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Fiberwise localization and the cube theorem

David Chataur and Jérôme Scherer∗

Abstract. In this paper we explain when it is possible to construct fiberwise localizations in
model categories. For pointed spaces, the general idea is to decompose the total space of a
fibration as a diagram over the category of simplices of the base and replace it by the localized
diagram. This of course is not possible in an arbitrary category. We have thus to adapt another
construction which heavily depends on Mather’s cube theorem. Working with model categories
in which the cube theorem holds, we propose a few equivalent conditions under which fiberwise
nullifications exist. We show that these techniques apply to yield a fiberwise plus-construction
for differential graded algebras over cofibrant operads.
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Introduction

Mather’s cube theorem states that the top face of a cube of spaces whose bottom
face is a homotopy push-out and all vertical faces are homotopy pull-backs is again
a homotopy push-out ([13, Theorem 25]). This theorem is one of the very few
occurrences of a situation where homotopy limits and colimits commute. It is actually
related to a theorem of Puppe about commuting fibers and push-outs ([16]), and also
to Quillen’s Theorem B in [18]. Doeraene’s work on J -categories has incorporated
the cube theorem as an axiom in pointed model categories and allowed him to study
the L.S.-category in an abstract setting ([6]). Roughly speaking a J -category is a
model category in which the cube theorem holds. Such a model category is very
suitable for studying the relationship between a localization functor (constructed by
means of certain homotopy colimits) and fibrations.

∗The first author is supported by the Marie Curie Grant HPMF-CT-2001-01179. The second author is
supported by the program Ramón y Cajal, MEC, Spain, as well as by MEC grant MTM2004-06686.
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Recall that a localization functor in a model category M is any coaugmented
homotopically idempotent functor L : M → M, the coaugmentation being a nat-
ural transformation η : Id → L. The localization functors Lf , which “invert” the
morphism f , have been constructed for spaces by Dror Farjoun and exist in rather
general model categories by work of Hirschhorn. We are looking for an existence
theorem of fiberwise localization, i.e. a construction which associates to a fibration
F → E→ B another fibration together with a natural transformation

F ��

η

��

E ��

��

B

Lf F �� E �� B

where E→ E is an Lf -equivalence. For pointed spaces, the most elegant construc-
tion of fiberwise localization is due to Dror Farjoun (in [8, Theorem 1.F.3]). His
idea is to decompose the total space of a fibration as a diagram over the category
of simplices of the base and replace it by the corresponding localized diagram. In
certain particular settings, some authors used other constructions (May [15], Dwyer,
Miller, and Neisendorfer in [9] for completions, Casacuberta and Descheemaker in
[3] in the category of groups), but none of these can be adapted in model categories.
Farjoun’s construction in particular is useless in any category where the homotopy
colimit of a diagram with contractible values is trivial (such as differential graded
algebras over an operad, see the applications below). We prove the following:

Theorem 4.3. Let M be a model category which is pointed, left proper, cellular and
in which the cube axiom holds. Assume also that M either has a set of detectors, or
satisfies the ladder axiom. Let Lf : M→M be a localization functor, F → E→ B

be a fibration, and assume that Lf (�B×X) � Lf �B×Lf X for any X ∈M. Then
there exists a fiberwise localization, i.e. a natural transformation to a new fibration

F ��

η

��

E ��

��

B

Lf F �� E �� B

where E→ E is an f -local equivalence.

Here detectors are some special objects playing the role of spheres. They exist
in the category of pointed spaces, algebras over an operad, G-equivariant spaces,
spectra, etc. So basically fiberwise localizations exist when the localization of a
product is weakly equivalent to the product of the localizations, in other words when
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trivial fibrations admit a fiberwise localization! Because it is so difficult to compute
the localization of a product, we will mostly deal with nullification functors. They are
localization functors Lf where the map f is of the form A→ ∗ and are written PA.
Recall that the image of PA consists in all objects X for which the space map(A, PAX)

of (pointed) maps is contractible. In this context we will be able to replace the
condition on the product by one which can be actually checked in specific examples
and is stated in terms of the join.

The join axiom. The join axiom is satisfied for an object A if the join X ∗A is killed
by PA for any object X, i.e. PA(X ∗ A) � ∗.

One should not however expect fiberwise nullification to exist without further
restriction, as shown by Hirschhorn’s Example 4.2 of pointed spaces. Requiring that
the base of the fibration be path connected, we show in Theorem 5.3 that fiberwise
nullifications exist in pointed model categories satisfying the cube and the join axioms.

For such categories the join axiom is actually necessary and we characterize the
model categories for which fiberwise nullifications exist, see Theorem 5.5.

We work in the last part of the paper with the category of differential graded
algebras over a cofibrant operad. As shown in [1] this is a model category and we
prove that it satisfies the cube axiom. Therefore the plus-construction developed in
[5] has a fiberwise analogue. Let us only say that the plus-construction performed
on a (non-negatively graded) O-algebra B kills the maximal O-perfect ideal in π0B

and preserves Quillen homology. As a direct consequence we get the following result
which is classical for spaces.

Theorem 6.7. Let O-alg be the category of non-negatively graded differential graded
algebras over a cofibrant operad O. For any O-algebra B, denote by B → B+ the
plus construction. The homotopy fiber AB = Fib(B → B+) is then acyclic with
respect to Quillen homology.

Acknowledgements. We would like to thank Jean-Paul Doeraene, Gustavo Granja,
and Mark Hovey for helpful comments. We also thank the referee for his careful
reading and for pointing out two errors in a previous version.

1. Notation and terminology

We recall here the basics on model categories and localization. The main reference
is Hirschhorn’s book [11], but there are of course classical references such as [17] on
model categories, [2] and [8] on localization.

In a model category M which is pointed, the terminal object coincides with the
initial one and is denoted by ∗. In such a category the homotopy fiber Fib(p) of a
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map p : E → B is defined as the homotopy pull-back of the diagram ∗ → B ← E.
If M is not pointed, there may exist many morphisms ∗ → B and thus distinct fibers.

We will assume the category is left proper, meaning that the push-out of a weak
equivalence along a cofibration is again a weak equivalence. Finally we require M to
be cellular as defined in [11, Definition 12.1.1]. Basically the small object argument
applies in a cellular model category, as one has a set I of generating cofibrations
Ai → Bi which replace the usual spheres. Every object has a cofibrant replacement
by a cell complex by [11, Theorem 11.2.7] and for every cofibrant object there exists
a cardinal κ such that any morphism from it to a telescope of length λ ≥ κ made
of cofibrations factorizes through an object of this telescope (smallness of cofibrant
objects, see [11, Theorem 12.4.3]). By a telescope of length λ (or λ-sequence, [11,
Definition 10.2.1]) we mean a diagram of the form X0 → X1 → · · · → Xβ → · · ·
for β < λ such that each morphism is a cofibration and for every limit ordinal γ < λ

the map colimα<γ Xα → Xγ is an isomorphism.
Recall that ℵ0 is the countable cardinal. An object G in M is said to be finite

(or ℵ0-small) if any morphism from G into a (countable or possibly transfinite)
telescope factors through some object of the telescope. Thus [G, hocolim(A0 →
A1 → · · · → Aβ → · · · ] ∼= colim([G, A0] → [G, A1] → · · · → [G, Aβ ] → · · · ).

In general weak equivalences are detected by mapping spaces out of the generating
cofibrations (this can be deduced from [11, Theorem 17.7.7]). In order to have a more
handy criterion we will assume sometimes that our model category contains some
special objects playing the role of spheres.

Definition 1.1. A set of finite objects G is called a set of detectors if they detect weak
equivalences, i.e. a morphism X→ Y is a weak equivalence if and only if it induces
a bijection [G, X] ∼= [G, Y ] for any G ∈ G.

This condition is satisfied in all the examples we have in mind: Spaces, spectra,
algebras over an operad, etc. In [12, Corollary 7.4.4] Hovey shows that any cofi-
brantly generated pointed model category has a set of weak generators, which detect
contractible objects, namely the cofibers of the generating cofibrations. In general
these weak generators are not detectors, as is illustrated by the case of pointed spaces
(the cofibers are all connected). The key point where detectors are used in this paper
is to get a property about telescopes (cf. Lemma 2.6).

Let M be a cellular model category and f : A → B be any morphism in M.
Recall that it is always possible to construct mapping spaces up to homotopy in
M even though we do not assume M to be a simplicial model category (see [12,
Section 5.4] or [11, Chapter 17]). Thus we can define an object Z ∈ M to be
f -local if f induces a weak equivalence f ∗ : map (B, Z) � map (A, Z). A map
g : X → Y is an f -local equivalence if it induces a weak equivalence on mapping
spaces g∗ : map (Y, Z)→ map (X, Z) for any f -local object Z. Hirschhorn shows
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in [11, Theorem 4.1.1] that there exists a coaugmented functor Lf : M → M such
that the coaugmentation η : X→ Lf X is an f -local equivalence to an f -local object.
This functor is called f -localization.

When working with a nullification functor PA for some object A ∈ M, we say
that X is A-acyclic or killed by A if PAX � ∗. By universality this is equivalent to
map (X, Z) � ∗ for any A-local object Z, or even better to the fact that any morphism
X→ Z to an A-local object is homotopically trivial.

2. The cube axiom

In general we do not know if it is possible to localize fiberwise in any (pointed, left
proper, cellular) model category. We will thus work in model categories satisfying
an extra condition.

Definition 2.1. A model category M satisfies the cube axiom if for every commutative
cubical diagram in M in which the bottom face is a homotopy push-out square and
all vertical faces are homotopy pull-back squares, then the top face is a homotopy
push-out square as well.

Mather proved the cube theorem for spaces in [13, Theorem 25] and Doeraene
introduced it as an axiom for model categories. His paper [6] contains a very useful
appendix with several examples of model categories satisfying this rather strong
axiom.

Example 2.2. Any stable model category satisfies the cube axiom. Indeed homo-
topy push-outs coincide with homotopy pull-backs, so that this axiom is a tautology.
On the other hand the category of groups does not satisfy the cube axiom. Let
us give an easy counter-example by considering the push-out of (Z ← ∗ → Z),
which is a free group on two generators a and b. The pull-back along the inclusion
Z〈ab〉 ↪→ Z〈a〉∗Z〈b〉 is obviously not a push-out diagram. However fiberwise local-
izations exist in the category of groups as shown by the recent work of Casacuberta
and Descheemaker [3].

The following proposition claims that under very special circumstances the homo-
topy push-out of the homotopy fibers coincides with the homotopy fiber of the homo-
topy push-outs. In the category of spaces this is originally due to Puppe, see [16]. The
close link between the cube theorem and Puppe’s theorem was already well known
to Mather and Walker, as can be seen in [14].
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Proposition 2.3. Let M be a pointed model category in which the cube axiom holds.
Consider natural transformations between push-out diagrams:

F

j

��

= hocolim
(

F1

j1
��

F0�� ��

j0
��

F2

j2
��

)

E

p

��

= hocolim
(

E1

p1

��

E0�� ��

p0

��

E2

p2

��

)

B = hocolim
(

B B B
)

Assume that Fi = Fib(pi) for any 0 ≤ i ≤ 2. Then F is the homotopy fiber Fib(p).

Proof. Denote by k : G → E the homotopy fiber of p. We show that G and F are
weakly equivalent. Let us construct a cube by pulling-back Ei → E along k. The
bottom face consists thus in the middle row of the above diagram and the top face
consists in the homotopy pull-backs of Ei → E ← G, which are the same as the
homotopy pull-backs of Ei → B ← ∗, i.e. Fi . The cube axiom now states that the
top face is a homotopy push-out and we are done. �

This result will be the main tool in constructing fiberwise localization in M. In his
paper [6] on L.S.-category, Doeraene used the cube axiom in a very similar fashion
to study fiberwise joins. Indeed Ganea’s characterization of the L.S.-category uses
iterated fibers of push-outs over a fixed base space. The same ideas have also been
used in [7]. The next lemmas state commutation rules of homotopy colimits with
products. Notice that we do not claim that products commute with coproducts.

Lemma 2.4. Let M be a model category in which the cube axiom holds. Let D be the
homotopy push-out in M of the diagram A← B → C. Then, for any object X ∈M,
X ×D is the homotopy push-out of the diagram X × A← X × B → X × C.

Proof. It suffices to consider the cube obtained by pulling back the mentioned push-
out square along the canonical projection X ×D→ D. �

The following axiom is a very natural analogue of the cube axiom. It says that
telescopes commute with homotopy pull-backs.

Definition 2.5. A model category M satisfies the ladder axiom if for every commu-
tative diagram in M of the form

E0

��

�� E1

��

�� E2

��

�� . . . �� Eβ ��

��

. . . �� E

��
B0 �� B1 �� B2 �� . . . �� Bβ �� . . . �� B
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in which B is the homotopy colimit of the bottom telescope of length λ for some
ordinal λ and Eβ is the homotopy pull-back of Bβ → B ← E for all β < λ, then E

is the homotopy colimit of the top line.

A model category (such as that of spaces) which satisfies both the cube axiom and
the ladder axiom is easily seen to satisfy an even more general commutation axiom.
Take any diagram F : I →M indexed by a contractible category I and any fibration
p : E→→ hocolimI F . Pull back the whole diagram along p so as to obtain a diagram
G : I →M together with a natural transformation F → G. Then hocolimI G � E.
This is precisely the cube axiom when I is the push-out category • ← • → • and
the ladder axiom when I is the telescope category • → • → • → · · · .

We will actually not need the ladder axiom in its full generality, but are mainly
interested in the commutation of telescopes with products. Sometimes it is easier to
check such a property directly by using detectors, as defined in Definition 1.1.

Lemma 2.6. Let M be a model category either having a set of detectors G or satisfying
the ladder axiom. Let A be the homotopy colimit in M of a (possibly transfinite)
telescope A0 → A1 → A2 → · · · → Aβ → · · · . Then, for any object X ∈ M,
X × A is the homotopy colimit of the diagram X × A0 → X × A1 → X × A2 →
· · · → X × Aβ → · · · .

Proof. When a set of detectors is available it suffices to compute the sets of homotopy
classes out of the detectors G ∈ G and check that

[G, X × A] ∼= [G, hocolim(X × A0 → X × A1 → X × A2 → · · · )].
This is straightforward since the detectors are finite objects. In the case of a transfinite
telescope of length λ one should replace the object X×Aγ by the weakly equivalent
one hocolimα<γ X × Aα for every limit ordinal γ so as to get a true telescope by
taking the product with X.

If the ladder axiom holds, it is simply the particular case when the fibration one
pulls back is the trivial one X × A→→A. �

3. The join

We check here that all the classical facts about the join of spaces actually hold in
any model category and introduce the join axiom. Most proofs here are not new,
but probably folklore. Recall that the join A ∗ B of two objects A, B ∈ M is the

homotopy push-out of A
p1←− A × B

p2−→ B. First notice that the induced maps
A→ A ∗ B and B → A ∗ B are trivial. Indeed the map A→ A ∗ B can be seen as
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the composite A
i1−→ A × B

p1−→ A → A ∗ B which by definition coincides with

the obviously trivial map A
i1−→ A× B

p2−→ B → A ∗ B.

Lemma 3.1. For any objects A, B in a pointed model category M, we have a weak
equivalence A ∗ B � �(A ∧ B).

Proof. We use a “classical” Fubini argument (homotopy colimits commute with them-
selves, cf. for example [4, Theorem 24.9]). Consider the commutative diagram

∗ ∗ ∗

A

��

A ∨ B

��

��

���� B

��

A A× B�� �� B .

Its homotopy colimit can be computed in two different ways. By taking first vertical
homotopy push-outs and next the resulting horizontal homotopy push-out one gets
�(A ∧ B). By taking first horizontal homotopy push-outs one gets A ∗ B. �

Lemma 3.2. For any objects A, B in a pointed model category M, we have a weak
equivalence �A ∧ B � �(A ∧ B).

Proof. Apply again the Fubini commutation rule to the following diagram:

∗ ∗ ∗

B

��

A ∨ B

��

��

���� B

��

B A× B�� �� B

where one uses Lemma 2.4 to identify the push-out of the bottom line. �

For a fibration F → E→→B, the holonomy action is the map m : �B × F → F

induced on the pull-backs by the natural transformation from �B → ∗ ← F to
PB→→B ← E.

Corollary 3.3. For any fibration F → E→→B in a model category M, the homotopy

push-out of �B ← �B × F
m−→ F is weakly equivalent to �B ∗ F .
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Proof. Copy the proof of the preceding lemma to compare this homotopy push-out
with �(�B ∧ F). �

The next result, which is a particular case of Proposition 2.3, is a theorem originally
due to Ganea (see [10]).

Proposition 3.4. Let M be a model category in which the cube axiom holds. Consider
a fibration F → E→→B, and the homotopy cofiber E′ = Cof(F → E). The
homotopy fiber Fib(E′ → B) is then weakly equivalent to the join F ∗�B.

Proof. The homotopy push-out of fibers one has to compute using Puppe’s Proposi-
tion 2.3 is precisely that of Corollary 3.3. �

Proposition 3.5. Let M be a model category in which the cube axiom holds. Assume
also either that it has a set of detectors, or that it satisfies the ladder axiom. Then the
join commutes with coproducts, push-outs, and telescopes.

Proof. The case of push-outs and telescopes follows from Lemmas 2.4 and 2.6. In
the case of finite coproducts, notice that X ∗ (A

∐
B) � (X ∗ A)

∐
(X ∗ B) and for

infinite ones, use the appropriate telescope. �

Definition 3.6. A cellular model category M satisfies the join axiom for the nulli-
fication functor PA if the join of A with the cofiber of any generating cofibration is
A-acyclic.

Example 3.7. Any stable model category satisfies trivially the join axiom, as push-
outs coincide with pull-backs. In such a category the join is always trivial. The
category of groups satisfies the join axiom for a similar reason (but we saw in Exam-
ple 2.2 that the cube axiom does not hold). The category of pointed spaces satisfies
as well the join axiom. Here the cofibers of the generating cofibrations are spheres
Sn and the join Sn ∗ A � �n+1A is obviously A-acyclic.

Proposition 3.8. Let M be a cellular model category in which the join axiom and
the cube axiom hold. Assume also that M either has a set of detectors, or satisfies
the ladder axiom. Then �iA ∗ Z is A-acyclic for any i ≥ 0 and any object Z.

Proof. Any object in M has a cofibrant approximation which can be constructed from
∗ as a telescope C0 → C1 → C2 → · · · → Cβ → · · · of push-outs along generating
cofibrations. Since C0 and Cof(C0 → C1) are cofibers of generating cofibrations,
both A∗C0 and A∗Cof(C0 → C1) are A-acyclic. The join with A of a cofibration is
again a cofibration by Proposition 3.5, which proves next that A ∗C1 is A-acyclic as
well. A transfinite induction argument shows that A ∗Z is A-acyclic since A ∗Cγ is
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weakly equivalent to hocolimα<γ (A ∗Cα) for any limit ordinal γ by Proposition 3.5
again. We conclude now by Lemma 3.2 since �iA ∗ Z � �i(A ∗ Z) is PA-acyclic
for any i ≥ 0. �

Theorem 3.9. Let M be a cellular model category in which the join axiom and the
cube axiom hold. Assume also that M either has a set of detectors, or satisfies the
ladder axiom. Then X ∗Z is A-acyclic for any object Z and any A-acyclic object X.

Proof. Since X is A-acyclic, one obtains a contractible object by iteratively at-
taching cones over suspensions of A to X. Let us consider the first step X1 =
Cof

( ∨
i≥0

∨
�iA → X

)
. By Proposition 3.5 X1 ∗ Z is weakly equivalent to

Cof
( ∨

i≥0
∨

�iA ∗ Z → X ∗ Z
)
. As �iA ∗ Z is A-acyclic by the above propo-

sition, the map X ∗ Z → X1 ∗ Z is a PA-equivalence. Iterating the process yields
the desired PA-equivalence from X ∗ Z to a contractible object. Notice that for any
limit ordinal γ the morphism X ∗ Z → hocolimα<γ (Xα ∗ Z) is a PA-equivalence.

�

Remark 3.10. Given a family F of generating cofibrations, we say M satisfies the
restricted join axiom if the join of A with the cofiber of any cofibration in F is A-
acyclic. One refines then the above proposition to cellular model categories in which
the restricted join axiom holds. Here �iA ∗ Z is A-acyclic for any i ≥ 0 and any
F -cellular object Z, i.e. any object weakly equivalent to one which can be built from
∗ by performing push-outs along cofibrations in F .

4. Fiberwise localization

The elegant construction proposed by Dror Farjoun in [8, 1.F.2] cannot work in an
arbitrary pointed model category. The idea would be to decompose a fibration
E→→B as an unpointed homotopy colimit over the “simplices” of the base (sim-
plices should be contractible objects). In particular B would be expressed as a
certain homotopy colimit of contractible objects. But if there is no underlying un-
pointed category available (think of differential graded Lie algebras for example), any
(pointed) homotopy colimit of a diagram made of contractible objects will be con-
tractible. Therefore there is a need for an alternative construction and we explain now
how to adapt the fiberwise construction [8, 1.F.7] in a model category. The follow-
ing lemma is the step we will iterate on and on so as to construct the space E (in
Theorem 4.3).
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Proposition 4.1. Let M be a left proper and pointed model category in which the
cube axiom holds. Consider a commutative diagram

F

j

��

� � η �� Lf F ��

��

F1

j2

��
E

��
p

��

� � �� E′ � ��

p′
��

E1

��
p1

��
B B B

where the left column is a fibration sequence, the upper left square is a homotopy
push-out square, p′ : E′ → B is the unique map extending p such that the composite
Lf F → E′ → B is trivial, p1 is a fibration, and F1 is the homotopy fiber of p1.
Assume that the canonical map F ×�B → Lf F ×�B is an f -local equivalence.
Then the composites E → E′ → E1 and F → Lf F → F1 are both f -local
equivalences.

Proof. We can assume that the map η : F ↪→ Lf F is a cofibration as indicated in
the diagram, so that E′ is obtained as a push-out, not only a homotopy push-out.
Since η is an f -local equivalence, so is its push-out along j by left properness (see
[11, Proposition 3.5.4]). To prove that F → F1 is an f -local equivalence, it suffices
to analyze the map Lf F → F1. We use Puppe’s Proposition 2.3 to compute F1 as
homotopy push-out of the homotopy fibers of Lf F ← F → E over the fixed base B.
This yields the diagram Lf F ×�B ← F ×�B → F whose homotopy push-out is
F1. By assumption the morphism F ×�B → Lf F ×�B is an f -local equivalence,
thus so is F → F1. �

Example 4.2. The category of pointed spaces is the prototype of a cellular model
category in which the cube axiom holds. However, as shown by Hirschhorn in [11,
Proposition 6.1.4], fiberwise localization does not always exist here! The above
construction fails when the base is not 1-connected, because �B is not connected.
When for example B = S1 and Lf F � ∗, it is not true that the map F × Z→ Z is
an f -local equivalence, since Lf (F × Z) = F × (Z \ 0)

∐ ∗.

Theorem 4.3. Let M be a model category which is pointed, left proper, cellular and
in which the cube axiom holds. Assume also that M either has a set of detectors, or
satisfies the ladder axiom. Let Lf : M→M be a localization functor, F → E→ B

be a fibration, and assume that Lf (�B×X) � Lf �B×Lf X for any X ∈M. Then
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there exists a fiberwise localization, i.e. a natural transformation to a new fibration

F ��

η

��

E ��

��

B

Lf F �� E �� B

where E→ E is an f -local equivalence.

Proof. We construct first by the method provided in Lemma 4.1 a natural transfor-
mation to the fibration F1 → E1 → B. We iterate then this construction and define
E = hocolim(E → E1 → E2 → · · · ), F∞ = hocolim(F → F1 → F2 → · · · ),
and F to be the homotopy fiber of E → B . If M satisfies the ladder axiom F∞
is weakly equivalent to F because the Fn’s coincide with the homotopy pull-backs
of En → E ← F̄ . If M has a set of detectors it is easy to see that the morphism
F∞ → F̄ induces isomorphisms [G, F∞] ∼= [G, F̄ ] for any detector G.

We get thus a fibration F∞ → E→ B. As all maps in the telescopes are f -local
equivalences by the above lemma, hence so are E→ E and F → F∞. Moreover any
map Fn → Fn+1 factorizes as Fn → Lf Fn � Lf F → Fn+1 so that F∞ � Lf F .

We obtain thus the desired fibration Lf F → E→ B. �

Remark 4.4. The fiberwise localization we have constructed in Theorem 4.3 is ob-
tained in a countable number of steps. This can be done because the ladder axiom or
the detectors allow us to identify the homotopy fiber of E → B with the homotopy
colimit of the countable telescope of homotopy fibers Fn. In an arbitrary cellular
model category this is not necessarily true and one would construct E by iterating the
construction of Lemma 4.1 a transfinite number of times, up to the size of the cells
of M, see [11, Definition 12.3.3].

5. Fiberwise nullification

In general it is a very difficult problem to determine if a localization functor commutes
with products. In the case of a nullification functor we will refine the analysis of the
construction in Proposition 4.1 so as to use joins instead of products. Recall that
when f is a morphism of the form A→ ∗, Lf is called nullification or periodization,
and denoted by PA.

The advantage of a nullification X → PAX is that it can be constructed up to
homotopy by imitating the topological construction 2.8 in [2]. One must iterate
(possibly transfinitely, for a cardinal depending on the size of the cells of M and
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defined in [11, Definition 4.5.3]) the process of gluing A-cells, i.e. take the homotopy
cofiber of a map �iA → X. We assume throughout this section that the model
category M satisfies both the join axiom and the cube axiom.

Definition 5.1. An object B is path connected if a morphism E → B is a weak
equivalence if and only if its homotopy fiber is trivial.

Lemma 5.2. Let M be a model category which is pointed, left proper, cellular, in
which the cube axiom and the join axiom hold. Let F → E→ B be a fibration with
path connected base B. If PAF � ∗, then PAE � PAB.

Proof. By Proposition 3.4 we see that the fiber F1 of our iterative step of the fiberwise
construction (Proposition 4.1) is F ∗�B. This is an A-acyclic object by Theorem 3.9
and we noticed in Section 3 that the map F → F ∗ �B is trivial. Iterating the
process as in Ganea’s original construction, we see that the homotopy colimit F∞ of
the successive homotopy fibers is contractible. Therefore the fiberwise nullification
E is weakly equivalent to B. Moreover the map E → E is a PA-equivalence, since
we kill A-acyclic fibers at each step. �

Let us investigate more closely the map F → F1 in Proposition 4.1 by decom-
posing the map F → PAF into several steps obtained by gluing A-cells.

Theorem 5.3. Let M be a model category which is pointed, left proper, cellular, in
which the cube axiom and the join axiom hold. Let PA : M →M be a nullification
functor and B an object such that �B is path connected. Assume also that M has a set
of detectors, or satisfies the ladder axiom. Then there exists a fiberwise nullification,
i.e. a construction which associates to any fibration F → E → B another fibration
together with a natural transformation

F ��

η

��

E ��

��

B

PAF �� E �� B

where E→ E is a PA-equivalence.

Proof. Consider a cofibration of the form �iA
f−→ F → Cf . Let Ef be the

homotopy push-out of Cf ← F → E and compute as in Proposition 4.1 the ho-
motopy fiber Ff of Ef → B. It is weakly equivalent to the homotopy push-out of
Cf × �B ← F × �B → F . Hence Ff is also weakly equivalent to the homotopy
push-out of �B ← �iA × �B → F , using the definition of Cf . The first map is



184 D. Chataur and J. Scherer CMH

a PA-equivalence because the projection �iA × �B → �B is one by Lemma 5.2.
Thus so is F → Ff by left properness. The map F → F1 is obtained by repeating
this process of gluing A-cells. It is therefore a telescope of PA-equivalences, hence
a PA-equivalence. We can then conclude as in Theorem 4.3 that F → F∞ is an
A-nullification map. �

As usually, let us denote by P̄AX the homotopy fiber of the nullification map
Fib(X→ PAX). As in the case of spaces we get:

Corollary 5.4. Let M be a model category which is pointed, left proper, cellular,
in which the cube axiom and the join axiom hold. Assume also that M has a set of
detectors, or satisfies the ladder axiom. For any object X in M such that �PAX is
path connected, we have PAP̄AX � ∗.

Proof. Apply the fiberwise localization to the fibration P̄AX → X → PAX. This
yields a fibration PAP̄AX→ X̄→ PAX in which the base and the fiber are A-local.
Therefore X̄ is A-local as well. But then X̄ � PAX and so PAP̄AX is contractible.

�

We end this section with a characterization of the model categories which admit
fiberwise nullifications. We assume for simplicity that all morphisms in the model
category which have contractible fiber are weak equivalences. This assumption could
be removed if one would work with fibrations over a base B such that �B is path
connected.

Theorem 5.5. Let M be a model category which is pointed, left proper, cellular
and in which the cube axiom holds. Assume also that M has a set of detectors, or
satisfies the ladder axiom, and that all objects are path connected. Then the following
conditions are equivalent:

(i) The nullification functor PA admits a fiberwise version.

(ii) The nullification functor PA preserves finite products.

(iii) The canonical projection X × A→ X is a PA-equivalence for any X ∈M.

(iv) The join axiom for A is satisfied.

Proof. We prove first that (i) implies (ii). Apply the fiberwise nullification to the
trivial fibration X → X × Y → Y to get a new fibration PAX → E → Y . The
inclusion of the fiber admits a retraction E → PAX, i.e. E � PAX × Y . Applying
this time the fiberwise nullification to Y → Y × PAX→ PAX, we see that the map
X × Y → PAX × PAY is a PA-equivalence. As a product of local objects is local,
this means precisely that PA(X × Y ) � PAX × PAY .
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Property (iii) is a particular case of (ii). We show now that (iii) implies (iv). If
the canonical projection X × A → X is a PA-equivalence, the push-out of it along
the other projection yields another PA-equivalence, namely A→ X ∗ A. Therefore
the join X ∗A is PA-acyclic. Finally (iv) implies (i) as shown in Theorem 5.3. �

The construction we propose for fiberwise nullification does not translate to the
setting of general localization functors. We do not know if the cube and join axioms
are sufficient conditions for the existence of fiberwise localizations.

6. Algebras over an operad

In this section we provide the motivating example for which this theory has been
developed. For a fixed field k, we work with Z-graded differential k-vector spaces
(k-dgm) and consider the category O-alg of algebras in k-dgm over a cofibrant op-
erad O (the operads we are working with are zero in negative degrees). These are
indeed pointed, right proper and cellular categories. Weak equivalences are quasi-
isomorphisms and fibrations are epimorphisms (complete references for the model
category structures on operads and algebras over operads are [1] and [20]). Notice
also that all objects are path connected and the free algebras on one generator O(x)

form a set of detectors. For our purpose we also need to prove that this category is
left proper. This proof can be generalized to a topological context or a simplicial one
(see [19]).

Proposition 6.1. Let R be a unitary commutative ring and consider the operads in
the category of Z-graded differential R-modules. Let O be a cofibrant operad. Then
the category of O-algebras is left proper.

Proof. As retracts of quasi-isomorphisms are quasi-isomorphisms in the category of
O-algebras and since this category is also cofibrantly generated, it suffices to prove
that the push-out of a weak-equivalence along a generating cofibration is a weak-
equivalence. This is done in the case of cofibrant operads in a very general context
by Spitzweck ([20, Theorem 4]). �

We do not know if the join axiom holds in full generality for any object A. It does
so however when A is acyclic with respect to Quillen homology, which is the case
we are most interested in, or when A is a free algebra. We check that the cube axiom
always holds, following the strategy of [6, Proposition A.15], which guarantees the
existence of fiberwise versions of the plus-construction and Postnikov sections. In
the case of N-graded O-algebras (the case O = As is treated by Doeraene) one has
to restrict to a particular set of fibrations (the so-called J -maps), because they must
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be surjective in each degree in order to compute pull-backs. In the Z-graded context
all fibrations are epimorphisms, so that the cube axiom holds in full generality.

Theorem 6.2. Let O be a cofibrant operad. Then the cube axiom holds in the
category O-alg.

Proof. Let us briefly recall the key steps in Doeraene’s strategy. We consider a
push-out square of O-algebras (along a generic cofibration B ↪→ B

∐
O(V )):

B
� � ��

��

C = B
∐

O(V )

��
A

� � �� D = A
∐

O(V )

We need to compute the pull-back of this square along a fibration p : E→→D (which is
hence an epimorphism of chain complexes). We have thus the following isomorphism
of chain complexes:

E ∼= A
∐

O(V )⊕ ker(p)

The homotopy push-out P of the successive pull-backs A ×D E, C ×D E, and
B ×D E must coincide with E. In order to prove this we factorize the morphism
B ×D E→ C ×D E as

B ×D E ↪→ (B ⊕ ker p)
∐

O(V ⊕W)
∼
� C ×D E

Thus P is identified with (A⊕ker(p))
∐

O(V ⊕W), which allows us to build finally
a quasi-isomorphism to E. �

We consider first the case of Postnikov sections PO(x), where x is a generator
of arbitrary degree n ∈ Z. Because [O(x), X] ∼= πnX for any O-algebra X, the
nullification functor PO(x) is really a Postnikov section, i.e. PO(x)X � X[n− 1]. Let
us also recall that πn(X × Y ) ∼= πnX × πnY .

Proposition 6.3. Let O be a cofibrant operad. The join axiom holds for any free
O-algebra O(x) on one generator of degree n ∈ Z. Therefore fiberwise Postnikov
sections exist in O-alg.

Proof. By Theorem 5.5 we might as well check that the map X × O(x) → X is a
PO(x)-equivalence for any O-algebra X. Clearly the n-th Postnikov section of the
product X ×O(x) is equivalent to X[n− 1] and we are done. �

In the above proposition it was way easier to check commutation of Postnikov
sections with products than to check directly the join axiom. In this case indeed the
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join axiom states that the join O(x) ∗O(y) of two “spheres” is always PO(x)-acyclic,
i.e. has its homotopy groups concentrated in degrees ≥ n. In particular when y is a
generator of negative degree m, this tells us that the join of two spheres is far from
being a sphere of degree n+m+ 1.

Our main application is nevertheless the existence of fiberwise plus-construc-
tion. In the world of non-negatively graded O-algebras, the plus-construction is
a nullification with respect to a universal acyclic algebra U. We refer to [5] for an
explicit construction and nice applications. Let us remain for a moment in the category
of Z-graded O-algebras, in which we consider the U-nullification functor PU.

Proposition 6.4. Let O be a cofibrant operad. The join axiom holds for any (−1)-
connected acyclic O-algebra A. It holds in particular for the universal acyclic
algebra U constructed in [5], so that the fiberwise U-nullification exists.

Proof. The join A∗X is weakly equivalent to �A∧X by Lemmas 3.1 and 3.2. Since
�A is 0-connected and acyclic, it is trivial by the Hurewicz Theorem [5, Theorem 1.1].
Thus A ∗X � ∗ is always PA-acyclic. �

Let us go back now to the category O-alg≥0 of O-algebras in the category of
N-graded differential k-vector spaces and consider the adjoint pair of functors

F : O − alg≥0 � O − alg : Tr

given by the forgetful functor F and the truncation Tr. The truncation is defined
already at the level of chain complexes by Tr(A)n = An for any positive integer n

and Tr(A)0 = ker(d : A0 → A−1). It extends to the categories of algebras since the
operad O is zero in negative degrees. As F is a left adjoint, it preserves weak equiva-
lences and cofibrations. In particular the cone on U is the same in both categories and
the functor PU coincides on non-negatively graded O-algebras in both categories. To
avoid confusion though, we will from now on write B+ for the U-nullification of an
object B in the category O-alg≥0 and call it the plus-construction of X, following the
notation and terminology used in [5].

Theorem 6.5. Let O be a cofibrant operad. Then the fiberwise plus-construction
exists in O-alg≥0 for fibrations p : E→→B inducing a surjection on π0.

Proof. Let p : E → B be a fibration in O-alg≥0 inducing a surjection on π0. As
the fiber of p has the same homotopy type as the homotopy fiber of F(p), we can
use Proposition 6.4 to construct the fiberwise U-nullification in O-alg. This yields a
fibration E → B which fiber has the homotopy type of PUF . Applying truncation
produces the desired fibration Tr(E)→ B in O-alg≥0 whose fiber is F+ (notice that

E and Tr(E) have the same homotopy type, since the non-trivial homotopy groups
of E are concentrated in non-negative degrees). �
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Remark 6.6. It is not necessary to use the sophisticated truncation techniques to get
a fiberwise plus-construction. If the fibration p one starts with induces a surjection
on π0, one can factorize it in O-alg≥0 as a trivial cofibration followed by a fibration
which is an epimorphism in each degree. Thus one can work with degreewise epi-
morphisms, which are the fibrations in the Z-graded world. Therefore the fiberwise
U-nullification gives directly the fiberwise plus-construction (the total space E is
non-negatively graded).

Our final result is a particular case of Corollary 5.4. A direct proof (without
fiberwise techniques) seems out of reach.

Theorem 6.7. Let O be a cofibrant operad. For any B in the category O-alg≥0,
the homotopy fiber AB = Fib(B → B+) is then acyclic with respect to Quillen
homology.

Proof. As all objects are path-connected in O-alg, Corollary 5.4 applies. To conclude
notice that the plus-construction B → B+ induces indeed a surjection on π0, so that
the result holds as well in O-alg≥0. �
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