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Optimal SL(2)-homomorphisms

George J. McNinch∗

Abstract. Let G be a semisimple group over an algebraically closed field ofvery good
characteristic forG. In the context of geometric invariant theory, G. Kempf and – indepen-
dently – G. Rousseau have associated optimal cocharacters ofG to an unstable vector in a linear
G-representation. If the nilpotent elementX ∈ Lie(G) lies in the image of the differential of
a homomorphism SL2 → G, we say that homomorphism is optimal forX, or simply optimal,
provided that its restriction to a suitable torus of SL2 is optimal forX in the sense of geometric
invariant theory.

We show here that any two SL2-homomorphisms which are optimal forX are conjugate under
the connected centralizer ofX. This implies, for example, that there is a unique conjugacy class
of principal homomorphismsforG. We show that the image of an optimal SL2-homomorphism
is acompletely reduciblesubgroup ofG; this is a notion defined recently by J.-P. Serre. Finally,
if G is defined over the (arbitrary) subfieldK of k, and ifX ∈ Lie(G)(K) is aK-rational
nilpotent element withX[p] = 0, we show that there is an optimal homomorphism forX which
is defined overK.
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1. Introduction

LetG be a semisimple group over the algebraically closed fieldk, and assume that
the characteristic ofk is very goodfor G. (Actually, we consider in this paper a
slightly more general class of reductive groups; see §2, where we also definevery
goodprimes).

Premet has recently given a conceptual proof of the Bala–Carter theorem using
ideas of Kempf and of Rousseau from geometric invariant theory. An elementX ∈
g = Lie(G) is nilpotent just in case the closure of its adjoint orbit contains 0; such
vectors are said to be unstable. The Hilbert–Mumford criteria says that an unstable
vector forG is also unstable for certain one-dimensional sub-tori ofG. This result
has a more precise form due to Kempf and to Rousseau: there is a class ofoptimal
cocharacters ofG whose images exhibit such one dimensional sub-tori. One of the
nice features of these cocharacters is that they each define the same parabolic subgroup
ofG; for a nilpotent elementX ∈ g, this instability parabolic is sometimes called the
Jacobson–Morozov parabolic attached toX.

In his proof of the Bala–Carter Theorem in good characteristic, Pommerening
constructed cocharacters associated with the nilpotent elementX ∈ g; see [Ja04]
for more on this notion, and see §6 below. Using the results of Kempf, Rousseau,
and Premet, one finds (cf. [Mc04]) that the cocharacters associated with a nilpotent
X ∈ g are optimal, and that any optimal cocharacter� for X such thatX ∈ g(�; 2)
is associated withX in Pommerening’s sense.

In this paper, we show that the notion of optimal cocharacters is important in the
study of subgroups ofG. We say that a homomorphismφ : SL2 → G is optimal
provided that the restriction ofφ to the standard maximal torus of SL2 is a cocharacter
associated to the nilpotent element

X = dφ

( (
0 1
0 0

) )
∈ g.

More precisely, we say thatφ is optimal forX.
We prove in this paper that any two optimal homomorphisms forX are con-

jugate byCoG(X); cf. Theorem 44. This has an immediate corollary. A principal
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homomorphismφ : SL2 → G is one for which the image ofdφ contains a regular
nilpotent element; the conjugacy result just mentioned implies that there is a unique
G-conjugacy class of principal homomorphisms.

Generalizing the notion of completely reducible representations, J.-P. Serre has
defined the notion of aG-cr subgroupH of G: H is G-cr if wheneverH lies in
a parabolic subgroup ofG, it lies in a Levi subgroup of that parabolic. We show
in Theorem 52 that the image of any optimal homomorphism isG-cr. In a previous
paper [Mc03], the author showed the existence of a homomorphism optimal for anyp-
nilpotentX ∈ g; such a homomorphism was essentially obtained (up toG-conjugacy)
by base change from a morphism of group schemes defined over a valuation ring in
a number field. Suppose thatG is defined over the arbitrary subfieldK of k. If X
is aK-rationalp-nilpotent element, we show in this paper that there is an optimal
homomorphismφ for X which is defined overK; for this we use the fact, proved in
[Mc04], that some cocharacter associated withX is defined overK.

G. Seitz [Sei00] has studied homomorphismsφ : SL2 → G with the property
that all weights of a maximal torus of SL2 on Lie(G) are≤ 2p − 2; he calls the
image of such a homomorphism a good (or restricted)A1-subgroup. We give here a
direct proof that an optimal SL2-homomorphism is good: we show that the weights
of a cocharacter associated with ap-nilpotent elementX ∈ g are all≤ 2p − 2; see
Proposition 30. It follows from results of Seitz that all good homomorphisms are
optimal – we do not use this fact in our proofs.

We do use here a result of Seitz (see Proposition 34) to show that(Ad �φ, g) is a
tilting module for SL2 whenφ is the optimal homomorphism obtained previous by
the author [Mc03]; this fact is used to prove a unicity result Proposition 38 for certain
homomorphismsGa → G which is crucial to the proof of Theorem 44; of course, in
the end one knows that(Ad �φ, g) is a tilting module for any optimalφ.

Seitzloc. cit. proved a conjugacy result for good homomorphisms analogous to
the result proved here for optimal ones; he also proved that good homomorphisms
areG-cr, so in some sense our results are not new. On the other hand, our proofs
of conjugacy and of theG-cr property for optimal homomorphisms are free of any
case analysis; we do not appeal to the classification of quasisimple groups at all.
Moreover, we believe that our results on optimal homomorphisms over ground fields
are new and that the ease with which they are obtained is evidence of the value of our
techniques.

As further application of the methods of this paper, we include in §9 an extension
of a result of Kottwitz; we prove that any nilpotent orbit which is defined over a
ground fieldK contains aK-rational point.

Finally, the appendix contains a note of Jean-Pierre Serre concerning Springer
isomorphisms.

I would like to thank Serre for allowing me to include his note on Springer iso-
morphisms as an appendix; I also thank him for some useful remarks on a preliminary
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version of this manuscript. Moreover, I would like to extend thanks to Jens Carsten
Jantzen, and to a referee, for several useful comments on the manuscript.

2. Reductive groups

We fix once and for all an algebraically closed fieldk;K will be an arbitrary subfield
of k, andG will be a connected, reductive algebraic group (overk) which is defined
over the ground fieldK.

If G is quasisimple with root systemR, the characteristicp of k is said to be a
bad prime forR in the following circumstances:p = 2 is bad wheneverR �= Ar ,
p = 3 is bad ifR = G2, F4, Er , andp = 5 is bad ifR = E8. Otherwise,p is good.
[Here is a more intrinsic definition of good prime:p is good just in case it divides no
coefficient of the highest root inR].

If p is good, thenp is said to be very good provided that eitherR is not of type
Ar , or thatR = Ar andr �≡ −1 (mod p).

If G is reductive, the isogeny theorem [Spr98, Theorem 9.6.5] yields a – not
necessarily separable – central isogeny

∏
i Gi×T → Gwhere theGi are quasisimple

andT is a torus. TheGi are uniquely determined byG up to central isogeny, and
p is good (respectively very good) forG if it is good (respectively very good) for
eachGi .

The notions of good and very good primes are geometric in the sense that they
depend only onG overk. Moreover, they depend only on the central isogeny class
of the derived group(G,G).

We record some facts:

Lemma 1. (1) LetG be a quasisimple group in very good characteristic. Then the
adjoint representation ofG onLie(G) is irreducible and self-dual.

(2) LetM ≤ G be a reductive subgroup containing a maximal torus ofG. If p is
good forG, then it is good forM.

Proof. For the first assertions of (1), see [Hu95, 0.13]. (2) may be found for instance
in [MS03, Proposition 16]. �

ConsiderK-groupsH which are direct products

(∗) H = H1 × S,

whereS is aK-torus andH1 is a connected, semisimpleK-group for which the
characteristic is very good. We say that the reductiveK-groupG is strongly standard
if there exists a groupH of the form(∗) and a separableK-isogeny betweenG and
aK-Levi subgroup ofH . Thus,G is separably isogenous toM = CH(S) for some



Vol. 80 (2005) Optimal SL(2)-homomorphisms 395

K-subtorusS < H ; note that we do not requireM to be the Levi subgroup of a
K-rational parabolic subgroup.

We first observe that a strongly standard groupG is standard in the sense of
[Mc04]; this is contained in the following:

Proposition 2. If G is a strongly standardK-group, then there is a separableK-
isogeny betweenG andG̃ whereG̃ is a reductiveK-group satisfying the “standard
hypotheses” of [Ja04, §2.9], namely:

(1) the derived group of̃G is simply connected,

(2) p is good forG̃, and

(3) there is aG̃ invariant nondegenerate bilinear form onLie(G̃).

Proof. Let H̃ = H̃1 × S whereπ1 : H̃1 → H1 is the simply connected cover, and
let π = π1 × id : H̃ → H be the corresponding isogeny; of course,H̃ andπ are
defined overH [KMRT, Theorem 26.7]. By assumption,G = CH(S) for some
K-subtorusS < H . SinceS̃ = π−1(S)o < H̃ is again aK-torus, its centralizer
G̃ = C

H̃
(S̃) is aK-Levi subgroup ofH̃ andπ|G̃ : G̃ → G is an isogeny. Now,

Lie(G̃) is the 0-weight space of̃S on Lie(H̃ ) and Lie(G) is the 0-weight space of
S (andS̃) on Lie(H). Sincedπ is anS̃-isomorphism, it restricts to an isomorphism
dπ|Lie(G̃) : Lie(G̃) → Lie(G); in other words,π is a separable isogeny.

SinceG̃ is a Levi subgroup ofH̃ , its derived group̃G is simply connected, so that
(1) holds. Sincep is good forH , it is also good forH and for the Levi subgroupsG
andG̃; see for instance [MS03, Proposition 16]. Thus (2) holds forG̃.

Finally, notice that Lie(H̃ ) is semisimple as ãH -module and that Lie(H ′) is a
self-dual, simpleH ′-module wheneverH ′ is quasi-simple in very good characteristic.
It follows that there is a non-degenerateH̃ -invariant bilinear form on Lie(H̃ ). This
restriction of this form to the 0-weight space forS̃ is again nondegenerate, and so (3)
holds. [Note that the same argument gives non-degenerate invariant forms on Lie(H)

and Lie(G).] �

Remark 3. Suppose thatV is a finite dimensional vector space. Then the group
G = GL(V ) is strongly standard. Indeed, if dimV �≡ 0 (mod p), thenG is separably
isogenous to SL(V )× Gm, andp is very good for SL(V ). If dim V ≡ 0 (mod p),
thenG is isomorphic to a Levi subgroup ofH = SL(V ⊕ k) andp is very good
for H .

On the other hand, SL(V ) is only strongly standard when dimV �≡ 0 (mod p).

Remark 4. If G is strongly standard, there is always asymmetricinvariant non-
degenerate bilinear form on Lie(G). Indeed, up to separable isogeny,G is a Levi
subgroup ofT ×H whereH is semisimple in very good characteristic. If the result
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holds forH , then it holds forG; note that any nondegenerate form on Lie(T ) is
invariant. Thus we assume thatG is semisimple in very good characteristic. For such
a group, the simply connected cover is a separable isogeny so we may also assume
G to be simply connected. But thenG is a direct product of quasisimple groups,
hence we may as well suppose thatG is quasisimple in very good characteristic. In
this case, the adjoint representation is a self-dual simpleG-module. Ifp = 2, we
are done. Otherwise, one can argue as follows: IfG/Q denotes the split group over
Q with the same root datum asG, then the adjoint representation ofG/Q is also
simple; identifying the weight lattice of a maximal torus ofG and ofG/Q, the adjoint
representations have the “same” highest weightλ. Steinberg [St67, Lemma 79]
gives a condition onλ for the invariant form to be symmetric; since this condition is
independent of characteristic, and since the Killing form is symmetric on Lie(G/Q),
our claim is verified.

Proposition 5. If G is strongly standard, then each conjugacy class and each adjoint
orbit is separable. In particular, ifG is defined overK, and if g ∈ G(K) and
X ∈ g(K), thenCG(g) andCG(X) are defined overK.

Proof. Separability is [SS70, I.5.2 and I.5.6]. The fact that the centralizers are defined
overK then follows from [Spr98, Proposition 12.1.2]. �

3. Parabolic subgroups

In this section,G is an arbitrary reductive group overk. The material we recall
here is foundational; the lemmas from this section will be used mainly for our
consideration ofG-completely reducible subgroups of a reductive groupG; cf. 8.4
below.

If V is an affine variety andf : Gm → V is a morphism, we writev = lim t→0 f (t),
and we say that the limit exists, iff extends to a morphism̃f : k → V with f̃ (0) = v.
If γ is any cocharacter ofG, then

PG(γ ) = P(γ ) = {x ∈ G | lim t→0 γ (t)xγ (t
−1) exists}

is a parabolic subgroup ofG whose Lie algebra isp(γ ) = ∑
i≥0 g(γ ; i). Moreover,

each parabolic subgroup ofG has the formP(γ ) for some cocharacterγ ; for all this
cf. [Spr98, 3.2.15 and 8.4.5].

We note thatγ “exhibits” a Levi decomposition ofP = P(γ ). Indeed,P(γ ) is the
semi-direct productZ(γ ) ·U(γ ), whereU(γ ) = {x ∈ P | lim t→0 γ (t)xγ (t

−1) = 1}
is the unipotent radical ofP(γ ), and the reductive subgroupZ(γ ) = CG(γ (Gm)) is
a Levi factor inP(γ ); cf. [Spr98, 13.4.2].
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Lemma 6. LetP be a parabolic subgroup ofG, and letT be a maximal torus ofP .
Then there is a cocharacterγ ∈ X∗(T ) with P = P(γ ).

Proof. SinceP = P(γ ′) for some cocharacterγ ′, this follows from the conjugacy
of maximal tori inP . �

For later use, we record:

Lemma 7. LetP = P(γ ) be the parabolic subgroup determined by the cocharacter
γ ∈ X∗(G). WriteL = Z(γ ) for the Levi factor ofP determined by the choice ofγ .
If φ : H → P is any homomorphism of algebraic groups, the rule

φ̂(x) = lim
s→0

γ (s)φ(x)γ (s−1)

determines a homomorphism̂φ : H → L of algebraic groups. Moreover, the tangent
mapdφ̂ is the composite

Lie(H)
dφ−→ Lie(P )

pr−→ Lie(L) = Lie(P )(γ ; 0)

wherepr is projection on the0 weight space.

Proof. It was already observed thatP = L · U is a semidirect product; the map

x �→ lim
s→0

γ (s)xγ (s−1)

is the projection ofP onL and is thus an algebraic group homomorphismψ : P → L.
The tangent map toψ is evidently given by projection onto the 0-weight space for
the image ofγ , and the lemma follows. �

Remark 8. If the cocharacterγ is defined over the ground fieldK, thenP = P(γ )

is aK-parabolic subgroup, and the Levi factorL = Z(γ ) is defined overK. The
projectionP → L given byx �→ lims→0 γ (s)xγ (s

−1) is of course defined overK
as well.

4. Springer’s isomorphisms

If the characteristic ofk is zero, or is “sufficiently large” with respect to the groupG,
(some sort of) exponential map defines an equivariant isomorphism exp: N → U
between the nilpotent variety and the unipotent variety ofG. Simple examples show
the exponential to be insufficient in general, however, and in 1969, T. A. Springer
[Spr69] found (the beginnings of) a good substitute. See also the outline given in
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[SS70, III §3]. The unipotent variety is known always to be normal; to make Springer’s
work complete, one required also the normality of the nilpotent variety. Veldkamp
obtained that normality for “most”p, and Demazure proved it forG satisfying our
hypothesis; cf. [Ja04, 8.5]. We summarize these remarks in the following:

Proposition 9 (Springer).LetG be a strongly standardK-reductive group, whereK
is any subfield ofk. There is aG-equivariant isomorphism of varieties� : U → N
which is defined overK.

Sketch.We just comment briefly on our assumptions onG. First, note that ifG is the
direct product of a torus and a semisimple group in very good characteristic, there is
a separable isogenỹG → G whereG̃ is the direct product of aK-torus and a simply
connected semisimpleK-group in (very) good characteristic. Moreover, the separable
isogeny is defined overK and induces equivariantK-isomorphismsŨ → U and
Ñ → N (using some hopefully obvious notation); see [Mc03, Lemma 27]. Now,
Springer proved the proposition holds forG̃ – see the above references– and thus the
result forG is true in this case.

Repeating the above argument, we may replaceG by a separably isogenous group,
and thus we suppose thatG = CH(S), whereS is aK-torus in aK-groupH as in(∗)
of section §2; the above remarks show that there is anH -equivariant isomorphism
�H : UH → NH between the unipotent and nilpotent varieties forH . SinceU =
(UH )

S andN = (NH )
S , it is clear that�H |U defines the required isomorphism for

the varieties associated withG. �

Remark 10. Suppose that� : U → N is an equivariant isomorphism defined over
K. If P ≤ G is aK-parabolic subgroup, Lemma 6 makes clear that the restriction
�|U : U → Lie(U) is aP -equivariant isomorphism. Similarly, ifL ≤ G is aK-Levi
subgroup, then�|UL

: UL → NL is anL-equivariant isomorphism.

The isomorphism� of the proposition isquite far from being unique; cf. the
appendix of J.-P. Serre below. We summarize the result of that appendix with the
following statements, which we make only in the “geometric” setting – i.e. overk

rather thanK.

Proposition 11 (Serre).LetG be a strongly standard reductivek-group.

(1) Fix a regular nilpotentX ∈ g. For each regular unipotentv ∈ CG(X), there is a
uniqueG-equivariant isomorphism of varieties�v : U → N with�v(v) = X.

(2) Any twoG-equivariant isomorphisms�,�′ : U → N induce the same map on
the finite sets of orbits.
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5. Frobenius twists and untwists

Let K ′ be a perfect field of characteristicp > 0, and letK ′ ⊂ K be an arbitrary
extension ofK ′. We fix an algebraically closed fieldk containingK.

In this section, algebras are always assumed to be commutative. Consider a
K ′-algebraA. Forr ∈ Z, we may consider theK ′-algebraA(r) which coincides with
A as a ring, but where eachb ∈ K ′ acts onA(r) asbp

−r
does onA. For an extension

fieldK ofK ′, we writeA(r)/K andA/K for theK-algebras obtained by base-change;
thus e.g.A/K = A⊗K ′ K.

Let r ≥ 0 and letq = pr . There is aK ′-algebra homomorphismF r : A(r) → A

given byx �→ xq . We writeAq = {f q | f ∈ A}; Aq is aK ′-subalgebra ofA, and
the image ofF r coincides withAq .

LetA be aK ′-algebra and an integral domain. We clearly have:

Lemma 12. If r ≥ 0, and q = pr , thenF r : A(r) → Aq is an isomorphism of
K ′-algebras.

Write B = A/K . Let us notice thatK[Bq ] = K[Aq ]. For r ≥ 0, consider the
algebra homomorphismF r/K : A(r)/K → K[Aq ] ⊂ A/K given on pure tensors by

f ⊗ α �→ f q · α for f ∈ A(r) andα ∈ K. We have more generally

Lemma 13. For r ≥ 0, F r/K : A(r)/K → K[Bq ] is an isomorphism, where again
q = pr .

Proof. We have observed already thatC = K[Bq ] = K[Aq ] is theK-algebra gener-
ated byAq . According to the previous lemma, the image of the restriction ofF r/K to

A(r)⊗1 is the set ofK-algebra generatorsAq ofC; this implies thatF r/K is surjective.

SinceA is a domain, the homomorphismF r : A(r) → A is injective. This implies
the injectivity ofF r/K sinceK is flat overK ′. �

Lemma 14. Assume thatA is geometrically irreducible, i.e. thatA/k is a domain.
Also assumeA to begeometrically normal, i.e. thatA/k is integrally closed in its field
of fractionsE. Letq = pr for r ≥ 0, and letf ∈ A/K . Thenf ∈ K[Aq ] if and only
if f ∈ Eq .
Proof. We have clearly the implication�⇒ . Now suppose thatf ∈ Eq , say
f = gq for g ∈ E. The normality ofA/k shows then thatg ∈ A/k. We may find
α1, . . . , αn ∈ k and elementsf1, . . . , fn ∈ A such thatg = ∑n

i=1αifi ; we may
assume as well that{fi | 1 ≤ i ≤ n} is aK ′-linearly independent set. SinceK ′
is perfect,{f qi | 1 ≤ i ≤ n} is againK ′-linearly independent. Sincef = gq =∑n
i=1α

q
i f

q
i ∈ A/K , it follows thatαqi ∈ K for 1 ≤ i ≤ n and the proof of⇐� is

complete. �
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Remark 15. It can happen thatA/K is a normal domain, but thatA/k is not normal;
cf. [Bo98, exerc. V.§1.23(b)].

Lemma 16. LetX andY be irreducible affinek-varieties, and letf : X → Y be a
dominant morphism. Then the following are equivalent:

(a) there is a non-empty open subsetW ⊂ X such thatdfx �= 0 for all x ∈ W(k).
(b) f ∗(k(Y )) is not contained ink(X)p.

Proof. For an affinek-varietyZ, let	Z = 	k[Z]/k be the module of differentials.
The mapf : X → Y determines a mapφ : 	Y → 	X of k[Y ] modules and – since
f is dominant – a mapψ : 	k(Y )/k → 	k(X)/k of k(Y )-vector spaces.

It follows from [Spr98, Theorem 4.3.3] that there are non-empty affine open
subsetsU of X andV of Y such thatf restricts to a morphismU → V , 	U is
a freek[U ]-module of rank dimX, and	V is a freek[V ]-module of rank dimY .
Now, φ restricts to a mapφ|	V : 	V → 	U of k[V ]-modules, and it is clear that
φ|	V = 0 if and only ifψ = 0 [use that	k(X)/k = k(X)⊗k[U ]	U together with the
corresponding statement forY ].

Choosing bases of the free modules	U and	V , φ|	V is given on	V by a matrix
M with entries ink[U ]. Forx ∈ U(k), the mapdfx : TxU → Tf (x)V identifies with
the map

Homk[U ](	U, kx) → Homk[V ](	V , kf (x))
deduced fromφ|	V . The open subset ofU defined by the conditionMx �= 0 is
non-empty if and onlyφ|	V �= 0; thus (a) is equivalent to the statementψ �= 0.

Applying [Spr98, Theorem 4.2.2], one knows that the restriction mapping

Derk(k(X), k(X)) → Derk(f
∗k(Y ), k(X))

is dual to the mappingψ : 	k(Y )/k → 	k(X)/k; in particular, this restriction is 0 if
and only ifψ = 0.

Now, it is proved for instance in [La93, VIII, Proposition 5.4] thatz ∈ k(X) is
contained ink(X)p if and only if D(z) = 0 for eachD ∈ Derk(k(X), k(X)). The
assertion (a)⇐⇒ (b) follows at once. �

If X is an affineK ′-variety andA = K ′[X], then forr ∈ Z we writeX(r) for the
K ′-variety Spec(A(r)). For an arbitraryK ′-varietyX, one defines theK ′-varietyX(r)

by gluing together theK ′-varietiesU(r)i from an affine open covering{Ui | 1 ≤ i ≤ n}
of X; this construction is independent of the choice of the covering.

Let r ≥ 0. WhenX is affine, ther-th Frobenius morphismF rX : X → X(r) is
defined to have comorphismF r : A(r) → A. For an arbitraryK ′ varietyX, there is
a unique morphismF rX : X → X(r) whose restriction to each affine open subsetU

of X is given byF rU .
We writeX(r)/K for the base change of theK ′-varietyX(r) toK.
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Theorem 17. LetX andY be geometrically irreducibleK-varieties. Assume that
X is defined overK ′ and is geometrically normal – i.e.X/k is normal. Suppose
thatf : X → Y is aK-morphism whose image contains a positive dimensional sub-
variety ofY . There is a uniquer ≥ 0 and a uniqueK-morphismg : X(r)/K → Y

such that

(1) f = g � F rX, and

(2) there is a non-empty open subsetU ofX(r) such thatdgx �= 0 for x ∈ U(k).

Remark 18. (a) Of course, the image off contains a non-empty open subsetU of
its closuref (X) [Spr98, Theorem 1.9.5], so the dimension assumption made in the
theorem is equivalent to:U has positive dimension.

(b) The theorem has been known for a long time, but it seems to be difficult to
give a reference. It was used for instance by J.-P. Serre in his classification of the
inseparable isogenies of height 1 of a group variety (and especially of an abelian
variety), cf. Amer. J. Math. 80 (1958), pp. 715–739, Section 2.

Proof of Theorem17. Notice that if the theorem is proved whenX andY are affine,
the unicity ofr andg shows that it holds as stated; we assume now thatX andY are
affine. The affine varietyX is defined overK ′, and the domainK ′[X] is geometrically
normal in the sense discussed previously.

WriteY ′ for the closure of the image off . ThenY ′ is defined overK. Moreover,
if i : Y ′ → Y denotes the inclusion,diy is injective for ally ∈ Y ′(k); see e.g. [Spr98,
Exercise 4.1.9(4)]. SinceY ′ is again geometrically irreducible, we may and shall
replaceY by Y ′; thus we assume thatf is a dominant morphism. Since the tangent
maps ofF rX are all 0, it is clear that if a suitabler ≥ 0 exists, it is unique.

Assume thatdfx = 0 for all smoothk-points ofX; Lemma 16 then shows that
f ∗k(Y ) ⊂ k(X)p. The assumption on the image off means that the transcendence
degree overK of K(Y) is ≥ 1; sincek(X) is a finitely generated field extension of
k, it follows that we may chooser ≥ 1 such thatf ∗k(Y ) ⊂ k(X)q for q = pr but
not forq = pr+1.

Putq = pr . We now apply Lemma 14 to see thatf ∗(K[Y ]) ⊂ K[Aq ]. Lemma 13
gives then aK-algebra isomorphismφ : K[Aq ] → K[X(r)] inverse toF r , and we
defineg : X(r) → Y to have comorphismφ � f ∗. It is clear thatf = g �F rX and that
g is the unique morphism with this property.

The Frobenius map gives an isomorphismF r : k(X(r)) → k(X)q . If h ∈ K[Y ],
and if g∗h is a p-th power ink(X(r)) thenf ∗h is a q ′-th power ink(X), where
q ′ = pr+1. Sincef ∗k(Y ) is not contained ink(X)q

′
, g∗(k(Y )) is not contained

in k(X(r))p. It then follows from Lemma 16 thatdgx is non-0 for allx in some
non-empty open subset ofX, and the result is proved. �
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Remark 19. LetX ⊂ A2 denote the irreducible variety withk-points{(s, t) | sp =
tp(t − 1)}, and letY = A1. Consider the morphismf : X → Y given onk-points by
f (s, t) = t−1. Sincet−1 = (s/t)p on the open subsetU ofX defined byt �= 0, we
havedfx = 0 for eachx ∈ U(k). SinceX is overFp in an obvious way, we identify
X andX(1); the Frobenius mapF : X → X is then justF(s, t) = (sp, tp). There is
a uniqueg̃ : U → A1 with f|U = g̃ � F ; it is given onk-points by((s, t) �→ s/t).
Moreover,dg̃x �= 0 for eachx ∈ U(k). However, there is no regular functiong on
X such thatg|U = g̃; thusX is not normal, and the conclusion of the theorem does
not hold forf .

Corollary 20. LetG andH be linear algebraicK-groups. Assume thatG is con-
nected, and thatG is defined over the perfect subfieldK ′. Let φ : G → H be a
homomorphism ofK-groups such that the image ofφ is a positive dimensional sub-
group ofH . There is a unique integerr ≥ 1and a unique homomorphism ofK-groups
ψ : G(r)/K → H such that

(1) φ = ψ � F rG, and

(2) the differentialdψ = dψ1 is non-zero.

Proof. TheK ′-varietyG is geometrically irreducible; sinceG/k is smooth,G is
geometrically normal. Hence we may apply Theorem 17; we find a uniquer ≥ 0 and
a morphism ofK-varietiesψ : G(r)/K → H/K such thatψ � F rG coincides with the
restriction ofφ and such thatdψx is non-zero forx in some non-empty open subset
of G(r).

Since the Frobenius homomorphismF rG : G → G(r) is bijective onk-points, it
is clear thatψ is a homomorphism of algebraic groups. Sincedψx �= 0 for some
x ∈ G(r)(k), the map induced byψ on left-invariant differentials in	G(r)/k is non-0;
this implies thatdψ1 �= 0 and the proof is complete. �

6. Nilpotent and unipotent elements

We return to consideration of a strongly standard reductiveK-groupG. LetX ∈ g be
nilpotent. A cocharacter� : Gm → G is said to be associated withX if the following
conditions hold:

(A1) X ∈ g(�; 2), where for anyi ∈ Z the subspaceg(i) = g(�; i) is thei weight
space of the torus�(Gm) under its adjoint action ong.

(A2) There is a maximal torusS ⊂ CG(X) such that�(Gm) ⊂ (L,L) where
L = CG(S).
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With the preceding notation,X is a distinguishednilpotent element in the Lie
algebra of the Levi subgroupL (see the discussion just before Proposition 22 for the
definition).

If � is associated toX, the parabolic subgroupP = P(�) is known variously as
the canonical parabolic, the Jacobson–Morozov parabolic, or the instability parabolic
(“instability flag”) associated withX. Among other things, the following result shows
this parabolic subgroup to be independent of the choice of cocharacter associated toX.

Proposition/Definition 21. LetX ∈ g(K) be nilpotent.

(1) There is a cocharacter� associated withX which is defined overK.

(2) If � is associated toX andP = P(�) is the parabolic determined by�, then
CG(X) ⊂ P . In particular, cg(X) ⊂ Lie(P ).

(3) LetU be the unipotent radical ofC = CoG(X). ThenU is defined overK, and
is aK-split unipotent group. If the cocharacter� is associated withX, then
L = C ∩ CG(�(Gm)) is a Levi factor ofC; i.e. L is connected and reductive,
andC is the semidirect productU · L.

(4) Any two cocharacters� and
 which are associated withX are conjugate by a
unique elementx ∈ U . If � and
 are each defined overK, thenx ∈ U(K).

(5) The parabolic subgroupsP(�) for cocharacters� associated withX all coin-
cide; the subgroupP(X) = P(�) is called the instability parabolic ofX.

See e.g. [Spr98, Chapter 14] for the notion of aK-split unipotent group. We will
not need to explicitly refer to this notion here.

Proof. The assertion (1) in the “geometric case” (whenK = k) is a consequence of
Pommerening’s proof of the Bala–Carter theorem in good characteristic; a proof of
that theorem which avoids case-checking has been given recently by Premet [Pr02]
using results in geometric invariant [Ke78]. One can deduce the assertion from
Premet’s work – see [Mc04, Proposition 18]. Working over the ground fieldK,
(1) was proved in [Mc04, Theorem 26].

(2) is [Ja04, Proposition 5.9].
The first assertion of (3) is [Mc04, Theorem 28]; notice that assumption (4.1)

of loc. cit. holds for strongly standardG, by Proposition 5. The semidirect product
decomposition ofC may be found in [Ja04, Proposition 5.10 and 5.11]; see also
[Mc04, Corollary 29].

We now prove (4). By (3),C = CoG(X) is the semidirect productC = U · L of
its unipotent radicalU and the Levi factorL = C ∩ CG(�(Gm)). One knows by
[Ja04, Lemma 5.3] that
 = Int(g) �� for an elementg ∈ C. Write g = x · y with
x ∈ U andy ∈ L. Sincey centralizes�, one sees that
 = Int(x) � � as well.
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SinceU ∩L = {1}, we see that
 and� are indeed conjugate by theuniqueelement
x ∈ U .

Assume that� and
are defined overK, and writeS = �(Gm)andS′ = 
(Gm);
thusS, S′ ≤ C are tori defined overK. We have just seen that the transporter

NC(S, S
′) = {g ∈ C | gSg−1 = S′}

is non-empty (it has geometric points); it follows from [Spr98, 13.3.1] thatNC(S, S
′)

is defined overK.
Choose a separable closureKsep ⊂ k of the ground fieldK; [Spr98, Theo-

rem 11.2.7] shows thatNC(S, S′)(Ksep) is dense inNC(S, S′); we may thus find
g ∈ NC(S, S′)(Ksep). SinceS andS′ are one dimensional, and since Int(g) induces
an isomorphism between the respective groups of cocharacters of these tori, we must
have Int(g) � � = ±
. Sinceg ∈ C, the cocharacter Int(g) � � is associated with
X; it follows that Int(g) �� = 
 e.g. sinceX ∈ g(Int(g) ��,2).

Writing g = y · x with x ∈ U andy ∈ L, we havey = lim t→0�(t)g�(t
−1).

By Remark 8,y ∈ C(Ksep), so thatx = y−1g ∈ U(Ksep). Thusx ∈ U(Ksep) is the
unique element ofU for which Int(x) �� = 
. Let� = Gal(Ksep/K) be the Galois
group. Since� and
 are�-stable, ifγ ∈ �, we see that

Int(γ (x)) �� = 
;
the unicity ofx shows thatx = γ (x) and we deduce thatx ∈ U(K) as required.

To see (5), let� and
 be cocharacters associated withX. Since we haveU ≤
C ≤ P(�) by (2), it follows from (4) that the parabolic subgroupsP(�) andP(
)
are equal. �

Recall that a nilpotent elementX ∈ g is said to bedistinguishedif the connected
center ofG is a maximal torus ofCG(X). A parabolic subgroupP ≤ G is said to be
distinguished if

dimP/U = dimU/(U,U)+ dimZ

whereU is the unipotent radical ofP , andZ is the center ofG.

Proposition 22. Assume thatX ∈ g is a distinguished nilpotent element. Then the
instability parabolicP = P(X) is a distinguished parabolic subgroup, andX lies in
the dense(Richardson) orbit of P onLie(RuP ).

Proof. [Mc04, Proposition 16]. �

Remark 23. Fixing an equivariant isomorphism� : U → N defined overK, we
may say that a cocharacter� is associated with the unipotent elementu ∈ G if it
is associated with�(u). The analogous assertions of the proposition then hold for
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unipotent elements ofG. Note that, with this definition, the notion of cocharacter
associated with a unipotent elementdepends on the choice of�. If � is a cocharacter
associated withX = �(u)and if�′ is a second Springer isomorphism, easy examples
show that�′(u) need not be a weight vector for�. On the other hand, if� ′ is
associated withX′ = �′(u), thenP(�) = P(� ′). To see this, note thatX and
X′ have the same centralizer. Fix a maximal torusS of this centralizer and write
L = CG(S); since both� and�′ restrict to isomorphismsUL → NL (see Remark
10), we may as well suppose thatX andX′ are distinguished. Since e.g.�′ restricts
to an isomorphismU → Lie(U)whereU = Ru(P (�)), it follows thatX andX′ are
both Richardson elements forP(�). Thus� and� ′ are conjugate by an element of
P(�) and it is then clear thatP(�) = P(� ′). In fact, it is even clear that� and
� ′ are conjugate by an element of the unipotent radical ofP(�); this shows that�
is anoptimal cocharacterfor X′ (in the sense of [Ke78]) even though it need not be
associated toX′.

7. The order formula and a generalization

Throughout this section,G is a strongly standard reductivek-group defined overK.
LetP be a parabolic subgroup ofG; we may fix representativesu ∈ U = Ru(P ) and
X ∈ Lie(U) for the dense (Richardson)P -orbits onU and Lie(U).

Recall that if the nilpotence class ofU is< p, then Lie(U) may be regarded as
an algebraicK-group using the Hausdorff formula; cf. [Sei00, §5].

Proposition 24. Assume thatP is adistinguishedparabolic subgroup. The following
conditions are equivalent:

(1) u has orderp,

(2) X[p] = 0,

(3) g(�; i) = 0 for all i ≥ 2p and some(any) cocharacter� associated tou or
toX,

(4) the nilpotence class ofU is< p.

Proof. The equivalence of (1) and (2) follows e.g. from [Mc03, Theorem 35]. The
equivalence of (2), (3) and (4) is [Mc02, Theorem 5.4] – note that there is a mis-
statement (“off by 1 glitch”) concerning the nilpotence class in [Mc02] which is
explained and corrected in the footnote to [Mc03, Lemma 11]. �

Remark 25. LetX be a distinguished nilpotent element withX[p] = 0, and letU be
the unipotent radical of the instability parabolic ofX. The proposition shows that the
nilpotence class ofU < p. This is not true in general for nilpotent elements which are
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not distinguished. For example, letG = GL5, and letX ∈ g be a nilpotent element
with partition(3,2). ThenX is distinguished in Lie(L), whereL is a Levi subgroup
whose derived group is SL3 × SL2. If � ∈ X∗(L) is associated toX, thenPG(�) is
a Borel subgroup ofG. In particular, ifp = 3,X[p] = 0 but a Richardson element
Y for PG(�) hasY [p] �= 0.

Proposition 26. Let P be a distinguishedparabolic subgroup. If the equivalent
conditions of Proposition24hold, and ifP is defined overK, then:

(1) there is a uniqueP -equivariant isomorphism of algebraic groups

ε : Lie(U) → U

such thatdε0 : Lie(U) → Lie(U) is the identity.

(2) ε is defined overK.

(3) Any homomorphismGa → U overK has the form

s �→ ε(sX0) · ε(spX1) · ε(sp2
X2) · · · ε(spnXn)

for some elementsX0, X1, . . . , Xn ∈ Lie(U)(K) with [Xi,Xj ] = 0 for all
0 ≤ i, j ≤ n.

Proof. Since the conditions of Proposition 24 hold, the unipotent radicalU = RuP

has nilpotence class< p. In §5 of [Sei00] – a section contributed by J.-P. Serre – one
now finds the necessary results. (1) and (2) follow from Proposition 5.3 ofloc. cit.,
while (3) is Proposition 5.4 ofloc. cit. �

Remark 27. Recall from Remark 10 that the restriction ofanySpringer isomorphism
N → U gives aP -equivariant isomorphism Lie(U) → U . If p ≥ h, there is always
a Springer isomorphism whose restriction isε. It does not seem to be clear (to the
author, at least) whether a suitable analogue of this statement is true if one weakens
the assumption onp.

Recall that we may regardG/k as arising by base change from a split reductive
group schemeG/Z overZ. Write T/Z for a split maximal torus ofG/Z.

Lemma 28. LetX ∈ g, letL be a Levi subgroup ofGwithX ∈ Lie(L) distinguished,
and let� ∈ X∗(L) be associated withX. We may find a number fieldF ⊃ Q, a
valuation ring� ⊂ F whose residue field embeds ink, a standard Levi subgroup
M/Z ofG/Z, a cocharacter� ′ ∈ X∗(T/Z), and an elementY� ∈ Lie(M/�)(�

′; 2)
such that(Y,M,� ′) = g.(X,L,�) for someg ∈ G, whereY = Y�⊗1k. Moreover,
we may arrange thatYF = Y� ⊗ 1F is also a Richardson element for the parabolic
subgroupPM/F

(� ′) ≤ M/F .
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Proof. L is evidently conjugate to some standard Levi subgroupM, which we may
regard as arising from the Levi subgroup schemeM/Z. ReplacingX, L, and� by
aG-conjugate we may thus supposed thatL is standard. Replacing(X,L,�) by
anL-conjugate, we may then assume thatX is a Richardson element for a standard
distinguished parabolic ofL. The remainder of the lemma is now essentially the
content of [Mc02, Lemma 5.2]. �

Proposition 29 (Spaltenstein).Let� ⊂ F be a valuation ring in a number field, as
in the previous lemma. Let� ∈ X∗(T/�), letX� ∈ g/�(�; 2), and assume that�
is associated toXk and toXF . Then

dim cg(Xk) = dim cg/F (XF ).

Proof. This is essentially [Mc02, Proposition 5.2] whenG is semisimple in very
good characteristic. As observed inloc. cit., it was proved by Spaltenstein for such
G. A look at the proof of Spaltenstein in [Spa84] shows that the result remains valid
for strongly standard reductive groups [the only conditions onG used in the proof in
[Spa84] are: the validity of the Bala–Carter theorem and the separability of nilpotent
orbits]. �

Proposition 30. LetX ∈ g satisfyX[p] = 0. If � is a cocharacter associated with
X and if g(�; n) �= 0, then−2p + 2 ≤ n ≤ 2p − 2.

Remark 31. The analogue of the proposition for unipotent elements of orderp was
essentially observed by G. Seitz [Sei00] and is crucial to the proof of the existence
of goodA1-subgroups inloc. cit. It is proved for the classical groups in [Sei00,
Proposition 4.1], and for the exceptional groups it is observed in the proof of [Sei00,
Proposition 4.2] that it follows either from an explicit calculation with the associ-
ated cocharacter (“labeled diagram”) of each nilpotent orbit, or from some computer
calculations of R. Lawther.

Proof of Proposition30. It is enough to verify the proposition for aG-conjugate of
� andX. Lemma 28 shows that, after replacing the dataX,L,� by aG-conjugate,
we may assume, as in that lemma, thatX,L, and� are “defined over�” for a suitable
valuation ring�. We writeX� for the element ofg/� giving rise toXk = X by base
change, and we writeXF = X� ⊗ 1F ∈ g/F ; note that� is a cocharacter both of
G/F and ofG/k, and� is associated to bothX andXF .

We now contend that ifg(�; n) �= 0 for somen ≥ 2p − 1, then ad(Xk)p �= 0;
this implies the proposition. The proof is essentially like that of [Mc02, Theorem 5.4]
except that we must also deal with the fact that the (in general, not distinguished)
orbit ofX may not be “even”.

Let L = ⊕
i≥−1 g/�(�; i), andL+ = ⊕

i≥1 g/�(�; i). Since we may embed
XF in an sl2(F )-triple normalized by the image of�, the representation theory of
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sl2(F ) implies that ad(XF ) : LF → L+
F is surjective, where the subscript indicates

“base change” – e.g.LF = L ⊗� F . In view of Proposition 29 and Proposition 21,
one knows that the kernels of the maps ad(Xk) : Lk → L+

k and ad(XF ) : LF → L+
F

have the same dimension. We may therefore argue as in [Mc02, Proposition 5.1] and
see that ad(Xk) : Lk → L+

k is also surjective, hence that ad(Xk)n/2 �= 0 if n is even,
and that ad(Xk)(n+1)/2 �= 0 if n is odd, whence our claim and the proposition.�

8. Optimal SL2-homomorphisms

Throughout this section,G will denote a strongly standard reductiveK-group. We
first ask the reader’s patience while we fix some convenient notation for SL2. We
choose the standard basis forsl2:

X1 =
(

0 1
0 0

)
, H1 =

(
1 0
0 −1

)
, and Y1 =

(
0 0
1 0

)
.

Now put

x1(t) =
(

1 t

0 1

)
and y1(t) =

(
1 0
t 1

)
for t ∈ k,

and writeX = {x1(t) | t ∈ k} andX− = {y1(t) | t ∈ k}. Finally, write

T =
{(
t 0
0 t−1

)
| t ∈ k×

}

for the standard maximal torus of SL2.
We fix once and for all one of the two isomorphismsGm � T , so that if

φ : SL2 → G is a homomorphism, it determines a cocharacter� = φ|T ∈ X∗(G)
by restriction toT ; explicitly,� is given by the rule

�(t) = φ

( (
t 0
0 t−1

) )
for t ∈ k×.

Definition 32. The homomorphismφ : SL2 → G is anoptimalSL2-homomorphism
if the cocharacter� = φ|T is associated to the nilpotent elementX = dφ(X1) ∈ g.
Briefly, we say thatφ is optimal forX.

We first recall that the main result of [Mc03] shows that optimal homomorphisms
always exist. More precisely, letX ∈ g with X[p] = 0, and let� be a cocharacter
associated withX. If S is a maximal torus ofC� , thenX is distinguished in Lie(L)
whereL = CG(S). We may apply Proposition 26 toPL(�); let ε : Lie(U) → U

be the isomorphism of that proposition, where we have writtenU for the unipotent
radical ofPL(�). Now the main result of [Mc03] says the following:



Vol. 80 (2005) Optimal SL(2)-homomorphisms 409

Proposition 33. There is an optimalSL2-homomorphismφ forX with the following
properties:

(1) φ|T = �, and

(2) φ(x(t)) = ε(tX) for eacht ∈ k.

We wish to see thatε(tX) is independent of the choice of the maximal torusS of
C� . For this, we will use the following result due to Seitz; the result is essentially
[Sei00, Proposition 4.2].

Proposition 34 (Seitz). Let� ⊂ F be a valuation ring in a number field whose
residue field is embedded ink, let L be a� lattice, and letρ/� : SL2/� → GL(L)
be a representation over�. Assume that

(1) all weights of the standard maximal�-torusT/� onL are≤ 2p − 2,

(2) the representationρ/k of SL2/k is self-dual,

(3) the dimension of the fixed point space ofuF = ρ/F

((
1 1
0 1

))
onLF is the same

as the dimension of the fixed point space ofuk = ρ/k

((
1 1
0 1

))
onLk.

Then the representation(ρ/k,Lk) is a tilting modulefor SL2/k.

Proof. One decomposes the SL2/k-moduleLk according to the blocks of SL2/k. In
view of the assumption on the weights ofT/k onLk, the blocks that can conceivably
occur are those of the simple modulesL(d) with 0 ≤ d < p. The summand
corresponding to the block ford = p− 1 is isomorphic toL(d)v(d) for some integer
v(d) ≥ 0. Otherwise, the summand corresponding to a block withd < p − 1 is
isomorphic to a module of the form

T (cd)
r(d) ⊕W(cd)

s(d) ⊕ (W(cd)
∨)t (d) ⊕ L(cd)

u(d) ⊕ L(d)v(d)

wherecd = 2p−2−d and where the exponentsr(d), s(d), t (d), u(d), v(d) are non-
negative integers. [We are using Seitz’s notation for SL2/k-representations:W(d) is
the Weyl module with high weightd, andT (d) is the indecomposable tilting module
with high weightd; cf. [Sei00, §2].]

The assumption (2) implies thats(d) = t (d) for all 0 ≤ d < p− 1. As in [Sei00,
Proposition 4.2], one now expresses the dimensions of the fixed point spaces ofuk
anduF in terms of the exponents and finds thatu(d) = s(d) = t (d) = 0 for all d.
ThusLk is the direct sum of various simple tilting modulesL(d) for 0 ≤ d < p, and
various indecomposable tilting modulesT (cd) = T (2p− 2− d) for 0 ≤ d < p− 1,
so indeedLk is a tilting module. �
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Proposition 35. With notation as above, we have

(1) CoG(X) = CoG(ε(X)); in particular,�(Gm) normalizesCoG(ε(X)).

(2) CoG(ε(X)) = CoG(ε(tX)) for eacht ∈ k×.

Proof. If X is distinguished, (1) holds sinceε is P = P(�) equivariant, since
ε(X) ∈ Ru(P ) is again a Richardson element, and sinceCG(X), CG(ε(X)) ≤ P by
Proposition 21. [In fact,CG(X) = CG(ε(X)) always holds in this case.] It remains
to prove (1) whenX is no longer distinguished; we essentially follow the proof in
[Sei00, Lemma 6.3].

By the unicity ofε, it is enough to prove the result withL, �, andX replaced
by aG-conjugate. We will regardG = G/k as arising by base change from the split
reductive group schemeG/Z overZ; let T/Z be aZ-split maximal torus ofG/Z.

According to Lemma 28, we may find a suitable valuation ring in a number field
� ⊂ F and assume that the Levi subgroupL containsT/k and arises by base change
from a standard split reductive Levi subgroup schemeL/Z ≤ G/Z containingT/Z,
that� ∈ X∗(T/Z), and that the nilpotent elementX� ∈ Lie(L/�)(�; 2) givesX on
base change.

After possibly enlarging� andF , [Mc03, Theorem 13] gives a homomorphism

f : SL2/� → G/�

such that the restriction off to the subgroup scheme

(
1 ∗
0 1

)
of SL2/� is given

by t �→ ε(tX�), whereX� ∈ g/� givesX upon extension of scalars tok (recall
from [Sei00, Prop. 5.1] thatε is indeed defined overZ(p) hence over�). Moreover,
the restriction off to the standard maximal torus of SL2/� gives the cocharacter�
of T/�.

SinceG is strongly standard, its adjoint representation is self-dual. Together with
Proposition 29, this shows that we may apply Proposition 34 to the representation
Ad �f : SL2/� → GL(Lie(G/�)). Thus the SL2-representation(Ad �f/k, g) is a
tilting module, and it follows from [Sei00, Lemma 2.3(d)] that

cg(ε(tX)) = cg(X)

for eacht ∈ k×. The orbits ofε(tX) andX are separable by Proposition 5; thus we
know that LieCG(ε(tX)) = LieCG(X). In particular,CG(X) andCG(ε(X)) have
the same dimension; assertion (1) will follow if we show thatCoG(X) ≤ CoG(ε(X)).

For any connected linear groupH , we writeHt for the subgroup generated by the
maximal tori inH . Applying [Spr98, 13.3.12], to the groupH = CoG(X), we find
thatH is generated byHt andCH(S), whereS is our fixed maximal torus ofH ; i.e.

(∗) H = 〈Ht, CH (S)〉.
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Working for the moment inside the Levi subgroupL = CG(S) of G, the “distin-
guished” case of part (1) of the proposition means thatCH(S) = CL(X) = CL(ε(X));
in particularCH(S) centralizesε(X). So according to (∗), the containmentH ≤
CoG(ε(X)), and hence (1), will follow if we just show thatε(X) is centralized by each
maximal torusT of CG(X). Sincecg(ε(X)) = cg(X) = LieCG(X), one knows that
ε(X) centralizes Lie(T ). We claim that(∗) CG(T ) = CG(Lie(T )); this shows that
T centralizesε(X) as desired.

WriteM = CG(T ). SinceT is a maximal torus ofCoG(X), it follows thatT is
a maximal torus of the center ofM. Thus(∗) is a consequence of the next lemma
(Lemma 36), and (1) is proved. For (2), notice that ifs2 = t , we have by (1) that

CoG(ε(X)) = �(s)CoG(ε(X))�(s
−1) = CoG(ε(Ad(�(s))X)) = CoG(ε(tX)). �

Lemma 36. LetG be a strongly standard reductive group, letT ≤ G be a torus,
and writeM = CG(T ). If T is a maximal torus of the center ofM, thenCG(T ) =
CG(Lie(T )).

Proof. We essentially just reproduce the proof of [Sei00, Lemma 6.2]. LetT0 be a
maximal torus ofG containingT . Denote byR ⊂ X∗(T0) the roots ofG and by
RL ⊂ R the roots ofL. Choose a systemα1, . . . , αr ∈ X∗(T0) of simple roots for
G such thatα1, . . . , αt is a system of simple roots forM = CG(T ) (so t ≤ r). If
we writeUα ≤ G for the root subgroup corresponding toα ∈ R, thenUα ≤ L for
α ∈ RL; moreover,

CG(T ) = 〈T0;Uα | α|T = 1〉, and CG(Lie(T )) = 〈T0;Uα | dα|Lie(T ) = 0〉.
We have alwaysCG(T ) ≤ CG(Lie(T )). If the lemma were not true, there would
be some rootβ of G such thatβ|T �= 1 but dβ|Lie(T ) = 0. We may writeβ =
α + ∑r

i=t+1 ciαi with α ∈ RL. Sincep is good, theci are integers with 0≤ ci < p

[SS70, I.4.3]. Sinceβ|T �= 1, it follows thatcj is non-zero ink for somet+1 ≤ j ≤ r.
SinceG andM are strongly standard, [SS70, Corollary I.5.2] implies thatz(g) =

LieZ(G) and z(m) = LieZ(M) (wherez(?) denotes the center of a Lie algebra,
andZ(?) that of a group). We thus have dimT = dim z(g) + (r − t). It follows
that{dαt+1, · · · , dαr} is a linearly independent subset of Lie(T )∨ (the dual space of
Lie(T )). In particular, there isA ∈ Lie(T ) such that

dαi(A) = δi,j .

But thendβ(A) = cj �= 0, contradicting the choice ofβ. This completes the proof.
�

Remark 37. If S, S′ ≤ C� are maximal tori, let us writeU andU ′ for the unipotent
radicals of the distinguished parabolic subgroupsPL(�) ≤ L andPL′(�) ≤ L′
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whereL = CG(S) andL′ = CG(S
′). If ε : Lie(U) → U and ε′ : Lie(U ′) →

U ′ are the isomorphisms of Proposition 26, thenε(tX) = ε′(tX) for eacht ∈ k.
Indeed, we may chooseg ∈ Co�(X) with gSg−1 = S′. It is then clear thatU ′ =
gUg−1 and the uniqueness statement of Proposition 26 shows thatε′ = Int(g) � ε �
Ad(g−1) : Lie(U ′) → U ′. Let t ∈ k×. Proposition 35 shows thatg centralizes
ε(tX) in addition toX. So indeed

ε′(tX) = Int(g) � ε � Ad(g−1)(tX) = Int(g) � ε(tX) = ε(tX)

as asserted.

Now let φ : Ga → G be an injective homomorphism of algebraic groups with
X = dφ(1), and assume that the cocharacter� associated toX has the property that

�(t)φ(s)�(t−1) = φ(t2s) for eacht ∈ k× ands ∈ k.
Sinceφ is injective, the cocharacter� is non-trivial; this means in particular that
X �= 0 and sodφ is non-zero.

We remark that the homomorphismh : Ga → G given byt �→ ε(tX) is injec-
tive. Indeed, as in the proof of Proposition 35, there is an optimal homomorphism
f : SL2 → G such thath(s) = f (x1(s)) for s ∈ Ga. The group SL2 is almost
simple; its unique normal subgroup is contained in each maximal torus. In particular,
kerh is trivial as asserted.

Fix now a maximal torusS of CG(X) centralized by the image of�, and hence
a Levi subgroupL = CG(S) such that�(Gm) ≤ L andX ∈ Lie(L).

Proposition 38. Withφ and� as above, we haveφ(t) = ε(tX) for eacht ∈ k, where
ε : Lie(U) → U is the isomorphism of Proposition26 for the unipotent radicalU of
the distinguished parabolic subgroupPL(�) ≤ L. In particular,φ(Ga) ≤ L.

Proof. Notice thatφ(s) ∈ CoG(X) for all s ∈ Ga. According to Proposition 35 this
shows thatφ(s) ∈ CoG(ε(tX)) for all t ∈ k×, hence that

s �→ ε(−sX) · φ(s)
is a homomorphismφ1 : Ga → G. Moreover,�(t)φ1(s)�(t

−1) = φ1(t
2s) for

t ∈ k× ands ∈ k, and a quick calculation showsdφ1 to be trivial.
Assume that the proposition is not true, hence thatφ1 �= 1; it has positive dimen-

sional image and so by Corollary 20 there is a homomorphismφ2 : Ga → G and
an integerr ≥ 1 such thatφ1 = φ2 � F r , whereF denotes the Frobenius morphism
for SL2, and such thatdφ2 �= 0. On the additive group,F is given bys �→ sp, so
we know thatφ1(s) = φ2(s

pr ) for s ∈ k. [Notice we have used the fact thatGa is
defined overFp, so thatGa identifies withG

(r)
a for r ≥ 0.]
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Observe that ifφ1(s0) = 1 for somes0 �= 0, then 1= φ1(s0) = ε(−s0X)φ(s0) so
thatε(s0X) = φ(s0); applying Int(�(t)) for t ∈ k×, we see thatε(sX) = φ(s) for
all s ∈ k, so thatφ1 = 1. Thus ifφ1 �= 1, thenφ1 is an injective map on the points
of Ga. It is then clear thatφ2 is injective as well [sincedφ2 is non-zero,φ2 is even
an injective homomorphism of algebraic groups].

Since�(Gm) normalizes the image ofφ2, we have�(t)φ2(s)�(t
−1) = φ2(t

ns)

for somen ∈ Z. Let nowt ∈ k× ands ∈ k. Then

φ1(t
2s) = �(t)φ1(s)�(t

−1) = �(t)φ2(s
pr )�(t−1) = φ2(t

nsp
r

);
sinceφ1 andφ2 are injective, we have(t2s)p

r = tnsp
r

for all t ∈ k× ands ∈ k. It
follows thatn = 2pr .

Denoting by 0�= Y an element in the image ofdφ2, it is clear that Ad(�(t))Y =
t2p

r
Y so thatY ∈ g(�; 2pr). Sincer ≥ 1, since� is associated withX, and since

X[p] = 0, this contradicts Proposition 30; henceφ1 = 1 andφ(s) = ε(sX) for all
s ∈ k as asserted. �

Remark 39. Assume thatp ≥ h, whereh is the Coxeter number ofG. Then the
nilpotence class of the unipotent radicalU of a Borel subgroupB of G is < p.
Thus there is aB-equivariant isomorphismε : Lie(U) → U as in Proposition 26.
Fix a regular nilpotent elementX ∈ Lie(U) and writeu = ε(X). According to
Proposition 11, there is a unique Springer isomorphism� : U → N with�(u) = X.
It is then clear by the unicity ofε that�−1

|Lie(U) = ε for the unipotent radicalU of any
Borel subgroup ofG. Since the unipotent radicalV of any parabolic subgroupP of
G is contained in that of some Borel subgroup, it is then clear that�−1|Lie(V ) is the
isomorphism of Proposition 26 (of course, the nilpotence class ofV is < p). This
permits for thesep a simple proof of Proposition 35 and hence of Proposition 38 (i.e.
a proof independent of the tilting module considerations of Proposition 34)

8.1. Conjugacy of optimal SL2 homomorphisms. The goal of this paragraph is to
show that any two optimal SL2-homomorphisms forX are conjugate by an element
of CoG(X).

Let φ be an optimal SL2-homomorphism forX ∈ g with cocharacter� = φ|T .
Choose a maximal torusS ≤ C� , so thatX is distinguished in Lie(L), whereL =
CG(S) is a Levi subgroup ofG. If φ is defined overK, then the maximal torusS –
and so alsoL – may be chosen overK.

We will write PL = PL(�) for the parabolic subgroup ofL determined by the
cocharacter�, andU for the unipotent radical ofPL. Denote byε : Lie(U) → U

the uniquePL-equivariant isomorphism of Proposition 26.

Proposition 40. (1) The torusS centralizesφ(X); in particular, φ(X) ⊂ U .
(2) φ(x1(t)) = ε(tX) for eacht ∈ k.
(3) For eacht ∈ k×, CoG(X) = CoG(ut )) whereut = φ(x1(t)).
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Proof. We apply the result of Proposition 38; that proposition shows thatφ(t) =
ε(tX). (1) and (2) are then immediate, and (3) follows from Proposition 35. �

Proposition 41. The image ofφ lies in the derived group of the Levi subgroup
L = CG(S).

Proof. Since SL2 is equal to its own derived group, we only must see that the image
of φ lies inL.

Now write

Y = dφ(Y1) ∈ g and u−
t = φ(y1(t)) ∈ G for t ∈ k.

Since SL2 is generated by the subgroupsX andX−, it suffices to show thatut , u
−
t ∈

L = CG(S) for all t ∈ k×. Fix t ∈ k×. It was proved in Proposition 40(1) that
ut ∈ L.

Now, there isg ∈ φ(SL2) with gutg−1 = u−
t and Ad(g)X = Y . Together with

Proposition 40, this implies thatCoG(u
−
t ) = CoG(Y ) for t ∈ k×. So the proof is

complete once we show thatS ≤ CG(Y ).
SinceS and the image of� commute,g(�; −2) is S-stable and is thus a direct

sum ofS-weight spaces

g(�; −2) =
∑

γ∈X∗(S)
g(�; −2)γ .

Hence, we may writeY ∈ g(�; −2) as a sum ofS-weight vectors:

Y =
∑
γ

Yγ with Yγ ∈ g(�; −2)γ .

We need to show thatY = Y0, or equivalently thatYγ = 0 for γ �= 0.
As� is associated toX, it follows from Proposition 21 thatcg(X) ⊆ ∑

i≥0 g(�; i).
SinceS centralizesX, it follows that ad(X) : g(�; 2) → g(�; 0) is an injective map
of S-representations. WritingH = d�(1) ∈ g, we have ad(X)Y = [X, Y ] = H ∈
g(�; 0)0. Since ad(X)Yγ ∈ g(�; 0)γ , the injectivity of ad(X) implies thatYγ = 0
unlessγ = 0, as desired. ThusY = Y0 and the proof is complete. �

Proposition 42. Let X ∈ g satisfyX[p] = 0. If φ1 and φ2 are optimalSL2-
homomorphisms forX and ifφ1|T = φ2|T , thenφ1 = φ2.

Proof. Combined with Proposition 41, the hypotheses yield a maximal torusS ≤
CG(X) such that the image ofφi lies inL = CG(S) for i = 1,2. Thus we may replace
G by the strongly standard reductive groupL and so suppose thatX is distinguished.

Proposition 40 shows thatφ1(x1(t)) = ε(tX) = φ2(x1(t)) for all t ∈ k. It follows
thatφ1 andφ2 coincide on the Borel subgroupB = T X of SL2. Using this, we argue



Vol. 80 (2005) Optimal SL(2)-homomorphisms 415

thatφ1 andφ2 coincide on all of SL2. Indeed, consider the morphism of varieties
SL2 → G given by

g �→ φ1(g)φ2(g
−1).

Since theφi are homomorphisms, this morphism factors through the flag variety
SL2 /B = P1 (the projective line); sinceP1 is an irreducible complete variety, and
sinceG is affine, this morphism must be constant. The proof is complete. �

Corollary 43. If φ is an optimal homomorphism, let as usualX = dφ(X1) and
� = φ|T . Then the centralizer ofφ(SL2) isC� = CG(X) ∩ CG(�(Gm)).

Proof. This is just a restatement of the previous proposition. �

Theorem 44. Suppose thatG is strongly standard, and thatX ∈ g satisfiesX[p] = 0.
Then any two optimalSL2-homomorphisms forX are conjugate by a unique element
of the unipotent radical ofCoG(X).

Proof. Let φ1, φ2 be optimal SL2-homomorphisms forX, and write�i = φi |T for
the corresponding cocharacters. According to Proposition 21, the cocharacters�1
and�2 associated withX are conjugate by a unique element of the unipotent radical
U of CoG(X). Replacingφ2 by aU -conjugate, we may thus suppose that�1 = �2.
It then follows from Proposition 42 thatφ1 = φ2. �

8.2. Uniqueness of a principal homomorphism. Suppose thatX ∈ g is adistin-
guishednilpotent element. Then any cocharacter� ∈ X∗(G) with X ∈ g(�; 2)
is associated toX. In particular, if φ : SL2 → G is any homomorphism with
dφ(X1) = X, then� = φ|T is a cocharacter associated withX; thusφ is opti-
mal.

An application of Theorem 44 now gives:

Proposition 45. If φ1, φ2 : SL2 → G are homomorphisms such thatdφ1(X1) =
dφ2(X1) = X is a distinguished nilpotent element, thenφ1 andφ2 are conjugate by
an element ofCoG(X).

A principal homomorphismφ : SL2 → G is one for whichdφ(X1) is a regular
nilpotent element. Since a regular nilpotent element is distinguished, we have:

Proposition 46. A principal homomorphism is optimal. Any two principal homo-
morphisms are conjugate inG.

8.3. Optimal homomorphisms over ground fields. Recall thatK is an arbitrary
ground field. The following theorem gives both an existence result and a conjugacy
result for optimal homomorphisms over the ground fieldK. If X ∈ g(K), write
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C = CoG(X) for its connected centralizer; recall by Proposition 21 that the unipotent
radical ofC is defined overK.

Theorem 47. LetG be a strongly standard reductiveK-group, and letX ∈ g(K)

satisfyX[p] = 0.

(1) There is an optimalSL2-homomorphismφ for X which is defined overK.

(2) LetU be the unipotent radical ofC = CoG(X). Any two optimalSL2-homomor-
phism forX defined overK are conjugate by a unique element ofU(K).

Proof. To prove (1), we need first to quote a more precise form of Proposition 33.
The proof of that Proposition given in [Mc03] shows that there is a nilpotent element
X′′ in the orbit ofX which is rational over the separable closureKsepof K in k and
an optimal SL2-homomorphismφ′′ for X′′ defined overKsep. Since the orbit ofX
is separable, one can mimic the proof of [Spr98, 12.1.4] to see thatX andX′′ are
conjugate by an element rational overKsep. Indeed, letO be the orbit ofX and
let µ : G → O be the orbit mapµ(g) = Ad(g)X. The separability of the orbitO
means thatdµ1 : T1(G) → TX(O) is surjective, and it follows for eachg ∈ G that
dµg : Tg(G) → TAd(g)X(O) is surjective. It follows from [Spr98, 11.2.14] that the
fiberµ−1(X′′) is defined overKsep, so that by [Spr98, 11.2.7] there is aKsep-rational
pointg in this fiber. It follows thatφ′ = Int(g)�φ′′ is an optimal SL2-homomorphism
for X which is defined overKsep.

According to Proposition 21, we can find a cocharacter� associated withX
which is defined overK. Writing C = CoG(X), that same proposition shows that the
cocharacters� and� ′ = φ′|T are conjugate by an elementh ∈ C(Ksep) [in fact, h
can be chosen to be aKsep-rational element of the unipotent radical ofC].

It now follows thatφ = Int(h−1) � φ′ is an optimal SL2-homomorphism for
X which is defined overKsep. We argue thatφ is actually defined overK. Let
γ ∈ Gal(Ksep,K). Thenφγ = γ � φ � γ−1 : SL2 → G is another optimal SL2-
homomorphism forX; since� = φ|T is defined overK, φ|T = φγ |T . Thus
Proposition 42 shows thatφ = φγ . Sinceφ is defined overKsep, Galois descent (e.g.
[Spr98, Cor. 11.2.9]) shows thatφ is defined overK.

We now give the proof of (2), which is the same as the proof of Theorem 44.
If φ andψ are optimal SL2-homomorphisms forX, each defined overK, then by
Proposition 21, theK-cocharacters
 = φ|T and� = ψ|T associated withX are
conjugate by a unique element ofU(K). Thus we may replaceψ by aU(K)-conjugate
and suppose thatφ|T = ψ|T . Proposition 42 then shows thatφ = ψ and the proof is
complete. �

Remark 48. In the case of afinite ground fieldK, Seitz [Sei00, Proposition 9.1]
obtained existence and conjugacy overK for goodA1 subgroups(see §8.5 below for
their definition).
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8.4. Complete reducibility of optimal homomorphisms. LetG be any reductive
group. Generalizing the notion of a completely reducible representation of a group,
J.-P. Serre has introduced the following definition. A subgroupH ≤ G is said to
beG-completely reducible (for short:G-cr) if for every parabolic subgroupP of G
containingH there is a Levi subgroup ofP which also containsH . See [Ser04] for
more on this notion.

We are going to prove that the image of an optimal homomorphism isG-cr. We
establish some technical lemmas needed in the proof. First, we show that a suitable
generalization of Proposition 35 is valid.

Lemma 49. Let� ∈ X∗(G)and suppose thatP = P(�) is a distinguished parabolic
subgroup with unipotent radicalU = RuP . Suppose that the nilpotence class ofU

is< p, and let
ε : Lie(U) → U

be the isomorphism of Proposition26. If X0 ∈ g(�; n) for somen ≥ 1, then
X0 ∈ Lie(U) andCoG(X0) = CoG(ε(X0)).

Proof. Let N(X0) = {g ∈ G | Ad(g)X0 ∈ kX0} ≤ G. By assumption, the torus
�(Gm) is contained inN(X0); in particular, this torus normalizesCG(X0). We may
choose a maximal torusS of CG(X0) centralized by�(Gm); thusS′ = S ·�(Gm) is
a maximal torus ofN(X0). According to [Mc04, Lemma 25], there is a cocharacter
� ∈ X∗(S′) which is associated toX0. Let T be a maximal torus ofG containing
S′; thusT lies in the centralizer of�(Gm), of S, and of�(Gm).

Since a Richardson orbit representativeX for the denseP -orbit onU satisfies
X[p] = 0, we have alsoX[p]

0 = 0. Now consider the Levi subgroupL = CG(S); the
nilpotent elementX0 is distinguished in Lie(L). LetQ = PL(�), and letV = RuQ

be the unipotent radical ofQ. Proposition 26 gives a unique isomorphism

ε′ : Lie(V ) → V,

and we know from Proposition 35 thatCoG(X0) = CoG(ε
′(X0)). Thus our lemma will

follow if we show thatε(X0) = ε′(X0).
Notice thatT is contained in the Levi factorsZG(�) of P andZL(�) of Q, so

thatT normalizes the connected unipotent subgroupW = (U ∩ V )o ofG. Since the
nilpotence class ofW is< p, [Sei00, Proposition 5.2] gives a unique isomorphism
of algebraic groups

ε′′ : Lie(W) → W

whose tangent map is the identity and which is compatible with the action of the
connected solvable groupT ·W by conjugation. On the other hand, the tangent maps
of the restrictionsε|Lie(W) andε′|Lie(W) are the identity, and these maps are compatible



418 G. J. McNinch CMH

with the action ofT ·W ; we thus have

ε|Lie(W) = ε′′ = ε′|Lie(W).

This implies thatε(X0) = ε′(X0) as desired, and the proof is complete. �

We now show that a suitable deformation of an optimal homomorphism remains
optimal.

Lemma 50. Letφ : SL2 → G be an optimalSL2-homomorphism, and suppose that
φ takes its values in the parabolic subgroupP .

(1) There is a cocharacterγ ∈ X∗(P ) such thatγ (Gm) centralizesφ(T ) and such
thatP = P(γ ).

(2) Denoting byL = Z(γ ) the Levi factor ofP determined byγ , write φ̂ : SL2 → L

for the homomorphism

x �→ lim
t→0

γ (t)φ(x)γ (t−1)

of Lemma7. Thenφ̂ is an optimalSL2-homomorphism as well.

Proof. Sinceφ(T ) lies in some maximal torus ofP , (1) follows from Lemma 6.
Let us prove (2). LetX = dφ(X1) as usual, and write� for the cocharacter

φ|T ; it is associated withX. Denoting byC� the corresponding Levi factor of the
centralizer ofX, we may choose a maximal torusS ≤ C� and Proposition 41 implies
thatφ takes its values in the Levi subgroupCG(S). We may evidently replaceG by
L and so assume thatX is distinguished.

Now letX = X0 + X′, Y = Y0 + Y ′ with X0, Y0 ∈ Lie(L) = g(γ ; 0) and with
X′, Y ′ ∈ Lie(RuP ). Lemma 7 shows thatdφ̂(X1) = X0 anddφ̂(Y1) = Y0.

To shows that̂φ is optimal forX0, it is enough to show that̂φ takes values in some
Levi subgroupM of L such thatX0 ∈ Lie(M) is distinguished. Indeed, since SL2 is
its own derived group, this will imply that� = φ|T takes its values in(M,M), so
that� is indeed associated withX0.

Note that the torus�(Gm) normalizesCL(X0). Since�(Gm) lies in a maximal
torus of the semidirect product ofCL(X0) and�(Gm), it is clear that there is a
maximal torusS of CL(X0) centralized by�(Gm). TakingM = CL(S), we claim
thatφ takes its values inM.

Notice that

φ̂(x1(t)) = lim
s→0

γ (s)ε(tX)γ (s−1) = lim
s→0

ε(t (X0 + Ad(γ (s))X′)) = ε(tX0)

for eacht ∈ k, Similarly, φ̂(y1(t)) = ε(tY0) for eacht ∈ k.
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SinceS is contained in the centralizer ofX, it is contained in the instability
parabolicPX forX by Proposition 21. Thusε isS-equivariant. Since SL2 is generated
by X andX−, this equivariance shows that we are done ifS centralizes bothX0 and
Y0 – of course,S centralizesX0 by assumption.

Write H = d�(1); since� andγ commute,φ̂|T = �. Now, ad(X0)Y0 =
[X0, Y0] = H . As in the proof of Proposition 41, we writeY0 = ∑

λ∈X∗(S) Y0,λ
as a sum of weight vectors for the torusS. Since�(Gm) commutes withS, H is
centralized byS, and so we have[X0, Y0,λ] = 0 whenλ �= 0; we want to conclude
thatY0,λ = 0. We do not know that� is associated withX0, so we can not simply
invoke Proposition 21. However, sinceY0,λ ∈ g(�; −2), the general theory of
SL2-representations shows: ifY0,λ �= 0, thenρ̂(x1(t)) = ε(tX0) acts non-trivially
on Y0,λ for somet ∈ k×. On the other hand, according to Lemma 49 we have
CoL(X0) = CoL(ε(tX0)), so thatY0,λ ∈ cLie(L)(X0) = cLie(L)(ε(tX0)). Thus indeed
Y0,λ = 0 for each non-zeroλ, as required. ThusY0 = Y0,0 so thatS centralizesY0;
the proof is now complete. �

Lemma 51. Let X ∈ g be any nilpotent element, letψ ∈ X∗(G) a cocharacter
associated withX, and letL = CG(ψ(Gm)) be the Levi factor in the instability
parabolic determined byψ .

(1) TheL orbit V = Ad(L)X is a Zariski open subset ofg(ψ; 2).

(2) LetY ∈ g be nilpotent. Thenψ is a cocharacter associated withY if and only if
Y ∈ V.

Proof. To prove (1), note that the orbit map

y �→ Ad(y)X : L → g(ψ; 2)

has differential ad(X) : Lie(L) = g(ψ; 0) → g(ψ; 2); if we know that the differen-
tial is surjective, then the orbit map is dominant and separable and (1) follows. To
see the surjectivity, we argue as follows. Recall from Proposition 21 thatcg(X) is
contained in

∑
i≥0 g(ψ; i); in particular,g(ψ; −2)∩ cg(X) = 0. According to [Ja04,

Lemma 5.7] this last observation implies (in fact: is equivalent to) the statement
[g(ψ; 0),X] = g(ψ; 2); this proves the required surjectivity (note that [Ja04, 5.7]
is applicable since the Lie algebra of a strongly standard reductive group has on it a
nondegenerate, invariant, symmetric, bilinear form – cf. Proposition 2).

For (2) note first thatψ is evidently associated to anyY ∈ V. Conversely, ifψ
is associated toY , thenY ∈ g(ψ; 2), and (1) shows that Ad(L)Y is also open and
dense ing(ψ; 2). Thus Ad(L)X ∩ Ad(L)Y �= ∅, so thatY ∈ Ad(L)X = V. �

Theorem 52. LetG be strongly standard, and letφ : SL2 → G be an optimalSL2
homomorphism. Then the image ofφ isG-cr.
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Proof. LetX = dφ(X1) as usual, and write� for the cocharacterφ|T ; it is associated
with X. Denoting byC� the corresponding Levi factor of the centralizer ofX, we
may choose a maximal torusS ≤ C� and Proposition 41 implies thatφ takes its
values in the Levi subgroupL = CG(S). Applying [Ser04, Proposition 3.2], one
knows thatφ(SL2) is G-cr if and only if it isL-cr. We replaceG by L, and thus
suppose thatX is distinguished.

Let P be a parabolic subgroup ofG and suppose that the image ofφ lies inP .
We claim that sinceX is distinguished, we must haveP = G; this will prove the
theorem.

To prove our claim, first notice that by Lemma 50(1) we may chooseγ ∈ X∗(P )
with P = P(γ ) and such thatγ (Gm) commutes with�(Gm).

Let us writeX = ∑
i≥0Xi with Xi ∈ g(γ ; i). Consider the homomorphism

φ̂ : SL2 → Z(γ ) constructed in Lemma 50; according to (2) of that lemma,φ̂ is
optimal forX0, so that the cocharacter� is associated toX0 as well as toX.

We now claim thatX andX0 are conjugate. This will show thatX0 is distinguished
in G, hence thatG = Z(γ ) so that alsoP = G as desired. LetL = CG(�(Gm)).
Then Lemma 51 implies thatX0 is contained in the orbitV = Ad(L)X ⊂ g(�; 2),
proving our claim. �

8.5. Comparison with good homomorphisms. According to Seitz [Sei00], an SL2
homomorphismφ : SL2 → G is calledgood(or restricted) provided that the weights
of a maximal torus of SL2 on Lie(G) are all≤ 2p − 2.

Proposition 53. Let φ : SL2 → G be a homomorphism, whereG is a strongly
standard reductive group. Thenφ is good if and only if it is optimal forX = dφ(X1).
In particular, all good SL2-homomorphisms whose image contains the unipotent
elementv are conjugate byCoG(v).

Proof. That an optimal homomorphism is good follows from Proposition 30. Choose
a Springer isomorphism� : U → N . If u is a unipotent element of orderp, choose
a Levi subgroupL in which u is distinguished; this just means thatX = �(u) ∈ g

is distinguished. It follows from Proposition 24 thatX[p] = 0. Choose an optimal
homomorphismφ′ for X; we know thatφ′ takes values inL (Proposition 41), and if
v = φ′(x(1)), it is clear from Proposition 40 thatv andu are Richardson elements in
the same parabolic subgroup ofL; thusv andu are conjugate. This proves thatu is
in the image of some optimal homomorphismφ.

To prove that good homomorphisms are optimal, we use a result of Seitz. Since
φ is optimal, we just observed that it is good, and Seitz proved [Sei00, Theorem 1.1]
that any good homomorphism withu in its image is conjugate byCG(u) to φ. Thus,
any good homomorphism is indeed optimal. �
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9. Rational elements of a nilpotent orbit defined over a ground field

In this section, we extend a result first obtained by R. Kottwitz [Ko82] in the case
whereK has characteristic 0. We give here a proof which is also valid in positive
characteristic (under some assumptions onG). For the most part, we follow the
original argument of Kottwitz.

Theorem 54. LetK be any field, and letGbe a strongly standard connected reductive
K-group which isK-quasisplit. If the nilpotent orbitO ⊂ N is defined overK, then
O has aK-rational point.

Proof. If K is a finite field, the theorem is a consequence of the Lang–Steinberg
theorem; cf. [St68, §10] and [St65]. Suppose nowK to be infinite.

We fix a Borel subgroupB of G which is defined overK, and a maximal torus
T ⊂ B which is also overK. The roots ofG inX∗(T )which appear in the Lie algebra
of the unipotent radical ofB are declared positive, and we will writeC ⊂ X∗(T ) for
the positive Weyl chamber determined byB:

C = {µ | 〈α,µ〉 ≥ 0 for all positive rootsα of G in X∗(T )}.
If W = NG(T )/T denotes theWeyl group ofT , then eachµ ∈ X∗(T ) isW -conjugate
to a unique point inC. We also write� = Gal(Ksep/K) for the absolute Galois group
of the fieldK.

TheK-varietyO has a pointX′ rational over the separable closureKsepof K in
k (e.g. by [Spr98, 11.2.7]). According to Proposition 21, there is a cocharacter� ′
associated withX′ and defined overKsep. Let T ′ be a maximal torus ofG defined
overKsepwhich contains the image of� ′.

For γ ∈ �, the cocharacter� ′γ is associated with the nilpotentX′γ . SinceO
is defined overK, X′γ andX′ are conjugate. Hence� ′ and� ′γ are conjugate by
another application of Proposition 21.

According to [Spr98, Proposition 13.3.1 and 11.2.7] we may findg ∈ G(Ksep)

such thatgT ′g−1 = T ; the same reference shows that any elementw of the Weyl
group ofT may be represented by an elementẇ ∈ NG(T ) rational overKsep. We
have that� = Int(g) �� ′ ∈ X∗(T ) is defined overKsep. Replacing� by Int(ẇ) ��
for a suitablew in the Weyl group ofT , we may suppose that� ∈ C ⊂ X∗(T )
and is defined overKsep. Of course,� is associated with the nilpotent element
X = Ad(ẇg)X′.

SinceB andT are�-stable,γ permutes the positive roots inX∗(T ). Thus,γ
leavesC invariant; in particular,�γ ∈ C. We know� and�γ to be conjugate in
G. SinceT is a maximal torus of the centralizer of both�(Gm) and of�γ (Gm),
we may suppose that�γ = Int(ẇ)� for somew in the Weyl group ofT . ButC is a
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fundamental domain for theW -action onX∗(T ), so we see that� = �γ . Since�
is defined overKsepand is�-stable,� is defined overK [Spr98, 11.2.9].

This shows in particular that the subspaceg(�; 2) is defined overK. According
to Lemma 51, there is a Zariski open subset ofg(�; 2) consisting of elements inO.
SinceK is infinite, theK-rational points ofg(�; 2) are Zariski dense ing(�; 2).
Hence there is aK-rational point inO and the proof is complete. �

Corollary 55. LetG be a strongly standard reductiveK-group which isK-quasisplit.
There is a regular nilpotent elementX ∈ g(K). In particular, there is an optimal
homomorphismφ : SL2 → G defined overK with dφ(X1) = X.

Proof. SinceG is split over a separable closureKsep of K, there is aKsep rational
regular nilpotent element. Thus the regular nilpotent orbit is defined overKsep. Since
this orbit is clearly stable under Gal(Ksep/K), it is defined overK. So the theorem
shows that there is aK-rational regular nilpotent elementX. The final assertion
follows from Theorem 47. �

Remark 56. WithG as in the theorem, there is a Springer isomorphism� : U → N
defined overK. Thus a unipotent conjugacy class defined overK has aK-rational
point.

10. Appendix: Springer isomorphisms (Jean-Pierre Serre, June 1999)

LetG be a simple algebraic group in char.p, which I assume to be “good” forG.
I also assume the ground fieldk to be algebraically closed. CallGu the variety of
unipotent elements ofG andgn the subvariety ofg = Lie(G)made up of the nilpotent
elements.

Springer has shown that there exist algebraic morphisms

f : Gu → gn

with the following properties:

a) f is compatible with the action ofG by conjugation on both sides.

b) f is bijective.

In fact, it was later shown that these properties imply (at least whenp is “very good”,
which is always the case ifG is not of typeA):

b′) f is an isomorphism of algebraic varieties.

Despite the fact that there aremany suchf ’s (they make up an algebraic variety of
dimension�, where� is the rank ofG), one often finds in the literature the expression
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“the Springer isomorphism” used – and abused –, especially to conclude that the
G-classes of unipotent elements ofG and nilpotent elements ofg are in a natural
correspondence, namely “the” Springer correspondence.

It might be good for the reader to consider the case ofG = SLn (or rather PGLn,
if one wants an adjoint group). In that case a Springer isomorphism is of the form

1 + e �→ a1e + · · · + an−1e
n−1,

whereen = 0 (so thatu = 1+e is unipotent), and theai are elements ofkwith a1 �= 0.
Every such family�a = (a1, . . . , an−1) defines a unique Springer isomorphismf�a,
and one gets in this way every Springer isomorphism, once and only once. This
example also shows that the Springer isomorphisms can be quite different: e.g., for
some one may havef (um) = m.f (u) for all u and allm ∈ Z ( such anf exists if
and only ifp ≥ n), and for some one does not even havef (u−1) = −f (u)!

In what follows, I want to repair this unfortunate mix-up by showing that all the
different Springer isomorphisms givethe samebijection between theG-classes ofGu

and theG-classes ofgn, so that one can indeed speak (in that case) oftheSpringer
bijection.

I have to recall first how the Springer isomorphisms are defined. CallGur the set
of regular unipotent elements ofG; it is an open dense set inGu; same definition for
gn in g = Lie(G). Choose an elementu in Gur and letC(u) be its centralizer. It is
known thatC(u) is smooth, connected, unipotent, commutative, of dimension� (=
rankG). Let c(u) = LieC(u) be its Lie algebra. Choose an elementX of c(u)which
is regular. Then its centralizer isC(u), and the Springer construction shows that there
is auniqueSpringer isomorphismf = fu,X which has the property thatf (u) = X.
Let us fixX; then it is clear that every Springer isomorphism is equal tofv,X for
somev ∈ C(u)r, whereC(u)r = C(u) ∩Gur; moreover,v is uniquely defined byf .
Hence we have aone-to-one parametrization of the Springer isomorphisms by the
elementsv ofC(u)r.

The next step consists in showing that this parametrization is “algebraic”. The
precise meaning of this is the following:

Proposition. There exists an algebraic morphismF : C(u)r ×Gu → gn such that
F(v, z) = fv,X(z) for everyv ∈ C(u)r andz ∈ Gu.

Proof. Call Nu the normalizer ofC(u) in G. Since all regular unipotents are con-
jugate,Nu acts transitively onC(u)r, so that one can identify the algebraic variety
C(u)r with the coset spaceNu/C(u). Similarly, one may identifyGur withG/C(u).
Let us now define an algebraic map

F ′ : Nu ×G → gn

by the formula
F ′(n, z) = Ad(zn−1).X
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(i.e. the image ofX ∈ g by the inner automorphism defined byzn−1). It is clear
thatF ′(n, z) depends onn only mod.C(u), and that it depends onz also modC(u).
HenceF ′ factors out and gives a map ofNu/C(u)×G/C(u) into gn. If we identify
Nu/C(u) with C(u)r andG/C(u) with Gur, we thus get a map

F0 : C(u)r ×Gur → gn.

It is well-known thatGu is a normal variety and thatGu Gur has codimension> 1
in Gu. Hence the same is true forC(u)r ×Gur in C(u)r ×Gu. Sincegn is an affine
variety, the mapF0 extends uniquely to an algebraic mapF : C(u)r × Gu → gn.
One checks immediately that for every fixedv ∈ C(u)r, the mapz �→ F(v, z) has
the following properties: a) it commutes with the action ofG; b) it mapsv to X.
(Property a) is checked onGur first; by continuity, it is valid everywhere.) This
shows thatF is the map we wanted. �

Corollary. The bijection

G-classes ofGu → G-classes ofgn

given by a Springer isomorphismf is independent of the choice off .

This is easy. One uses the following elementary lemma:

Lemma. LetY ,Z be twoG-spaces. AssumeG has finitely many orbits in each. Let
T be a connected space, andF : T × Y → Z a morphism such that, for everyt ∈ T ,
the mapy �→ F(t, y) is aG-isomorphism ofY onZ.

Then, for everyy ∈ Y , the pointsF(t, y), t ∈ T , belong to the sameG-orbit.

Proof by induction on dimY = dimZ. The statement is clear in dimension zero,
because of the connexity ofT . If dim Y > 0, there are finitely many open orbits in
Y (resp.Z); call Y0 andZ0 their union. It is clear that, for everyt , the isomorphism
Ft : y �→ F(t, y) mapsY0 into Z0. Moreover, the connexity ofT implies that the
Ft ’s map a given connected component ofY0 into the same connected component of
Z0. And the induction hypothesis applies toY Y0 andZ Z0.

The corollary follows from the lemma, applied withT = C(u)r, Y = Gu and
Z = gn.

Note. The structure ofNu/C(u) seems interesting. If I am not mistaken, it is the
semi-direct product ofGm by a unipotent connected groupV of dimension� − 1;
moreover, the action ofGm on LieV has weights equal tok2 − 1, k3 − 1, . . . , k�− 1,
where theki ’s are the exponents of the Weyl group.

Another interesting (and related) question is the behaviour of a Springer isomor-
phismf when one restrictsf toC(u). The tangent map tof is an endomorphism of
c(u) = LieC(u). Is it always a non-zero multiple of the identity?

J.-P. Serre, June 1999
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