natu-
ral numbers such that αa �= 0, βb �= 0. Substituting α with t−aα and β by
βta we can assume that a = 0. As 1 = αβ = ( ∑

j≥0 αj t
j
)( ∑

j≥b βj t
j
) =∑

j≥b

( ∑
0≤i≤j−b αiβj−i

)
tj the coefficient

∑
0≤i≤−b αiβ−i is 1 and the index set

{i | 0 ≤ i ≤ −b} is not empty, hence b ≤ 0. We define

k = −b ≥ 0, γ = βtk =
∑
j≥0

γj t
j ,

where γj ∈ Mn(Z[N]) and so

αγ = αβtk = tk.
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From now on let d be a natural number bigger than or equal to k + i0 + c, where
c = max{k, −i0} ≥ 0. Define

V (d) = ⊕
0≤i≤d t iMn(S),

where S = Z[N]. We view V (d) as a free right Mn(S)-module and define several
endomorphisms of V (d) as such a module:

T
( ∑

0≤i≤d

t iμi

)
=

∑
0≤i≤d−1

t i+1μi,

T ∗( ∑
0≤i≤d

t iμi

)
=

∑
1≤i≤d

t i−1μi,

where all μi ∈ Mn(S). For λ ∈ Mn(S) we define the endomorphism θ(λ) on V (d)

by

θ(λ)
( ∑

0≤i≤d

t iμi

)
=

∑
0≤i≤d

t i(λti )μi,

where λti ∈ Mn(S) � Mn(Z)[N] is the result of the conjugation (on the right) of the
elements of N with t i . Note that for λ ∈ Mn(S)

T ∗θ(λ) = θ(λt )T ∗ and T θ(λ) = θ(λt−1
)T .

We think of V (d) as a subset of

⊕
i∈Z t iMn(S) = Mn(S) � 〈t〉 � Mn(Z)[N � 〈t〉] � Mn(Z[G])

and define
π(d) : Mn(S) � 〈t〉 �

⊕
i∈Z

t iMn(S) → V (d)

to be the projection that is identity on V (d) and sends
( ⊕

i<0 t iMn(S)
) ⊕ ( ⊕

i>d t iMn(S)
)

to zero. Then θ(λ) can be viewed as the composition π(d)sλi
(d), where i(d) is the

embedding of V (d) in Mn(S) � 〈t〉 and sλ is the left multiplication with λ in the ring
Mn(S) � 〈t〉.

Now we define two endomorphisms of the free right Mn(S)-module V (d)

α(d) =
∑

0≤j≤d

θ(αj )T
j , β(d) =

( ∑
0≤j≤d

θ(γj )T
j
)
(T ∗)k.
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Lemma 1. The restriction of the composition α(d)β(d) to
⊕

0≤i≤k−1 t iMn(S) is the
zero map and the restriction of α(d)β(d) to

⊕
k≤i≤d t iMn(S) is the identity map.

Proof. First note that
⊕

0≤i≤k−1 t iMn(S) is the kernel of (T ∗)k , so

α(d)β(d)
( ⊕

0≤i≤k−1 t iMn(S)
) = 0.

By the way the operators T , T ∗ and θ(Mn(S)) are defined we have that the operator( ∑
0≤j≤d

θ(αj )T
j
)( ∑

0≤j≤d

θ(γj )T
j
)

acts on V (d) as the composition of the embedding i(d) followed by multiplication on
the left in Mn(S) � 〈t〉 with( ∑

0≤j≤d

αj t
j
)( ∑

0≤j≤d

γj t
j
)

= tk

and then applying the projection π(d) i.e. dropping out the factors that have an expo-
nent of t not in the range 0 ≤ j ≤ d. Thus the composition α(d)β(d) is T k(T ∗)k and
the restriction of T k(T ∗)k on

⊕
k≤i≤d t iMn(S) is the identity map. �

Note that N is a normal subgroup of G, hence for S = Z[N] we have t−iSt i = S

for every i ∈ Z. For every matrix (ajk) ∈ Mn(S) we define t−i (ajk)t
i = (t−iajkt

i).
We remind the reader that d ≥ k+c+i0 and c = max{k, −i0} ≥ 0. The following

technical result will be used in the proof of Lemma 4.

Lemma 2. For c ≤ s ≤ d − k − i0(
I (d) − β(d)α(d)

)
(ts) ∈ t i0+sδts

i0
+ ⊕

i0+s+1≤i≤d t iMn(S)

where I (d) is the identity operator of V (d) and δts

i0
= t−sδi0 t

s is the conjugate of δi0

by t s in Mn(S) defined above.

Proof. Note that

β(d)α(d) =
( ∑

0≤j≤d

θ(γj )T
j
)
(T ∗)k

( ∑
0≤j≤d

θ(αj )T
j
)

=
( ∑

0≤j≤d

θ(γj )T
j
)( ∑

0≤j≤d

θ(αtk

j )(T ∗)kT j
)
.

Then using that
T j (ts) = 0 for d − s + 1 ≤ j
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and that
(T ∗)kT j (ts) = T j (T ∗)k(ts) for k ≤ s ≤ d − j

we get
(
I (d) − β(d)α(d)

)
(ts)

=
(
I (d) −

( ∑
0≤j≤d

θ(γj )T
j
)( ∑

0≤j≤d

θ(αtk

j )(T ∗)kT j )
))

(ts)

=
(
I (d) −

( ∑
0≤j≤d

θ(γj )T
j
)( ∑

0≤j≤d−s

θ(αtk

j )(T ∗)kT j
))

(ts)

−
( ∑

0≤j≤d

θ(γj )T
j
)( ∑

d−s+1≤j≤d

θ(αtk

j )(T ∗)kT j
)
(ts)

=
(
I (d) −

( ∑
0≤j≤d

θ(γj )T
j
)( ∑

0≤j≤d−s

θ(αtk

j )(T ∗)kT j
))

(ts)

=
(
I (d) −

( ∑
0≤j≤d

θ(γj )T
j
)( ∑

0≤j≤d−s

θ(αtk

j )T j (T ∗)k
))

(ts). (∗)

Now we define an element δ(d) ∈ Mn(Z)[N � 〈t〉] � Mn(Z[G]) by

δ(d) = 1 −
( ∑

0≤j≤d

γj t
j
)
t−k

( ∑
0≤j≤d

αj t
j
)

= 1 −
( ∑

0≤j≤d

γj t
j
)( ∑

0≤j≤d

(αtk

j )tj
)
t−k

∈ t i0δi0 + ( ⊕
j≥i0+1 tjMn(S)

)
,

the last inclusion follows from the fact that d − k ≥ i0. As δi0 �= 0 follows that
δ(d) �= 0. Now let μ be the endomorphism of V (d) defined as the composition of
i(d) with the left multiplication with δ(d) in Mn(Z)[N � 〈t〉] and then applying the
projection π(d). By (∗)

μ(ts) − (
I (d) − β(d)α(d)

)
(ts)

= μ(ts) −
(
I (d) −

( ∑
0≤j≤d

θ(γj )T
j
)( ∑

0≤j≤d−s

θ(αtk

j )T j (T ∗)k
))

(ts)

= −
( ∑

0≤j≤d

θ(γj )T
j
)( ∑

d−s+1≤j≤d

θ(αtk

j )T j (T ∗)k
)
(ts)

∈ ⊕
s−k+(d−s+1)=d−k+1≤i≤d t iMn(S)

⊆ ⊕
i0+s+1≤i≤d t iMn(S).
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The last inclusion comes from the fact that s ≤ d −k− i0. Finally, as 0 ≤ i0 + s ≤ d,

μ(ts) ∈ t i0+sδts

i0
+ ⊕

i0+s+1≤i≤d t iMn(S). �

Lemma 3. e = β(d)α(d) is idempotent, i.e. e2 = e.

Proof. As proved in Lemma 1, α(d)β(d) is an idempotent of a special type. Let v ∈
V (d), α(d)(v) = w1 + w2, where w1 ∈ ⊕

0≤i≤k−1 t iMn(S), w2 ∈ ⊕
k≤i≤d t iMn(S).

Then α(d)β(d)(w1 + w2) = w2 and

e2(v) = β(d)α(d)β(d)α(d)(v) = β(d)α(d)β(d)(w1 + w2) = β(d)(w2).

Since (T ∗)k(w1) = 0 we get β(d)(w1) = ( ∑
0≤j≤d θ(γj )T

j
)
(T ∗)k(w1) = 0 and

e(v) = β(d)α(d)(v) = β(d)(w1 + w2) = β(d)(w1) + β(d)(w2) = β(d)(w2). �

2. Proof of Theorem 1

We define A
(d)
0 and B

(d)
0 to be the matrices in Md+1(Mn(S)) � Mn(d+1)(S) that

represent the operators α(d) and β(d) respectively. For example if A
(d)
0 = (aj,i),

aj,i ∈ Mn(S) we have α(d)(t i) = ∑
j tj aj,i . We remind the reader that S = Z[N].

By Lemma 3 B
(d)
0 A

(d)
0 is an idempotent matrix, hence In(d+1) − B

(d)
0 A

(d)
0 ∈

Mn(d+1)(Z[N ]) is an idempotent matrix, so its columns generate a projective right
submodule P of R[N]n(d+1), where In(d+1) is the identity n(d+1)×n(d+1)-matrix.
We think of the elements of R[N ]n(d+1) as columns of length n(d + 1) and entries in
R[N]. By definition l2(N) is the Hilbert space with orthonormal basis N i.e. square
norm summable functions on N with coefficients in R. Then P ⊗R[N ] l2(N) is a
Hilbert N -submodule of l2(N)n(d+1) via the multiplication of N on l2(N) on the
right.

Lemma 4. The von Neumann dimension dimN(P ⊗R[N ] l2(N)) is kn.

Proof. Let Q be the projective right R[N ]-submodule in R[N ]n(d+1) generated by
the columns of B

(d)
0 A

(d)
0 . Then P ⊕ Q = R[N]n(d+1),

(P ⊗R[N ] l2(N)) ⊕ (Q ⊗R[N ] l2(N)) = l2(N)n(d+1)

and
dimN(P ⊗R[N ] l2(N)) + dimN(Q ⊗R[N ] l2(N)) = n(d + 1).

Note that the matrix B
(d)
0 A

(d)
0 defining Q is an idempotent, that in general is not

self-adjoint, still its von Neumann trace (the sum of Kaplansky traces of all diagonal
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elements) is exactly the von Neumann dimension of Q ⊗R[N ] l2(N) (see [8, Sect. 2]
for the case of matrices of size 1, the general case is exactly the same), i.e.

trace
(
B

(d)
0 A

(d)
0

) = dimN(Q ⊗R[N ] l2(N)),

and similarly

trace
(
In(d+1) − B

(d)
0 A

(d)
0

) = dimN(P ⊗R[N ] l2(N)).

By [9, Cor. 3.1.4]
trace

(
B

(d)
0 A

(d)
0

) = trace
(
A

(d)
0 B

(d)
0

)
and by Lemma 1

trace
(
A

(d)
0 B

(d)
0

) = n(d + 1 − k).

Hence

dimN(P ⊗R[N ] l2(N)) = n(d + 1) − dimN(Q ⊗R[N ] l2(N))

= n(d + 1) − trace
(
B

(d)
0 A

(d)
0

)
= n(d + 1) − trace

(
A

(d)
0 B

(d)
0

)
= n(d + 1) − n(d + 1 − k)

= nk. �

Let P0 be the submodule of P generated by the columns

ρcn+1, ρcn+2, . . . , ρn(d+1−k−i0)

of the matrix In(d+1) − B
(d)
0 A

(d)
0 ∈ M(d+1)n(Z[N]), here ρi is the ith column. Let

P0 ⊗R[N ] l2(N) → P ⊗R[N ] l2(N) be the map induced by the embedding of P0
in P and W(d) be the closure of the image of this map. Then W(d) is a Hilbert
N-submodule of l2(N)n(d+1) via the right N action on l2(N).

For c = max{k, −i0} ≤ j ≤ d − k − i0 let ej be the matrix of size ((d + 1)n)×n

with columns ρjn+1, ρjn+2, . . . , ρ(j+1)n. Define square matrices (ej )i ∈ Mn(Z[N])
for 1 ≤ i ≤ d, where (ej )i has as consecutive rows the (1 + in)-th,. . . , (i + 1)n)-th
rows of ej . By Lemma 2,

if c ≤ j ≤ d − k − i0, i < j + i0, then the matrix (ej )i is zero;

(ec)c+i0 = δtc

i0
∈ Mn(Z[N]);

if c + 1 ≤ j ≤ d − k − i0, then we have (ej )j+i0 = (ej−1)
t
j−1+i0

= δtj

i0
, (∗∗)

where upper index t is conjugation on the right side with the element t .
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For c ≤ j ≤ d − k − i0 let W
(d)
j be the closure of the image of

(P0)j ⊗R[N ] l2(N) → P ⊗R[N ] l2(N) ⊆ l2(N)n(d+1),

where (P0)j is the submodule of P0 generated by all the columns in the matrices
ej , . . . , ed−k−i0 .

For i ≥ 0 define V
(d)
i as the Hilbert N -submodule of l2(N)n(d+1) consisting of

the elements with 0 coordinates in the first in positions. Then by (∗∗) for c ≤ j ≤
d − k − i0

W
(d)
j ⊆ V

(d)
j+i0

and W
(d)
j �⊆ V

(d)
j+i0+1.

Then the composition map

ϕ
(d)
j : W

(d)
j → V

(d)
j+i0

→ V
(d)

j+i0
/V

(d)
j+i0+1 � l2(N)n

of the inclusion and the canonical projection map has W
(d)
j+1 in its kernel. Then

the closure of the image of ϕ
(d)
j is a quotient of W

(d)
j /W

(d)
j+1 . By (∗∗) the closure

of the image of ϕ
(d)
j is some t-power conjugate of the closure Y of the image Y of

X⊗R[N ]l2(N) in R[N]n⊗R[N ]l2(N) � l2(N)n, where X is the right R[N]-submodule
of R[N]n generated by the columns of δtc

i0
∈ Mn(R[N ]).

Lemma 5. Let H be a countable group, M a Hilbert H -submodule of l2(H)m for
some natural number m, ε an automorphism of the Hilbert space l2(H) that extends
a group automorphism of H , and let

ν : l2(H)m → l2(H)m

be the isometry whose restriction on every coordinate is ε. Then the von Neumann
dimensions dimH (M) and dimH (ν(M)) are equal.

Proof. Let πM and πν(M) be the orthogonal projections of l2(H)m to M and ν(M)

respectively. Then πM and πν(M) can be thought as elements of Mm(N(H)) where
N(H) is the von Neumann algebra of H . By definition dimH (M) = trace(πM)

and dimH (ν(M)) = trace(πν(M)). Let xi be the element of l2(H)m with just one
non-zero entry 1 on the ith place. Then

ν(xi) = xi, πν(M)(xi) = ν(πM(xi)).

Using again that ν is an isometry it follows that

trace(πν(M)) =
∑

1≤i≤m

〈πν(M)(xi), xi〉 =
∑

1≤i≤m

〈ν(πM(xi)), xi〉

=
∑

1≤i≤m

〈ν(πM(xi)), ν(xi)〉 =
∑

1≤i≤m

〈πM(xi), xi〉 = trace(πM). �
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As noted before, W(d)
j /W

(d)
j+1 is a non-trivial Hilbert N-module that has a quotient

obtained from Y by applying ν from Lemma 5 for ε a conjugation by some power

of t and H = N . Then by Lemma 5 the von Neumann dimension of W
(d)
j /W

(d)
j+1 is at

least the von Neumann dimension of Y . As the von Neumann dimension of Hilbert
N-modules is additive [9, p. 203] we deduce that

dimN

(
W(d)

) =
d−k−i0∑

j=c

dimN

(
W

(d)
j /W

(d)
j+1

) ≥ (d + 1 − k − c − i0) dimN(Y ).

As the von Neumann dimension preserves inclusion and by Lemma 4

kn = dimN(P ⊗R[N ] l2(N)) ≥ dimN

(
W(d)

) ≥ (d + 1 − k − c − i0) dimN(Y ) > 0.

Then
kn/(d + 1 − k − c − i0) ≥ dimN(Y )

a contradiction as dimN(Y ) is a fixed positive real number, k, n, i0, c are fixed num-
bers, d ≥ k + c + i0 and d can be arbitrary large.
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