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Two theorems on harmonic manifolds

Y. Nikolayevsky∗

Abstract. A Riemannian manifold is calledharmonic, if for any pointx it admits a nonconstant
harmonic function depending only on the distance tox. A.Lichnerowicz conjectured that any
harmonic manifold is two-point homogeneous. This conjecture is proved in dimensionn ≤ 4
and also for some classes of manifolds, but disproved in general, with the first counterexample
of dimension 7. We prove the Lichnerowicz Conjecture in dimension 5: a five-dimensional
harmonic manifold has constant sectional curvature. We also obtain a functional equation for
the volume density functionθ(r) of a harmonic manifold and show thatθ(r) is an exponential
polynomial, a finite linear combination of the terms of the form Re(ceλr rm), with c, λ complex
constants.
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1. Introduction

A Riemannian manifoldM is calledharmonic if for any pointx ∈ M there exists
a nonconstant harmonic function defined on a punctured neighbourhood ofx and
depending only on the distance tox. Equivalently, for any pointx ∈ M the volume
density functionθx = √

detgij (in normal coordinates centered atx) is radial, that is,
depends only on the distance tox; the mean (the scalar) curvature of a small geodesic
sphere depends only on its radius (see [2, Ch. 6; 1], [Ch. 2.6; 12] for other equivalent
definitions).

Two-point homogeneous spaces are harmonic. In 1944, Lichnerowicz conjec-
tured that the converse is true: any harmonic space is two-point homogeneous. This
conjecture is proved in dimension≤ 4 [15], for compact simply connected manifolds
and for Ricci-flat manifolds [13], [14], for negatively curved compact manifolds [3],
and also for some other classes of manifolds. However, in 1992, Damek and Ricci
discovered a class of harmonic non-compact spaces, which are, in general, not sym-
metric, hence disproving the Lichnerowicz Conjecture [4]. For an account of results
on harmonic spaces and Damek–Ricci spaces we refer to [1], [14], [17].

∗Work supported by the ARC grant S6005288.
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The lowest dimension of a non-symmetric Damek–Ricci space is 7, and one might
wonder if the Lichnerowicz Conjecture is true in dimensionn = 5,6. A partial answer
is given by the following theorem:

Theorem 1. A five-dimensional harmonic space has constant curvature.

A similar result, under an assumption of pinched curvature, was obtained in [16].
On a harmonic manifold, the infinite sequence of algebraic conditions, the Ledger

formulae, on the curvature tensor and its covariant derivatives must hold [2, Ch. 6
§C]. The first two of them are

Ric(X,X) = TrRX = C ‖X‖2, Tr(RX)
2 = H ‖X‖4, (1)

whereRX is the Jacobi operator defined byRXY = R(X, Y )X, and the functionsC
andH are constant on the manifold. A Riemannian manifold satisfying (1) is called
2-stein (see, e.g. [6]).

Theorem 1 follows from Proposition 1 below and the fact that harmonic symmetric
spaces are two-point homogeneous [5], [9].

Proposition 1. A five-dimensional 2-stein Riemannian manifold is either of constant
curvature or is locally homothetic to the symmetric space SU(3)/SO(3) or to its
noncompact dual SL(3)/SO(3).

One of the main ingredients of the proof of the Lichnerowich conjecture in the
compact simply-connected case [13] is the fact that the volume density function is
a trigonometric polynomial of a special structure. Moreover, the volume densities
of Damek–Ricci spaces (including non-compact ROSS’s) are polynomials of coshr

and sinhr. We prove the following theorem.

Theorem 2. The volume density function of a harmonic manifold is an exponential
polynomial: a finite linear combination of the terms of the form Re(cieλir rmi ), with
ci, λi complex constants.

This gives a partial answer to the question asked in [14]: what functions may occur
as volume densities of harmonic spaces? Note that, in general, nonisometric harmonic
spaces may have the same volume density function. However, in many cases, the
volume density function determines a harmonic space uniquely: a harmonic space
having the same volume density as that of one of the spacesHn,CHn,HHn, is
isometric to it, provided it is Kähler or quaternionic Kähler in the last two cases,
respectively ([10]; the same is true under weaker assumptions: a manifold is Einstein
and has the same volume growth of geodesic balls as that of the corresponding model
space [7, Sec.8, 9]). A harmonic space with a polynomial volume growth is flat [12].
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Note that Theorem 2 combined with the approach of [11] gives an alternative proof
of the Lichnerowich conjecture in the compact case.

Theorem 2 will follow from the functional equation (2) below.
Let γ (t) be a parameterized geodesic on a Riemannian manifoldM, and denote

x = γ (0), T = γ̇ (0), L = T ⊥ ⊂ TxM. For vectorsX, Y ∈ L, let JX,Y (t) be the
Jacobi field alongγ such thatJX,Y (0) = X and∇T JX,Y = Y . Define the operator
Q(t) : L → L by the formulaJ0,Q(t)X(t) = JX,0(t) for t ∈ (0, t1), wheret1 is
the distance to the first conjugate point onγ . The operatorQ(t) is symmetric, with
the asymptotic expansiont−1 idL−1

3tRT + o(t) at t = 0, whereRT : L → L is
the Jacobi operator. Extending the density functionθ(t) to negative values oft (by
settingθ(−t) = (−1)n−1θ(t) for t > 0) we have the following proposition.

Proposition 2. On a harmonic manifold, for t, s ∈ (0, t1),

det(Q(s)− Q(t)) = θ(t − s)

θ(t)θ(s)
. (2)

The restrictions imposed on the functionθ(t) by (2) are quite strong, though
implicit. For instance, if for a given exponential polynomialθ(t) the equation (2)
has a unique solutionQ(t), then the harmonic space with the density functionθ(t)

is two-point homogeneous (if it exists):

Proposition 3. Let Mn be a harmonic manifold with the volume density function
θ(t). Suppose that the equation (2) for a symmetric operator function Q(t) : R

n−1 →
R
n−1 with an asymptotic expansion t−1 idn−1 +O(t) at 0 has a unique solution up

to a conjugation by a constant orthogonal transformation. Then Mn is two-point
homogeneous.

The paper is organized as follows. In Section 2 we give the proof of Proposition 1
using technical Proposition 4 (moved to Section 4) on the structure of algebraic
curvature tensors satisfying (1). The proof of Theorem 2 and Propositions 2 and 3
are contained in Section 3.

The author is thankful to Prof. L. Vanhecke and to Prof.A. Ranjan for many useful
comments and references.

2. Five-dimensional harmonic spaces. Proof of Proposition 1

We start with an algebraic description of the curvature tensor of a Riemannian mani-
fold M5 satisfying the first two Ledger formulae (1).

An algebraic curvature tensor in a Euclidean space is a (3,1) tensor having the
same symmetries as the curvature tensor of a Riemannian manifold. Given an or-
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thonormal basis{ei}, denoteRijkl = 〈R(ei, ej )ek, el〉 the components of the algebraic
curvature tensorR, and letκij = Rijij .

Proposition 4. Let R be an algebraic curvature tensor in R
5 satisfying (1). Then

there exists an orthonormal basis {ei} such that

κ12 = κ13 = κ23 = κ24 = κ34 = α − γ,

κ25 = κ35 = α − 3γ, κ15 = κ45 = α, κ14 = α − 4γ,

R1234 = γ, R1235 = √
3γ, R1324 = −γ, R1325 = √

3γ,

R1423 = −2γ, R2425 = √
3γ, R3435 = −√

3γ,

(3)

and all the other components of R vanish.

The proof of Proposition 4 (which is somewhat technically involved) is moved to
Section 4. In this section, we prove Proposition 1 assuming Proposition 4.

LetM5 be a Riemannian manifold with the curvature tensor given by (3). Then
C = 4α− 6γ ,H = (C2 )

2 + 9γ 2, and soα andγ must be constant onM5. If γ = 0,
then the sectional curvature ofM5 is constant as follows from (3).

Assume thatγ �= 0. We want to show thatM5 is locally homothetic to
SU(3)/SO(3) or to SL(3)/SO(3). To do that, we first prove thatM5 is locally
symmetric using the second Bianchi identity, and then compare its curvature tensor
with that of SL(3)/SO(3).

Letωi be the 1-forms dual toei , and letψji , �
j
i be the connection and the curvature

forms, respectively:

dωi = −ψij ∧ ωj , dψij = −ψik ∧ ψkj +�ij ,

ψij + ψ
j
i = 0, �ij = −�ji = 1

2Rijklω
k ∧ ωl.

Introduce the 2-forms

	 = −ω1 ∧ ω2 + ω3 ∧ ω4 + √
3ω3 ∧ ω5,


 = ω2 ∧ ω4 + ω1 ∧ ω3 − √
3ω2 ∧ ω5,

� = 4ω1 ∧ ω4 + 2ω2 ∧ ω3,

(4)

and let�ij = 1
γ
(�ij − α ωi ∧ ωj ). Sinceα andγ are constant, the second Bianchi

identityd�ij = �ik ∧ ψkj −�kj ∧ ψik implies

d �ij = �ik ∧ ψkj −�kj ∧ ψik.
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The 2-forms�ij can be found from (3):

�1
2 = 	, �3

4 = −	, �3
5 = −√

3	,

�1
3 = −
, �2

4 = −
, �2
5 = √

3
, (5)

�1
4 = −�, �2

3 = −1
2�, �1

5 = �4
5 = 0.

Differentiating�1
5 = �4

5 = �1
2 +�3

4 = �1
3 −�2

4 = 4�1
2 +�3

4 + √
3�3

5 = 0 we
get, respectively:

	 ∧ (ψ2
5 + √

3ψ1
3)−
 ∧ (ψ3

5 + √
3ψ1

2)− � ∧ ψ4
5 = 0, (6)

	 ∧ (ψ3
5 − √

3ψ3
4)+
 ∧ (ψ2

5 + √
3ψ2

4)+ � ∧ ψ1
5 = 0, (7)

	 ∧ ψ4
5 +
 ∧ ψ1

5 +
√

3
2 � ∧ (ψ2

4 − ψ1
3) = 0, (8)

−	 ∧ ψ1
5 +
 ∧ ψ4

5 +
√

3
2 � ∧ (ψ1

2 + ψ3
4) = 0, (9)


 ∧ (6ψ2
3 − 3ψ1

4 + 5
√

3ψ1
5)+ � ∧ (9

2ψ
2
4 − 3ψ1

3 +
√

3
2 ψ

2
5) = 0. (10)

From (4) we obtain by a straightforward computation:

Lemma 1. If 	 ∧ x +
 ∧ y + � ∧ z = 0 for 1-forms x, y, z, then

x = 2z3ω
1 − z4ω

2 + (2z1 − y2)ω
3 − 2z2ω

4 − 2
√

3z2ω
5,

y = 2z2ω
1 + y2ω

2 + z4ω
3 + 2z3ω

4 − 2
√

3z3ω
5,

z = z1ω
1 + z2ω

2 + z3ω
3 + z4ω

4.

Equations (6, 7) and Lemma 1 imply that theω5-components ofψ1
5 andψ4

5 vanish.
Applying this and Lemma 1 to (8, 9) we find:

ψ1
5 = a ω2 − b ω3, ψ4

5 = b ω2 + a ω3,

ψ2
4 − ψ1

3 = 2√
3
(a ω1 − b ω4), ψ1

2 + ψ3
4 = 2√

3
(b ω1 + a ω4).

(11)

Substitutingψ1
5 andψ4

5 to (6, 7) and using Lemma 1 again we obtain

ψ2
5 + √

3ψ1
3 = −2aω1 + c1ω

3 + 2bω4 + 2
√

3bω5,

ψ3
5 + √

3ψ1
2 = 2bω1 + c1ω

2 + 2aω4 − 2
√

3aω5,

ψ3
5 − √

3ψ3
4 = −2bω1 + c2ω

3 − 2aω4 − 2
√

3aω5,

ψ2
5 + √

3ψ2
4 = 2aω1 − c2ω

2 − 2bω4 + 2
√

3bω5.

Subtracting the third equation from the second one and substituting the expression
for ψ1

2 + ψ3
4 from (11) we find thata = b = c1 = c2 = 0, and so

ψ1
5 = ψ4

5 = ψ2
4 − ψ1

3 = ψ1
2 + ψ3

4 = ψ2
5 + √

3ψ1
3 = ψ3

5 + √
3ψ1

2 = 0.
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It now follows from (10) that 2ψ2
3 = ψ1

4. Thus there exist 1-formsτ, η, σ such that
the connection forms are

ψ1
3 = ψ2

4 = τ, ψ2
5 = −√

3τ, ψ1
2 = −η, ψ3

4 = η, ψ3
5 = √

3η,

ψ2
3 = σ, ψ1

4 = 2σ, ψ1
5 = ψ4

5 = 0.
(12)

Then we have 0= d(ψ1
2 +ψ3

4) = −ψ1
k ∧ψk2 +�1

2 −ψ3
k ∧ψk4 +�3

4 = �1
2 +�3

4 =
γ (�1

2 +�3
4)+ α(ω1 ∧ ω2 + ω3 ∧ ω4), and soα = 0 by (5).

Then by (3) the nonzero components of the curvature tensor are

R1212 = −γ, R1234 = γ, R1235 = √
3γ, R1324 = −γ, R1313 = −γ,

R1325 = √
3γ, R1414 = −4γ, R1423 = −2γ, R2323 = −γ, R2424 = −γ, (13)

R2425 = √
3γ, R2525 = −3γ, R3434 = −γ, R3435 = −√

3γ, R3535 = −3γ.

Using (12, 13) we find that the covariant derivative ofR given by

Rijkl,hω
h = dRijkl − Rijksψ

s
l − Rijslψ

s
k − Risklψ

s
j − Rsjklψ

s
i

vanishes, and so the Riemannian spaceM5 is locally symmetric.
Consulting the list of symmetric spaces [8] we find that the only possible candi-

dates forM5 are SU(3)/SO(3), or its noncompact dual SL(3)/SO(3). This is indeed
the case: the tangent spacem to SL(3)/SO(3) at the origin can be identified with a
Lie triple system of 3× 3 real traceless symmetric matrices. The inner product and
the curvature tensor are given by

〈X, Y 〉 = Tr(XY), R(X, Y )Z = −[[X, Y ], Z], X, Y, Z ∈ m.

Then, with respect to the orthonormal basis

e1 = 1√
2


0 1 0

1 0 0
0 0 0


 e2 = 1√

2


0 0 1

0 0 0
1 0 0


 e3 = 1√

2


0 0 0

0 0 1
0 1 0




e4 = 1√
2


−1 0 0

0 1 0
0 0 0


 e5 = 1√

6


1 0 0

0 1 0
0 0 −2




the components of the curvature tensor of SL(3)/SO(3) are proportional to those
given by (13). �

3. The volume density function and the matrix equation

In this section, we prove Theorem 2 and Propositions 2 and 3.



Vol. 80 (2005) Two theorems on harmonic manifolds 35

Let γ = γ (t) be a geodesic on a Riemannian manifoldMn, with t an arclength
parameter,γ (0) = x, γ̇ (0) = T ∈ TxM

n. Let γ (t1), t1 > 0 be the first point
conjugate tox alongγ .

For everyt ∈ (0, t1) we define the operatorQ(t) : L → L, L = T ⊥ putting
Q(t)X = Z, if J0,Z(t) = JX,0(t), whereJX,Y is the Jacobi field alongγ such that
JX,Y (0) = X, J ′

X,Y (0) = Y , prime stands for the covariant derivative alongγ .
The operatorQ(t) is symmetric. Indeed, fort0 ∈ (0, t1) andX, Y ∈ L, let

J1 = J0,Q(t0)X, J2 = JX,0, J3 = J0,Q(t0)Y , J4 = JY,0 be the corresponding Jacobi
fields. DenoteU = J1(t0) = J2(t0), V = J3(t0) = J4(t0). Since for any two Jacobi
fieldsI andJ along a geodesic, the function〈I ′, J 〉 − 〈I, J ′〉 is constant, we obtain
at the pointt0:

〈J ′
1, V 〉 − 〈J ′

3, U〉 = 〈J ′
2, V 〉 − 〈J ′

4, U〉 = 0,

〈J ′
1, V 〉 − 〈J ′

4, U〉 = 〈Q(t0)X, Y 〉, 〈J ′
2, V 〉 − 〈J ′

3, U〉 = −〈Q(t0)Y,X〉,
and the claim follows.

Fix an orientation on a neighbourhood ofγ|(0,t1). Choose orthonormal vector fields
{e1, . . . , en−1, en = γ̇ (t)} parallel alongγ and forming a positively oriented basis.
DenoteR(t) = (Rij (t)), i, j = 1, . . . , n − 1 the matrix of the Jacobi operator with
respect to the basis{e1, . . . , en−1}. LetAs(t) be an(n−1)×(n−1)-matrix satisfying
the Jacobi equation̈As(t) + R(t)As(t) = 0 alongγ , with the initial conditions
As(s) = 0, Ȧs(s) = In−1, the identity matrix, anḋ = d/dt . Denoteθs(t) =
detAs(t), s, t ∈ R.

If the spaceMn is harmonic, then for any choice ofγ ands, θs(t) = θ(t − s)

[2, Ch. 6]. The volume density functionθ(t) is analytic andθ(−t) = (−1)n−1θ(t).

Proof of Proposition 2. LetA(t), B(t) be two matrix solutions of the Jacobi equation
such thatA(0) = Ḃ(0) = 0,Ȧ(0) = B(0) = In. Then the matrix of the operatorQ(t)

isQ(t) = A−1(t)B(t), and we haveAs(t) = A(t)(Q(s)−Q(t))M(s), whereM(s) =
(Ȧ(s)A−1(s)B(s) − Ḃ(s))−1, for s, t ∈ (0, t1). Indeed, the matrixA(t)(Q(s) −
Q(t))M(s) = A(t)(Q(s)M(s))−B(t)M(s) satisfies the Jacobi equationd

2

dt2
As(t)+

R(t)As(t) = 0, it vanishes att = s, and d
dt
(A(t)(Q(s) −Q(t))M(s))|t=s = In−1.

We have det(MA−1t ) = det(At ȦA−1B − AtḂ)−1 = 1, sinceAtȦ − ȦtA = 0
andAtḂ − ȦtB = −In. Hence detM(s) = θ(s), and soθ(s − t) = detAs(t) =
θ(t)θ(s)det(Q(s)−Q(t)). �

Remark 1. We can give another interpretation to (2). DenotePt0 : Tγ (t)Mn →
TxM

n the parallel translation alongγ , and for everyt ∈ R define a linear map
F(t) : L ⊕ L → L by F(t)(X, Y ) = Pt0JX,Y (t). Denoteω(t) a volume form on
F ∗(t)(L∗). Thenω(t) is a curve on the GrassmannianG(n−1,2n−2) ⊂ �n(L⊕L)∗,
and (2) has the form:

ω(s) ∧ ω(t) = θ(t − s) ∗ 1 (14)
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for all t, s ∈ R. The proof follows from the fact that

det

(
A(s) B(s)

A(t) B(t)

)
= detA(s)detA(t)det(Q(s)−Q(t)) = θ(t − s),

by (2), withA andB as in the proof of Proposition 2.
One might compare (14) to the fact that for a Nice Embedding	 of a harmonic

manifold [2], [13], [14], the equation〈	(γ (t)),	(γ (s))〉 = �(t − s) holds, with
some function�, along every geodesicγ .

Proof of Theorem 2. Let t, s ∈ (0, t1). Multiplying (2) by θ(t)θ(s) and expanding
the determinant on the left hand side, we obtainθ(t − s) = ∑

α fα(t)gα(s), with
functionsfα, gα being linear combinations of minors of the matrixQ multiplied by
θ . Taking appropriate linear combinations, we can assume that both sets of functions
{fα} and{gα} are linearly independent overR. LetN = rk{fα} = rk{gα}. We have
0 = (∂/∂t + ∂/∂s)θ(t − s) = ∑

α(ḟα(t)gα(s) + fα(t)ġα(s)). So there exists an
N ×N constant matrixC such thatḟ = Cf , ġ = −Ctg, wheref = (f1, . . . , fN)

t ,
g = (g1, . . . , gN)

t . Thusf (t) = eCtu, g(s) = (e−Cs)tv for some constant vectors
u, v ∈ R

N . Thenθ(t − s) = 〈f (t), g(s)〉 = 〈eCtu, (e−Cs)tv〉 = 〈eC(t−s)u, v〉, that
is, θ(x) = 〈eCxu, v〉, with some constant matrixC and constant vectorsu, v. �

Remark 2. As it follows from the proof, the number of monomials of the exponential
polynomialθ is not greater than

((2n
n

) + 2n
)
/2.

Proof of Proposition 3. Let γ (t), γ̃ (t) be two geodesics onMn. We equip all the
objects related tõγ (t) with the tilde. Construct the operatorsQ(t), Q̃(t) for γ (t)
andγ̃ (t) respectively. By assumption, we can choose orthonormal bases atTγ (0)M

n

andTγ̃ (0)Mn such thatQ(t) = Q̃(t).
Introduce the matricesA andB as in the proof of Proposition 2. ThenQ = A−1B

andBtḂ − ḂtB = 0, AtḂ − ȦtB = −I , and a direct computation shows that
(Q−1(t))̇ = (B(t)tB(t))−1.

It follows thatB̃(t) = V (t)B(t) with V (t) an orthogonal matrix function. Since

B̃t
˙̃
B − ˙̃

BtB̃ = BtḂ − ḂtB = 0, the matrixV (t) must be constant. Thus̃R(t) =
VR(t)V −1 for some constant orthogonal matrixV .

So, for any two geodesicsγ (t) and γ̃ (t), we can choose parallel orthonormal
bases such that̃R(t) = R(t). In particular, for any pointx ∈ Mn and unit vec-
torsX, Y ∈ TxM

n, the operators((∇XR)(X, . )X)|X⊥ and((∇YR)(Y, . )Y )|Y⊥ are
equal, up to an orthogonal conjugation. By [14, Lemma 1.1] applied to the operator
((∇XR)(X, . )X)|X⊥ , we get∇R = 0 and the claim follows. �

Example 1. If Mn is two-point homogeneous, then the operatorQ(t) is diagonaliz-
able, with diagonal entries of the formλ cot(λt), λ coth(λt) or t−1 depending on the
curvature.
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Example 2. In this example, we use the results and notation of [1, Ch. 4].
LetM4n+3 = n⊕ z⊕a be a Damek–Ricci space with dimz = 2, and letγ (t) be a

generic geodesic starting at the origin. Identifying tangent spacesTγ (t)M alongγ (t)
via left translation, we havėγ (t) = V (t)+Y (t)+ s(t)A, withV = V (0), Y (0) = Y ,
s(0) = s nonzero, andTγ (t)M = s4 ⊕ p⊕ q. This decomposition is orthogonal, with
subspacess4, p andq beingR(t)-invariant and parallel alongγ , sinceγ̇ (t) ∈ s4 and
the two-dimensional subspaceb = Span(V (t), JY(t)V (t)) does not depend ont .

Now s4 is tangent to a totally geodesicCH 2 ⊂ M, andR(t)|p = −1
4 id|p. Hence

Q(t) is diagonalizable on the 4n − 1-dimensional space(s4 ⊕ p) ∩ γ̇ (t)⊥, with
diagonal entries coth(t) of multiplicity one and1

2 coth(t/2) of multiplicity 4n− 2.
The behavior ofQ(t) is more complicated on the three-dimensional spaceq.

First find six Jacobi fields alongγ lying in q. Denoteα = s + i‖Y‖ and introduce a
complex functionφ(t) = α sinh(t/2)− cosh(t/2) and a real functionf (t) = φφ =
(s sinh(t/2)− cosh(t/2))2 +‖Y‖2 sinh2(t/2) (note thatf (t) = 1/h(t), the function
h(t) defined in 4.1.11 of [1]). LetX ∈ z be a unit vector orthogonal toY . Then the
vector fieldf (t)X is Jacobi, which can be checked directly.

Taking this into account we can rewrite the Jacobi equation for a vector field
U(t)+ g(t)X ⊂ q as follows:

Ü − JY(t)U̇ + ḟ
2f JY(t)U − 1

4(1 + ‖Y (t)‖2)U + c
f
JXV (t) = 0,

gḟ − f ġ + f 〈JXU, V (t)〉 = c

for some constantc. DenoteW(t) = JXU(t), J = ‖Y (t)‖−1JY(t). ThenW(t) is
in b, andJ : b → b is a skew-symmetric orthogonal operator. Introduce complex
valued functionsw(t) = (〈W(t), V 〉 + i〈W(t), JV 〉)/‖V ‖, v(t) = (〈V (t), V 〉 +
i〈V (t), JV 〉)/‖V ‖. The Jacobi equation now has the form

ẅ − i‖Y‖f−1ẇ − 1
4(1 + ‖Y‖2f−2 − 2i‖Y‖ḟ f−2)w − cf−1v = 0,

gḟ − f ġ + f Re(wv) = c,

and its general solution is given by

w = f−1/2(Aφ2 + Bφ
2 + Cφφ),

g = 2A‖V ‖−1 cosh(t/2)Re((α − α−1)φ)− 2‖V ‖ cosh(t/2)Re(Cφ/α)

− 2‖V ‖f cosh(t/2)((1 − ‖V ‖2) sinh(t/2)− s cosh(t/2))Re(Bφ−2α−2),

with constantsA ∈ R, B,C ∈ C and c = −2A‖Y‖2/‖V ‖. This gives explicit
formulae for Jacobi fields.

The matrix of the operatorQ(t)|q in the orthonormal basise1 = JXV/‖V ‖,
e2 = −JXJV/‖V ‖, e3 = X has the formf (t)−3

(
V (t)t Q̂(t)V (t)

)
, whereQ̂(t) is a
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3 × 3 symmetric matrix with entries

Q̂11 = (‖V ‖2 tanh(t/2)+ coth(t/2))/2, Q̂12 = 0, Q̂22 = 2 coth(t/2),

Q̂13 = −‖V ‖ tanh(t/2)((1 − ‖V ‖2) sinh(t/2)− s cosh(t/2)),

Q̂23 = ‖Y‖ ‖V ‖ sinh(t/2)/2, Q̂33 = f (t)((1 − ‖V ‖2) tanh(t/2)+ coth(t/2))/2,

and

V (t) =

s sinh(t/2)− cosh(t/2) ‖Y‖ sinh(t/2) 0

−‖Y‖ sinh(t/2) s sinh(t/2)− cosh(t/2) 0
0 0 1


 .

So the matrix equation (2), with the functionθ(t) = 4 sinh2(t/2) sinh(t), has a
continuous family of solutions of the form given above.

4. Proof of Proposition 4

We prove Proposition 4 by explicitly solving the equations (1), the first two Ledger
conditions. First, in Lemma 2, we construct a specific orthonormal basis forR

5,
in which the algebraic curvature tensorR has a simple structure. Then, with some
computations, we find thatR have the required form (3). Note that the constant
curvature tensor is a particular case of (3), whenγ = 0.

For an orthonormal basis{ei} for R
5, denoteRijkl = 〈R(ei, ej )ek, el〉 the com-

ponents of the algebraic curvature tensor. Letκ(σ ) be the sectional curvature of a
two-planeσ , in particular, denoteκij = κji = Rijij the sectional curvature of the
two-plane spanned by vectorsei, ej . It will be convenient to setκii = 0.

The equations (1) have the following form [2, equation (6.50)]:

Ricij = ∑
p Ripjp = C δij , 1 ≤ i, j ≤ 5 (15)

Symijkl
(∑

pq RipjqRkplq
) = H Symijkl(δij δkl), 1 ≤ i, j, k, l ≤ 5, (16)

whereδij is the Kronecker delta, all the summations are from 1 to 5, and Sym denotes
the sum by all permutations of the subscriptsi, j, k, l. Expanding the equation (16)
we find

∑
pq R

2
ipiq = H, (17)∑

pq RipiqRipjq = 0, (18)∑
pq(RipiqRjpjq + R2

ipjq + RipjqRjpiq) = H, (19)∑
pq(RipiqRjpkq + RipjqRipkq + RipjqRkpiq) = 0, (20)

Symjkl
(∑

pq RipjqRkplq
) = 0, (21)
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wherei, j , k, l are pairwise nonequal.
We will use the following index convention throughout this section:

1 ≤ i, j, k, l, p, q ≤ 5, 2 ≤ a, b, c, d, f, g ≤ 5,

unless the bounds are explicitly indicated.
The sectional curvatureκ = κ(σ ) is a differentiable function on the Grassmannian

G(2,5) of two-planes inR5. We call a two-planeσ ∈ R
5 critical if it is a critical

point for κ. It is easy to see thatσ = Span(U, V ), U,V ∈ R
5 is critical if and only

if R(U, V,U,W) = R(U, V, V,W) = 0 for anyW ∈ σ⊥.

Lemma 2. There exists an orthonormal basis {ei} for R
5 such that every two-plane

Span(e1, ea) is critical, or equivalently

R1a1b = R1aba = 0, b �= 1, a. (22)

Proof. To construct the required basis we take a critical two-planeσ and choose an
orthonormal basise1, e2 in it. Then the subspaceL = σ⊥ is an invariant subspace
of the Jacobi operatorRe1. Choosinge3, e4, e5 to be orthonormal eigenvectors of the
restriction ofRe1 toL we obtain

R121a = R12a2 = R1a1b = 0, 3 ≤ a �= b ≤ 5. (23)

Then using (15, 16) we show that the basise1, e2 in σ can be chosen in such a
way that all the remaining componentsR1aba = 0, a �= b also vanish, so that (22) is
satisfied.

From (15) Ric1a = Ric2a = 0 for a = 3,4,5, and Ric12 = 0. Using (23) we find

R1434+ R1535 = R1343+ R1545 = R1353+ R1454 = 0,

R2434+ R2535 = R2343+ R2545 = R2353+ R2454 = 0,

R1323+ R1424+ R1525 = 0.

(24)

Let λ1, λ2, λ3 be the eigenvalues ofRe1|L corresponding to the eigenvectorse3,
e4, e5, respectively. ThenR1a1b = λa−2δab, a, b = 3,4,5, and (18) withi = 1,
j = 3,4,5,2 gives, respectively,

λ2R1434+ λ3R1535 = λ1R1343+ λ3R1545 = λ1R1353+ λ2R1454 = 0,

λ1R1323+ λ2R1424+ λ3R1525 = 0.
(25)

The equations (23, 24, 25) do not yet imply (22): we need to choose a specific
basise1, e2 in σ .

For a fixed orthonormal basisE1, E2 in σ , let X(φ) = cosφE1 + sinφE2,
φ ∈ [0,2π). Since the two-planeσ is critical, bothX(φ) andX(φ + π/2) are



40 Y. Nikolayevsky CMH

eigenvectors of the Jacobi operatorRX(φ), with eigenvalues 0 andκ(σ ), respectively.
Therefore, their spanσ and its orthogonal complementL are invariant subspaces of
RX(φ), for anyφ. Hence we can define a symmetric operatorM(φ) : L → L, the
restriction ofRX(φ) toL. It then follows from (1) that for allφ ∈ [0,2π)

TrM(φ) = C̃ = C − κ(σ ), TrM2(φ) = H̃ = H − κ(σ )2. (26)

Explicitly, for U ∈ L
M(φ)U = cos2 φ RE1U + sin2 φ RE2U

+ cosφ sinφ (R(E1, U)E2 + R(E2, U)E1).
(27)

We have several cases depending on the eigenvalues ofM(φ).

Case 1. There exists φ such that all the eigenvalues ofM(φ) are equal. Then by (26),
C̃2 = 3H̃ and so the operatorM(φ) is scalar:M(φ) = 1

3 C̃ idL. By (27), for all
U ∈ L, R(E1, U,E2, U) = 0, sinceRE1U = M(0)U = 1

3 C̃U andRE2U =
M(π/2)U = 1

3 C̃U . It follows that for e1 = E1, e2 = E2 and any orthonormal
vectorse3, e4, e5 ∈ L, R1a2a = 0 whena = 3,4,5.

Introduce a linear operatorN : L → LbyN U = R(Y, V )E1, whereY,U, V ∈ L
andU = Y × V , the cross product in the three-dimensional spaceL. The operator
N is well-defined and symmetric. Indeed, letY andZ be two orthonormal vectors
in L andU = Y ×Z. ThenZ = U × Y, Y = Z ×U and so〈NZ, Y 〉 − 〈NY,Z〉 =
R(U, Y,E1, Y )+ R(U,Z,E1, Z) = Ric(U,E1) = 0.

Let e3, e4, e5 ∈ L be orthonormal eigenvectors of the operatorN . ThenR1aba =
〈N(eb × ea), ea〉 = 0 for all 3 ≤ a �= b ≤ 5.

Combining this with (23) we find that (22) is satisfied, hence all the two-planes
Span(e1, ea) are critical.

Since the operatorM(φ) is symmetric and analytic, its eigenvalues are ana-
lytic functions ofφ. If λ(φ) is an eigenvalue ofM(φ), which is simple atφ =
φ0, then the corresponding unit eigenvectorU(φ) is also analytic in a neighbour-
hood ofφ0, andλ′(φ0) = d

dφ
〈M(φ)U(φ), U(φ)〉|φ=φ0 = 〈M ′(φ0)U(φ0), U(φ0)〉 +

2λ(φ0)〈U ′(φ0), U(φ0)〉 = 〈M ′(φ0)U(φ0), U(φ0)〉.
We callφ0 a critical angle if it is critical for the function detM(φ).
Modulo Case 1, one of the following two cases may occur.

Case 2. There exists a critical angle φ0 such that λ1(φ0), λ2(φ0), λ3(φ0) are pairwise
nonequal. From (26) we have

(λ1(φ)+λ2(φ)+λ3(φ))
′ = (λ2

1(φ)+λ2
2(φ)+λ2

3(φ))
′ = (λ1(φ)λ2(φ)λ3(φ))

′|φ=φ0
= 0.

This gives a system of linear equations forλ′
i (φ0), which impliesλ′

i (φ0) = 0, since
λi(φ0) are pairwise nonequal. Then〈M ′(φ0)Ui, Ui〉 = 0, whereUi is a unit eigen-
vector ofM(φ0) corresponding to the eigenvalueλi(φ0), i = 1,2,3.
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Definee1 = X(φ0), e2 = X(φ0 +π/2) andei+2 = Ui , i = 1,2,3. Then by (27)
R1a2a = 1

2〈M ′(φ0)ea, ea〉 = 0 for a = 3,4,5.
Also,R1434 = R1535 = R1545 = R1343 = R1353 = R1454 = 0 by (24, 25).
Thus all the equations (22) are satisfied.

Case 3. For any critical angle φ0, two of the three eigenvalues λi(φ0) are equal. Let
φ0 be a critical angle, and let the eigenvaluesλi = λi(φ0) be labelled in such a way
thatλ1 �= λ2 = λ3.

Choosee1 = X(φ0), e2 = X(φ0+π/2), ande3, e4, e5 orthonormal eigenvectors
of M(φ0), with e3 corresponding toλ1 (e4, e5 can be chosen up to a rotation in the
λ2-eigenspace ofM(φ0)).

As in Case 2, we findλ′
1(φ0) = 0. Then by (27)R1323 = 1

2〈M ′(φ0)e3, e3〉 = 0.
From the equations (24, 25) we obtainR1343 = R1353 = R1545 = R1454 = 0.

Combining this with (23) we find that the two-planeσ ′ = Span(e1, e3) must be
critical, while the two-planes Span(e1, e4) and Span(e1, e5) are critical ifR1424 =
R1434 = 0 andR1525 = R1535 = 0, respectively.

From (26),λ1 + 2λ2 = C̃, λ2
1 + 2λ2

2 = H̃ . So for every critical angleφ0, the

eigenvalues ofM(φ0) are{λε1, λε2, λε2}, ε = ±, whereλ±
1 = 1

3(C̃ ∓
√

6H̃ − 2C̃2),

λ±
2 = 1

6(2C̃ ±
√

6H̃ − 2C̃2). They correspond to the global extrema of detM(φ)

subject to equations (26).
We have two possibilities:

(1) the operatorM(φ) has the same set of eigenvalues (sayλ+
1 , λ

+
2 , λ

+
2 ) for all critical

anglesφ;
(2) there exist two critical angles,φ+ andφ− such that the eigenvalues ofM(φε) are

λε1, λ
ε
2, λ

ε
2, ε = ±, respectively.

Consider them separately.
(1) The only critical values of the function detM(φ) areλ+

1 (λ
+
2 )

2, the global
maxima. Then detM(φ) is constant and the eigenvalues ofM(φ) are also constant:
λ+

1 , λ
+
2 , λ

+
2 . It follows that the operator̂M(φ) : L → L defined byM̂(φ) = M(φ)−

λ+
2 idL has eigenvaluesλ+

1 − λ+
2 ,0,0 for all φ, and in particular, rkM̂(φ) = 1. By

(27), the matrix ofM̂(φ) in the basis{ei} has the form

M̂(φ)ab = (λ+
1 − λ+

2 )δa3δb3 cos2 φ

+ (
R1a2b + R1b2a

)
cosφ sinφ + (

R2a2b − λ+
2 δab

)
sin2 φ,

where 3≤ a, b ≤ 5. Equating the coefficients of cos3φ sinφ in 2 × 2-minors to
zero, we find

R1424 = R1425+ R1524 = R1525 = 0. (28)

It remains to show thatR1434 = R1535 = 0. The equations (28) are still true, if we
replace the vectorse4, e5 by e4(α) = cosαe4+sinαe5, e5(α) = − sinα e4+cosαe5
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lying in theλ+
2 -eigenspace of the operatorM(φ0). ThenR(e1, e4(α), e3, e4(α)) =

cos 2α R1434 + sin 2α (R1435 + R1534)/2, and we can chooseα in such a way
that R(e1, e4(α), e3, e4(α)) = 0. From the first equation of (24) it follows that
R(e1, e5(α), e3, e5(α)) = 0. Hencee1, e2, e3, e4(α), e5(α) is the sought basis.

(2) Since all the other possibilities are already considered, we can assume that for
any initial choice of a critical two-planeσ , there exist two critical angles,φ+ andφ−
such that the eigenvalues of the operatorM(φε) areλε1, λ

ε
2, λε2, ε = ±, respectively.

From the above, we know that ifeε3 is a unit eigenvector ofM(φε) corresponding to
the eigenvalueλε1, then both two-planesσ ε = Span(X(φε), eε3), ε = ±, are critical.
Moreover, from (26)λε1 + 2λε2 = C̃, (λε1)

2 + 2(λε2)
2 = H̃ and soλ+

1 + λ−
1 = 2

3C̃ =
2
3(C − κ(σ )). Sinceλε1 = 〈M(φε)eε3, eε3〉 = R(X(φε), eε3, X(φ

ε), eε3) = κ(σ ε), we
find that for every critical two-planeσ there exist two critical two-planes,σ+, σ−
crossingσ by a line and such thatκ(σ+)+ κ(σ−) = 2

3(C − κ(σ )).

We say that two critical two-planes(σ1, σ2), with sectional curvaturesκ(σ1) =
x, κ(σ2) = y, form acritical pair, if they intersect by a line, and for a unit vectorX
on that line, the eigenvalues of the operator(RX)|X⊥ arex, y, z, z.

For any critical two-planeσ , the pairs(σ, σ+) and(σ, σ−) are critical with sec-
tional curvatures(κ(σ ), λ+

1 ) and(κ(σ ), λ−
1 ), respectively. Moreover, for any critical

pair (σ1, σ2) with sectional curvatures(x, y), there exists another critical pair with
sectional curvatures(x, ỹ), whereỹ = 2

3(C − x) − y. Indeed, choose an orthonor-
mal basis forR5 in such a way thatσ1 = Span(e1, e2), σ2 = Span(e1, e3). De-
note x = κ(σ1), y = κ(σ2), z, z the eigenvalues of the operator(Re1)|e⊥1 . For

every φ, the subspaceL = σ⊥
1 is an invariant subspace of the Jacobi operator

RX(φ), with X(φ) = cosφe1 + sinφe2. Define the operatorM(φ) : L → L by
M(φ) = (RX(φ))|L. Since TrM(φ) and TrM2(φ) are constant and the eigenvalues
ofM(0) = (Re1)|L arey, z, z, the function detM(φ) has a global extremum atφ = 0,
and so the angleφ = 0 must be critical for detM(φ). Then there exists another crit-
ical angleφ̃ such that the eigenvalues ofM(φ̃) areỹ, z̃, z̃, with y + ỹ = 2

3(C − x).
Moreover, for a unit eigenvector̃e3 of M(φ̃) corresponding to the eigenvalueỹ, the
two-planes̃ = Span(X(φ̃), ẽ3) is critical. This gives another critical pair(σ1, σ̃ ),
with sectional curvatures(x, 2

3(C − x)− y).

If (σ1, σ2) is a critical pair with sectional curvatures(x, y), then the pair(σ2, σ1) is
also critical, with sectional curvatures(y, x). It follows that starting with a critical pair
with sectional curvatures(x, y)we can successively construct a critical pair with sec-
tional curvatures(x, ỹ), ỹ = 2

3(C−x)−y, then a critical pair with sectional curvatures
(ỹ, x), then a critical pair with sectional curvatures(ỹ, x̃), x̃ = 2

3(C− ỹ)− x, and fi-
nally a critical pair with sectional curvatures(x̃, ỹ) = (−5

9x+ 2
3y+ 2

9C,
2
3C− 2

3x−y).
If (σ1, σ2) is a critical pair andX is a unit vector inσ1 ∩ σ2, then the numbersx,

y, z, z, the eigenvalues of(RX)|X⊥ , must satisfy the equationsx + y + 2z = C,
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x2 + y2 + 2z2 = H by (1). So the point(x, y) lies on the ellipse

3x2 + 3y2 + 2xy − 2C(x + y)+ (C2 − 2H) = 0, (29)

in thexy-plane, and for some angleψ we have

x =
√

4H−C2

4 (cosψ + √
2 sinψ)+ C

4 , y =
√

4H−C2

4 (cosψ − √
2 sinψ)+ C

4 .

The transformation(x, y) → (x̃, ỹ) = (−5
9x+ 2

3y+ 2
9C,

2
3C− 2

3x−y) corresponds

to the shiftψ → ψ + α, with eiα = −7
9 + 4

√
2

9 i. This number is not a root of 1.
Indeed, for anym ∈ N, emiα = 9−m(−am + √

2bmi), with am ≡ bm ≡ 1 (mod 3),
which can be easily proved by induction. So the set of pairs(x, y), the sectional
curvatures of critical pairs of two-planes, is dense on the ellipse (29). Then by
compactness, for any two numbers(x, y) satisfying (29) there exists a critical pair
having sectional curvatures(x, y). In particular, there exists a critical pair(σ1, σ2)

with x = κ(σ1) = 1
4C ± 1

2

√
12H − 3C2. Then, for a unit vectorX ∈ σ1 ∩ σ2, the

operator(RX)|σ⊥
1

has an eigenvalue with multiplicity three, and we come to Case 1
with σ = σ1. �

From now on, we fix the basis{ei} constructed in Lemma 2. In this basis, the
equations (22) hold, and we also have a symmetry with respect to permutations of
{e2, e3, e4, e5}.

Introduce two 4× 4-matrices,T = (tab ) andP = (Pab) with entries

taa = 0, tab = R1cbd + R1dbc, Paa = 0, Pab = Racad,

where{a, b, c, d} = {2,3,4,5}. We have, for anya,
∑5
f=2 t

a
f = 0 (30)

from the symmetries of the curvature tensor. Moreover,Pab + Pba = Riccd = 0 by
(15), soP is skew-symmetric.

Lemma 3. If T = 0, then the sectional curvature is constant.

Proof. Let T = 0. ThenR1abc = 0 for all a, b, c ≥ 2. Indeed, ifa = c this follows
from (22). Fora, b, c pairwise nonequal, we haveR1abc = 1

3(t
d
b − tdc ) by the first

Bianchi identity.
FromR1abc = 0, a, b, c ≥ 2 and (22) we find that the equations (17) withi = 1

and (19) withi = 1, j = a have the form
∑5
f=2 κ

2
1f = H,

∑
f �=a κ1f κaf + κ2

1a = H,

respectively. Summing up the second equation bya from 2 to 5 and using the first
equation and the fact that

∑5
i=1 κij = Ricjj = C we obtainC2 = 4H .
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It follows from (1) that for anyX ∈ R
5, (TrRX)2 = 4 Tr(R2

X). Hence(RX)|X⊥ =
C
4 ‖X‖2 id|X⊥ , that is,R(X,U)X = C

4 ‖X‖2U whenU ⊥ X, and so the sectional
curvature is constant. �

Lemma 4. R2345 = R2453 = R2534 = 0.

Proof. Using (22) we obtain from (18) withj = 1, i = a > 1:
∑5
f=2Paf t

f
a = 0. (31)

The equation (20) withj = 1, i = a, k = b takes the form

Pabt
a
b −Pbdtda −Pbctca + tba (Racbd +Radbc) = 0, {a, b, c, d} = {2,3,4,5}. (32)

Introduce the numbersµi as follows:

µ0 = R2354+ R2453, µ1 = R3254+ R3452, µ2 = R4352+ R4253.

We haveRacbd + Radbc = µ|a+b−7| with {a, b, c, d} = {2,3,4,5}, andµ0 + µ1 +
µ2 = 0. SincePbb = taa = 0, both (31) and (32) can be written in the form

∑5
f=2Pbf t

f
a = Pabt

a
b + µ|a+b−7|tba , a, b ≥ 2. (33)

Taking the sum bya from 2 to 5 and applying (30) on the left hand side and (31) on
the right hand side we come to

∑5
a=2µ|a+b−7|tba = 0, for all b ≥ 2. Using (30) and

the fact thattaa = 0, we solve fortba getting

tba = qb(µ|b+d−7| − µ|b+c−7|) = 3qbRbacd (34)

for some numbersq2, q3, q4, q5, where the permutation(b, a, c, d) → (2,3,4,5) is
even (the last equation follows fromµ|b+d−7| = Rbadc +Rbcda and the first Bianchi
identity).

Interchangea andb in (33) and subtract (31). Sincetbb = 0 and the matrixP is
skew-symmetric, we getPac(tcb − tca )+Pad(t

d
b − tda ) = µ|a+b−7|tab , with the indices

c, d chosen in such a way that the permutation(b, a, c, d) → (2,3,4,5) is even.
Substituting (34) we obtain 3Pacqc(Rcbad − Rcadb) + 3Padqd(Rdbca − Rdabc) =
µ|a+b−7|tab . ButRcbad −Rcadb = −Rbcad −Rbdac = −µ|a+b−7|,Rdbca −Rdabc =
Racbd + Radbc = µ|a+b−7|, and so

(3Pacq
c − 3Padq

d + tab )µ|a+b−7| = 0, (b, a, c, d) an even permutation.

Now if µ|a+b−7|(= µ|c+d−7|) �= 0, then

tab = 3Padq
d − 3Pacq

c, tba = 3Pbcq
c − 3Pbdq

d,

tcd = 3Pcbq
b − 3Pcaq

a, tdc = 3Pdaq
a − 3Pdbq

b,
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with the last three equations obtained by replacing the pair(a, b) by (b, a), (c, d),
(d, c), respectively, and taking into account the evenness of(b, a, c, d). Multiplying
these equations byqa, qb, qc, qd , respectively, and adding up, we getqatab + qbtba +
qctcd + qdtdc = 0, sinceP is skew-symmetric. By (34) this implies

((qa)2 + (qb)2 + (qc)2 + (qd)2)Rbacd = 0.

If Rbacd �= 0, thenT = 0 by (34) and the claim follows from Lemma 3. Assuming
T �= 0 we get that for any paira �= b from {2,3,4,5} eitherRacbd + Radbc =
µ|a+b−7| = 0, or Rbacd = 0. From this and the first Bianchi identity we obtain
R2345 = R2453 = R2534 = 0. �

Using the result of Lemma 4, the equations (22) and the definition of thetba ’s and
Pab’s we can simplify some of the equations (17)–(21): the equations (17) withi = 1,
(17) with i = a, (19) with i = 1, j = a, (19) with i = a, j = b, (18) with i = c,
j = b, and (20) withi = 1, j = a, k = b have the following form, respectively:∑

p κ
2
1p = H, (35)∑

p κ
2
ap + 2

∑
f P

2
af = H, (36)∑

p κ1pκap + κ2
1a + ∑

f (t
f
a )

2 = H, (37)∑
p κapκbp + κ2

ab + ∑
f<g P

2
fg + 3(P 2

cd − P 2
ab)+ (tdc )

2 + (tcd )
2 = H, (38)

Pad(κac − κcd)− PcdPbd − PcaPba = 0, (39)

Pcd(κ1c − κ1d)+ tab t
b
a = 0, (40)

where{a, b, c, d} = {2,3,4,5}.
Lemma 5. If P = 0, then the sectional curvature is constant.

Proof. From (40) we gettab t
b
a = 0 for all a, b ≥ 2. This, together with (30), implies

that at least for one value ofa, tab = 0 for all b. Without loss of generality, assume
thatt23 = t24 = t25 = 0.

Summing up (38) byb �= a and adding (37) we obtain
∑
i,p κapκip + ∑

f �=a(t
f
a )

2 + ∑
b �=a((tcd )2 + (tdc )

2) = 4H,

where{c, d} = {2,3,4,5} \ {a, b}. Now by (15)
∑
i κij = C, so the first term on the

left hand side equalsC2. The sum of the two remaining terms is
∑
g

∑
f �=a(t

f
g )

2 =∑
f,g(t

f
g )

2 − ∑
g(t

a
g )

2. Therefore we obtain

∑
g(t

a
g )

2 = ∑
f,g(t

f
g )

2 + C2 − 4H.

The right hand side does not depend ona. However, fora = 2, the left hand side
vanishes. HenceT = 0 and it remains to apply Lemma 3. �
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From now on we assume that at least one of thePab’s is nonzero.
Using (22) and Lemma 4 we simplify (18) withi = b, j = 1 and (20) withi = a,

j = 1, k = b to the form

Pbat
a
b + Pbct

c
b + Pbdt

d
b = 0, (41)

Pabt
a
b − Pbct

c
a − Pbdt

d
a = 0, (42)

respectively, where{a, b, c, d} = {2,3,4,5}. Adding (41) and (42) we obtain

Pcb(t
c
a − tcb )+ Pdb(t

d
a − tdb ) = 0. (43)

Interchanginga ↔ b, (a, b) ↔ (c, d) and(a, b) ↔ (d, c) we get, respectively:

Pca(t
c
a − tcb )+ Pda(t

d
a − tdb ) = 0,

Pad(t
a
c − tad )+ Pbd(t

b
c − tbd ) = 0,

Pac(t
a
c − tad )+ Pbc(t

b
c − tbd ) = 0.

So eitherPcbPda − PcaPdb = 0, or tca = tcb , tda = tdb , tac = tad , tbc = tbd .
Up to a sign, there are three minors of the formPcbPda − PcaPdb in the matrix

P , depending on the choice of the pair{a, b} ⊂ {2,3,4,5}.
If at least two of them are nonzero, thentca = tcb = tcd for all {a, b, c, d} =

{2,3,4,5} and soT = 0 by (30). The proof is then completed with Lemma 3.
Let precisely one of the three minorsPcbPda − PcaPdb be nonzero, say

P23P54 − P24P53 = P23P45 − P25P43 = 0 andP34P25 − P24P35 �= 0. Then
t24 = t25, t35 = t34, t43 = t42, t53 = t52. Denotingt2 = t24, t3 = t35, t4 = t43, t5 = t53
we gett23 = −2t2, t32 = −2t3, t45 = −2t4, t54 = −2t5 from (30). From (43) with
a = 4, b = 3, c = 1, d = 2, P23t

2 = P53t
5. Then from (41) withb = 3 we get

P32t
2 = P34t

4, and soP23t
2 = P43t

4 = P53t
5. Similar arguments show thatPabta

does not depend ona �= b. In particular,P53t
5 −P43t

4 = P52t
5 −P42t

4 = 0 and so
t4 = t5 = 0 sinceP34P25 − P24P35 �= 0. Similarly,t2 = t3 = 0, that is,T = 0, and
it remains to apply Lemma 3.

Finally, assume that all the minorsPcbPda −PcaPdb vanish. It is easy to see that
PcbPda = 0 for all {a, b, c, d} = {2,3,4,5}, and so the matrixPab is of one of the
following forms, up to relabelling the subscripts:




0 P23 P24 P25
−P23 0 0 0
−P24 0 0 0
−P25 0 0 0


 ,




0 P23 P24 0
−P23 0 P34 0
−P24 −P34 0 0

0 0 0 0


 (441,442)

and at least one of thePab’s is nonzero.
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Lemma 6. If the matrix P has the form (441), then at most one of the P2a , a > 2
can be nonzero.

Proof. Takinga = 2 in (39) we obtain

P2d(κ2c − κdc) = P2cP2b, {b, c, d} = {3,4,5}. (45)

First assume none ofP23, P24, P25 vanishes.
Then we getκ2c−κdc = κ2b−κdb for any triple{b, c, d} = {3,4,5}. Introduce the

numbersν3, ν4, ν5 by νd = κ2c − κdc, c �= 2, d. We haveκdc = κ2c − νd = κ2d − νc
and soκ2c + νc, c �= 2 does not depend onc. Denoteξ = κ2c + νc. Then

κ2c = ξ − νc, κdc = ξ − νc − νd, c, d �= 2, c �= d. (46)

Then by (15),C = ∑
i k2i = κ12 + 3ξ − ∑

f νf and fora �= 2, C = ∑
i kai =

κ1a + 3ξ − 2νa − ∑
f νf . It follows thatk1a = k12 + 2νa, and so by (15),C =∑

i k1i = 4κ12 + 3
∑
f νf . Then

κ12 = ξ − ∑
f νf , κ1a = ξ − ∑

f νf + 2νa, a �= 2.

Substituting this and (46, 441) to (35, 36) we obtain 2P 2
2a + 4ξ2 − 4ξ

∑
f νf +

2
∑
f ν

2
f + 2ν2

a = 4ξ2 − 4ξ
∑
f νf + 4

∑
f ν

2
f = H , and so

P 2
2a = ν2

b + ν2
c , {a, b, c} = {3,4,5}.

On the other hand, (45, 46) imply

P2dνd = P2cP2b, {d, b, c} = {3,4,5}.
It follows thatP 2

2a = (
P2aP2c
P2b

)2 + (
P2aP2b
P2c

)2 and so
(
P2c
P2b

)2 + (
P2b
P2c

)2 = 1. Since the
left hand side must be greater than or equal to 2, we come to the contradiction.

So at least one ofP23, P24, P25 vanishes, and the claim follows from (45). �

Lemma 7. If the matrix P has the form (442), then either the sectional curvature is
constant, or at most one of the P2a , a > 2 is nonzero.

Proof. Assume that all three numbersP23, P24, P34 are nonzero (otherwise, rela-
belling the subscripts we come to a subcase of (441)).

The equation (43) withd = 5 givesPcb(tca − tcb ) = 0, {a, b, c} = {2,3,4}, and
sotca = tcb . Denotetc = tca = tcb , {a, b, c} = {2,3,4}

Takingd = 5 in (40) we findtba t
a
b = 0. Thereforetbta = 0 for all a, b �= 5, and

so at least two of the three numberst2, t3, t4 vanish. Let sayt3 = t4 = 0. Then also
t2 = 0 by (41) witha = 2, b = 3, c = 4, d = 5. Hencet2a = t3a = t4a = 0 for all a.
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The equation (40) withc, d �= 5 givesκ12 = κ13 = κ14. Denote their common
value byκ. From (35) and (36) witha = 5 we get 3κ2 = κ2

25 + κ2
35 + κ2

45. But
from (15)C = ∑

i κ1i = ∑
i κ5i , hence 3κ = κ25 + κ35 + κ45. It follows that

κ25 = κ35 = κ45 = κ. Applying (15) again we find thatκ23 = κ24 = κ34. Denote
their common value bŷκ.

The equation (37) witha �= 5 now yields 2κκ̂ + κ2 + κκ15 + (t5a )
2 = H . It

follows that±t52 = ±t53 = ±t54 and sot52 = t53 = t54 = 0 by (30). ThusT = 0 and
the claim follows from Lemma 3. �

As Lemma 6 and Lemma 7 show, it remains to consider the case when only one
of thePab’s is nonzero. After relabelling we can assume thatP23 �= 0, and all the
otherPab’s vanish.

The equation (39) with(b, c) = (4,5), (5,4) yields

κ34 = κ24, κ35 = κ25, κ12 = κ13, (47)

the latter equation follows from (15):C = ∑
i κ2i = ∑

i κ3i .
From (42) we gett2a = t3a = 0 for all a, and from (40) witha = 4,b = 5 and (47)

t45 t
5
4 = 0. Without loss of generality assumet54 = 0. Then (21) withi = 1, j = 2,

k = 3, l = 4 takes the form

P23(t
4
3 − t42)+ t52(κ12 + κ34)+ t53(κ13 + κ24) = 0.

But t52 = −t53 by (30), so (47) impliest43 = t42.
From the equations (36) witha = 2 and (38) witha = 2, b = 3 we find

κ2
12 + κ2

23 + κ2
24 + κ2

25 + 2P 2
23 = ∑

i κ2iκ3i + κ2
23 − 2P 2

23 + (t45)
2 = H,

and so 4P 2
23 = (t45)

2 by (47). Then 2P 2
23 = ±t45 and we can take the minus sign on

the right hand side replacing the vectore1 by −e1, if necessary. It now follows from
(30) that the only nonzero entries of the matricesP andT can be

t43 = t42 = µ, t45 = −2µ, t53 = ν, t52 = −ν, P23 = µ �= 0. (48)

Then from (35), (36) witha = 4, and (37) witha = 4 we get

κ2
12+κ2

13+κ2
14+κ2

15 = κ2
14+κ2

24+κ2
34+κ2

45 = κ12κ24+κ13κ34+κ2
14+κ15κ45 = H,

so the vectors(κ12, κ13, κ14, κ15) and(κ24, κ34, κ14, κ45) are equal. Combining this
with (47) we find:

κ12 = κ13 = κ24 = κ34, κ35 = κ25, κ15 = κ45. (49)

Now from (15),C = ∑
i κ4i = ∑

i κ5i , which givesκ14+2κ24 = κ15+2κ25, and
from (36) witha = 4,a = 5,H = ∑

i κ
2
4i = ∑

i κ
2
5i and soκ2

14+2κ2
24 = κ2

15+2κ2
25.
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Hence eitherκ14 = κ15, κ24 = κ25 or κ24 = 1
4κ14 + 3

4κ15, κ25 = 3
4κ14 + 1

4κ15.
But the first case is not possible, since otherwise (37) witha = 5 and (49) imply
κ2

12 + κ2
13 + κ2

14 + κ2
15 + 4(t45)

2 = H , and sot45 = 0 by (35). This contradicts to
µ �= 0 from (48). In the second case, we solve (15) getting

κ12 = κ13 = κ23 = κ24 = κ34 = α − γ,

κ25 = κ35 = α − 3γ, κ15 = κ45 = α, κ14 = α − 4γ,
(50)

whereC = 4α − 6γ .
Substituting (50) and (48) to (21) withi = 1,j = 2,k = 3, l = 5 we findν = 3γ .

From (50, 35, 36) we get 4α2−12αγ +18γ 2 = 4α2−12αγ +12γ 2+2µ2 = H , and
soµ = ±√

3γ . Replacing the vectore5 by −e5, if necessary, we can takeµ = √
3γ .

Using (48) and the fact thatR1abc = 1
3(t

d
b − tdc ), which follows from the definition

of the tab ’s we find that the nonzero components of the algebraic curvature tensorR

are those listed in (50) and

R1234 = γ, R1235 = √
3γ, R1324 = −γ, R1325 = √

3γ,

R1423 = −2γ, R2425 = √
3γ, R3435 = −√

3γ.
(51)

It can be checked directly that the algebraic curvature tensor with components
given by (50, 51) satisfies the first two Ledger formulae (1). �

References

[1] J. Berndt, F. Tricerri, L. Vanhecke,Generalized Heisenberg groups and Damek-Ricci har-
monic spaces. Lecture Notes in Math. 1598, Springer-Verlag, Berlin 1995.Zbl 0818.53067
MR 1340192

[2] A. Besse,Manifolds all of whose geodesics are closed. Ergeb. Math. Grenzgeb. 93,
Springer-Verlag, Berlin, Heidelberg, New York 1978.Zbl 0387.53010 MR 0496885

[3] G. Besson, G. Courtois, S. Gallot, Volumes, entropies et rigidités des espaces localement
symétriques de courbure strictement négative.C. R. Acad. Sci. Paris Sér. I Math. 319
(1994), 81–84.Zbl 0812.53041 MR 1285903

[4] E. Damek, F. Ricci, A class of nonsymmetric harmonic Riemannian spaces.Bull. Amer.
Math. Soc. 27 (1992), 139–142.Zbl 0755.53032 MR 1142682

[5] J.-H. Eschenburg, A note on symmetric and harmonic spaces.J. London Math. Soc. (2) 21
(1980), 541–543.Zbl 0441.53042 MR 0577728

[6] P. Gilkey, A. Swann, L. Vanhecke, Isoparametric geodesic spheres and a conjecture of
Osserman concerning the Jacobi operator.Quart. J. Math. Oxford (2) 46 (1995), 299–320.
Zbl 0848.53023 MR 1348819

[7] A. Gray, L. Vanhecke, Riemannian geometry as determined by the volumes of small
geodesic balls.Acta Mathematica 142 (1979), 157–198.Zbl 0428.53017 MR 0521460

http://www.emis.de/MATH-item?0818.53067
http://www.ams.org/mathscinet-getitem?mr=1340192
http://www.emis.de/MATH-item?0387.53010
http://www.ams.org/mathscinet-getitem?mr=0496885
http://www.emis.de/MATH-item?0812.53041
http://www.ams.org/mathscinet-getitem?mr=1285903
http://www.emis.de/MATH-item?0755.53032
http://www.ams.org/mathscinet-getitem?mr=1142682
http://www.emis.de/MATH-item?0441.53042
http://www.ams.org/mathscinet-getitem?mr=0577728
http://www.emis.de/MATH-item?0848.53023
http://www.ams.org/mathscinet-getitem?mr=1348819
http://www.emis.de/MATH-item?0428.53017
http://www.ams.org/mathscinet-getitem?mr=0521460


50 Y. Nikolayevsky CMH

[8] S. Helgason,Differential geometry, Lie groups, and symmetric spaces. PureAppl. Math. 80,
Academic Press, New York, San Francisco, London 1978.Zbl 0451.53038 MR 0514561

[9] A. J. Ledger, Symmetric harmonic spaces.J. London Math. Soc. 32 (1957), 53–56.
Zbl 0084.37406 MR 0083796

[10] K. Ramachandran, A. Ranjan, Harmonic manifolds with some specific volume densities.
Proc. Indian Acad. Sci. Math. Sci. 107 (1997), 251–261.Zbl 0903.53030 MR 1467430

[11] A. Ranjan,An intrinsic approach to Lichnerowicz conjecture.Proc. Indian Acad. Sci. Math.
Sci. 110 (2000), 27–34.Zbl 0952.53022 MR 1746369

[12] A. Ranjan, H. Shah, Harmonic manifolds with minimal horospheres.J. Geom. Anal. 12
(2002), 683–694.Zbl 01983425 MR 1916864

[13] Z. I. Szabo, The Lichnerowicz Conjecture on harmonic manifolds.J. Differential Geom.
31 (1990), 1–28.Zbl 0686.53042 MR 1030663

[14] Z. I. Szabo, Spectral theory for operator families. InDifferential geometry. Part 3: Rie-
mannian geometry, Proc. Symp. Pure Math. 54 (1993) (part 3), 615–665.Zbl 0791.58100
MR 1216651

[15] A. G. Walker, On Lichnerowicz’s conjecture for harmonic 4-spaces.J. London Math. Soc.
24 (1949), 21–28.Zbl 32.18801 MR 0030280

[16] Y. Watanabe, The sectional curvature of a 5-dimensional harmonic Riemannian manifold.
Kodai Math. J. 6 (1983), 100–109.Zbl 0519.53013 MR 0698331

[17] T. J. Willmore,Riemannian geometry. Oxford Science Publications, The Clarendon Press,
Oxford University Press, New York 1993.Zbl 0797.53002 MR 1261641

Received September 14, 2000; revised January 14, 2003

Y. Nikolayevsky, Department of Mathematics, LaTrobe University, Bundoora,Victoria 3083,
Australia
E-mail: Y.Nikolayevsky@latrobe.edu.au

http://www.emis.de/MATH-item?0451.53038
http://www.ams.org/mathscinet-getitem?mr=0514561
http://www.emis.de/MATH-item?0084.37406
http://www.ams.org/mathscinet-getitem?mr=0083796
http://www.emis.de/MATH-item?0903.53030
http://www.ams.org/mathscinet-getitem?mr=1467430
http://www.emis.de/MATH-item?0952.53022
http://www.ams.org/mathscinet-getitem?mr=1746369
http://www.emis.de/MATH-item?01983425
http://www.ams.org/mathscinet-getitem?mr=1916864
http://www.emis.de/MATH-item?0686.53042
http://www.ams.org/mathscinet-getitem?mr=1030663
http://www.emis.de/MATH-item?0791.58100
http://www.ams.org/mathscinet-getitem?mr=1216651
http://www.emis.de/MATH-item?32.18801
http://www.ams.org/mathscinet-getitem?mr=0030280
http://www.emis.de/MATH-item?0519.53013
http://www.ams.org/mathscinet-getitem?mr=0698331
http://www.emis.de/MATH-item?0797.53002
http://www.ams.org/mathscinet-getitem?mr=1261641

	Introduction
	Five-dimensional harmonic spaces. Proof of Proposition 1
	The volume density function and the matrix equation
	Proof of Proposition 4

