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1. Introduction

The purpose of this article is to determine the forms of the exceptional simple
classical Lie superalgebras, that is, of the Lie superalgebras G(3), F (4) and the
one-parameter family D(2, 1;α), α ∈ F̄ \{0,−1}, (see [K]). Unless otherwise stated,
F will denote a ground field of characteristic �= 2, 3 and F̄ will be an algebraic
closure of F . The definition of the above mentioned superalgebras over such fields
is the same as for fields of characteristic 0.

All these forms are intimately related to quaternion or octonion algebras, so
let us first review some of their properties.

A quaternion algebra is a central simple associative algebra of degree 2 over F ,
that is, a form of the algebra Mat2(F̄ ). In what follows, all the (unlabeled) tensor
products will be over F . Then, identifying F̄ ⊗Q with Mat2(F̄ ), it turns out that
the trace t(x) and the determinant n(x) of any x ∈ Q are in F (not just in F̄ ) and
hence, for any x ∈ Q, x2− t(x)x+n(x)1 = 0, and the map x �→ x̄ = t(x)1−x is an
involution of Q (that extends to the canonical symplectic involution on Mat2(F̄ )).
Then x + x̄ = t(x)1 and xx̄ = x̄x = n(x)1 for any x ∈ Q. The subset of trace
zero elements Q0 of a quaternion algebra Q is closed under [x, y] = xy − yx and
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is, therefore, a form of the simple Lie algebra A1 = sl2(F̄ ). It is well known that
the converse is valid too. A quaternion algebra is either a division algebra, if its
norm does not represent 0, or it is isomorphic to Mat2(F ).

Any octonion algebra (or Cayley–Dickson algebra) over F can be built starting
with two copies of a quaternion algebra: C = Q⊕Qu, and a nonzero scalar α ∈ F ,
with multiplication given by the fact that Q becomes a subalgebra of C and

x(yu) = (yx)u = (yu)x̄ (xu)(yu) = αȳx

for any x, y ∈ Q (see [ZSSS, Chapter 2]). The trace t, norm n and involution of Q
are extended to C by means of

t(x + yu) = t(x) n(x + yu) = n(x) − α2n(y) x + yu = x̄ − yu

for any x, y ∈ Q and, in this way, the degree two equation z2 − t(z)z + n(z)1 = 0
and the properties z+ z̄ = t(z)1 and zz̄ = z̄z = n(z)1, are still valid for any z ∈ C.
As for quaternion algebras, there is exactly a Cayley–Dickson algebra whose norm
represents 0, which is said to be the split Cayley–Dickson algebra. All the other
octonion algebras are division algebras.

One of the interesting features of the octonion algebras is that the forms of the
exceptional simple Lie algebra G2, over fields of characteristic �= 2, 3, are precisely
the Lie algebras of derivations DerC of the octonion algebras. Moreover, the
subspace of trace zero elements C0 = {x ∈ C : t(x) = 0} is the unique seven
dimensional irreducible module for DerC (see [J,S]).

Moreover, given an octonion algebra C, the linear map C0 → EndF (C) such
that x �→ Lx (the left multiplication by x), satisfies L2

x = Lx2 = −n(x)Lx for
any x ∈ C0, and hence it extends to a homomorphism of the Clifford algebra of
(C0,−n), Cl(C0,−n) → EndF (C), which, by simplicity, restricts to an isomor-
phism of the even Clifford algebra Clev(C0,−n) ∼= EndF (C). Since the orthogonal
Lie algebra o(C0, n) = o(C0,−n) lives inside Clev(C0,−n), this provides an irre-
ducible eight-dimensional representation of o(C0, n): the spin representation.

The exceptional simple classical Lie superalgebras over F̄ are the Lie superal-
gebras G(3), F (4) and D(2, 1;α) (α ∈ F̄ \ {0,−1}) whose even and odd parts are
given by

g g0̄ g1̄

G(3) A1 ⊕ G2 Ū ⊗F̄ V̄

F (4) A1 ⊕ B3 Ū ⊗F̄ W̄

D(2, 1;α) A1 ⊕ A1 ⊕ A1 Ū ⊗F̄ Ū ⊗F̄ Ū

(1.1)

where Ū is the two dimensional irreducible module for sl2(F̄ ), V̄ is the seven
dimensional irreducible module for G2 and W̄ is the spin module for B3.
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Using that dim HomA1(Ū ⊗F̄ Ū , F̄ ) = dim HomA1(Ū ⊗ Ū , A1) = 1 and also
dim HomG2(V̄ ⊗F̄ V̄ , F̄ ) = dim HomG2(V̄ ⊗F̄ V̄ , G2) = 1 and dim HomB3(W̄ ⊗F̄

W̄ , F̄ ) = dim HomB3(W̄ ⊗F̄ W̄ ,B3) = 1 (this is well known in characteristic 0, in
general it is easy for A1, and for G2 and B3 can be readily obtained along the
lines of the proofs of [EM1, Theorem 8] and [EM2, Theorem 7]), the multiplication
of odd elements is shown to be given for G(3) and F (4) by the unique, up to a
nonzero scalar, symmetric bilinear map g1̄ × g1̄ → g0̄ which is g0̄-invariant, whose
projection on each simple summand of g0̄ is nonzero and which makes g a Lie
superalgebra. For D(2, 1;α) (α �= 0,−1), there is a whole one-parameter family of
such multiplications, and this is why the α appears.

Given a Lie superalgebra g = g0̄ ⊕ g1̄ with multiplication [ , ] over F and a
nonzero scalar 0 �= µ ∈ F , a new multiplication [ , ]µ is defined on g by means of

{
[x, y]µ = µ[x, y] if x, y ∈ g1̄,
[x, y]µ = [x, y] if at least one of x or y are even.

Denote by gµ the Lie superalgebra with this new bracket, gµ is said to be equivalent
to g. It is clear that if µ ∈ F 2, then gµ is isomorphic to g. The following result is
a reformulation of [K, Proposition 5.3.2], with some minor corrections, restricted
to the superalgebras that are being considered here:

Proposition 1.1.
(i) If a Lie superalgebra g over F is a form of the Lie superalgebra ḡ over F̄

(that is, F̄ ⊗ g ∼= ḡ) then g0̄ is a form of ḡ0̄ and the g0̄-module g1̄ is a form
of the ḡ0̄ module ḡ1̄.

(ii) In case ḡ = G(3) or F (4) and g0̄ is a form of ḡ0̄ and the g0̄-module g1̄ is
a form of the ḡ0̄ module ḡ1̄ then, up to equivalence, there is a unique Lie
superalgebra g = g0̄ ⊕ g1̄ which is a form of ḡ, with the given Lie bracket in
g0̄ and the given structure of g1̄ as a g0̄-module.

(iii) If g0̄ is a form of A1 ⊕ A1 ⊕ A1 and g1̄ is a g0̄-module which is a form of
Ū ⊗F̄ Ū ⊗F̄ Ū (being Ū the two dimensional irreducible module for sl2(F̄ ))
then, up to equivalence, there is a one-parameter family of Lie superalgebras
g = g0̄⊕g1̄ such that each superalgebra in this family is a form of D(2, 1;α)
for some α.

In the sequel, it will be used several times, without further comment, the fol-
lowing uniqueness property: if M and N are two finite dimensional completely
reducible modules for a Lie algebra s (or associative algebra) and F̄ ⊗ M ∼=
F̄ ⊗ N as modules for F̄ ⊗ s, then M ∼= N (note that for irreducible M
and N , they are isomorphic if and only if Homs(M,N) �= 0, if and only if
HomF̄⊗s(F̄ ⊗ M, F̄ ⊗ N) �= 0).

Note that over F̄ , the Lie algebra A1⊕G2 (respectively A1⊕B3, A1⊕A1⊕A1)
has a unique irreducible and faithful representation of dimension 14 (respectively
16, 8), namely, the one that appears as g1̄ in (1.1).
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Therefore, our goal of determining the forms of the exceptional simple classical
Lie superalgebras, up to equivalence, reduces to the following problem:

Which forms of A1 ⊕ G2 (respectively A1 ⊕ B3, A1 ⊕ A1 ⊕ A1) admit an
absolutely irreducible and faithful representation of dimension 14 (respectively 16,
8)?

Recall that a module is said to be absolutely irreducible if it remains irreducible
under scalar extensions.

This is the problem we are going to tackle. The main results for G(3) and F (4)
are:

Theorem G. The forms of A1 ⊕G2 that admit an irreducible and faithful repre-
sentation of dimension 14 are, up to isomorphism, the Lie algebras sl2(F )⊕DerC
for an octonion algebra C. The corresponding representation is the tensor product
of the natural two dimensional irreducible module for sl2(F ) and the irreducible
module C0 for Der C.

Theorem F. The forms of A1 ⊕B3 that admit an irreducible and faithful repre-
sentation of dimension 16 are, up to isomorphism, either:

I) sl2(F ) ⊕ o(C0, n) for an octonion algebra C with norm n. In this case
the corresponding representation is the tensor product of the natural two
dimensional irreducible module for sl(2, F ) and of the spin module C for
o(C0, n).

II) Q0 ⊕ o(V, q) for a quaternion division algebra Q and a seven dimensional
vector space V , equipped with a nondegenerate quadratic form q such that
the Clifford invariant of (V, q) is the class of Q in the Brauer group Br(F ).
In this case, the irreducible module for the even Clifford algebra Clev(V, q)
carries naturally a structure of Q-module (and hence of module for the Lie
algebra Q0) and of o(V, q)-module and it is the corresponding irreducible
module for Q0 ⊕ o(V, q).

Recall that the Clifford invariant of (W, q) above is the class in the Brauer group
Br(F ) of the central simple algebra Clev(W, q). Also note that the irreducible
modules in Theorems G and F have not been assumed to be absolutely irreducible.

To establish the main result for forms of D(2, 1;α) we need to introduce a few
more concepts. Following [KMRT] a cubic étale extension L/F of our ground field
F is given by an étale commutative and associative F -algebra of dimension 3, that
is, either L = F × F × F , or L = F × K for a separable quadratic field extension
K of F , or it is a cubic separable field extension L of F .

Given a cubic étale extension L/F , a quaternion algebra over L is either a
product of three quaternion algebras over F : Q1×Q2×Q3, in case L = F ×F ×F ,
or a product Q1×Q2, where Q1 is a quaternion algebra over F and Q2 a quaternion
algebra over K, in case L = F × K for a quadratic field extension K/F , or a
quaternion algebra Q over the field L, in case L/F is a cubic field extension.
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A trace can be defined naturally for this quaternion algebras t : Q → L in a
componentwise way. The set of trace zero elements Q0 is a Lie algebra, which is
a direct sum of three dimensional simple Lie algebras over the components of L.
Therefore, Q0 is always a form of A1 ⊕ A1 ⊕ A1 and it is easy to prove that any
form of A1 ⊕A1 ⊕A1 is isomorphic to Q0, for Q a quaternion algebra over a cubic
étale extension of F .

Also, given a separable field extension E/F of degree m and a central simple
associative algebra A over E of degree n, there is a central simple algebra NE/F (A)
over F (called the norm or corestriction of A) of degree nm defined in such a way
that the map Br(E) → Br(F ): [A] �→ [NE/F (A)], also denoted by NE/F , is a
homomorphism between the Brauer groups (see [R]). This can be extended to étale
extensions in the following way, if E = E1 × · · · × Er is such an étale extension,
with the Ei’s separable field extensions of F , and A = A1 × · · · × Ar, where Ai is
a central simple associative algebra Ei (i = 1, . . . , r), then the norm is defined as
NE/F (A) = NE1/F (A1) ⊗ · · · ⊗ NEr/F (Ar), which is a central simple associative
algebra, and NE/F

(
[A]

)
=

∏r
i=1 NEi/F

(
[Ai]

)
∈ Br(F ).

Theorem D. The forms of A1 ⊕ A1 ⊕ A1 over a field F of characteristic �= 2
that admit a faithful and absolutely irreducible representation of dimension 8 are,
up to isomorphism, the Lie algebras Q0 for a quaternion algebra Q over a cubic
étale extension L/F such that NL/F

(
[Q]

)
= 1. The corresponding representation

is given by the irreducible module of the degree 8 central simple associative algebra
NL/F (Q).

Note that the quaternion algebras in Theorem D appear in a completely dif-
ferent context in [KMRT, 43.B] (see also [KMRT, 16.C]).

There will be a section devoted to the proof of each of these Theorems, where
extra results giving information on the central simple Lie superalgebras that appear
as forms of G(3), F (4) or D(2, 1;α) will be given. Then, in the final section, the
previous results will be applied to the classification, up to isomorphism, of the
real forms of the exceptional simple classical Lie superalgebras. The real forms of
the finite dimensional simple Lie superalgebras are determined, up to equivalence,
in [K, Theorem 9], but this result contains some inaccuracies. Later on, a more
detailed account was given in [P]. However, for the real forms of the algebras
D(2, 1;α) (α ∈ C \ {0,−1}), the results in [P] do not completely determine them:
given two values of the parameter α ∈ C such that the corresponding complex
algebras are isomorphic, the real forms constructed for these values may fail to
be isomorphic. The real forms of the finite dimensional simple Lie superalgebras
other than G(3) and F (4) are described too in [Se].

In ending this introduction, the author would like to express his great appreci-
ation to Professor Georgia Benkart, for her suggestions and support.
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2. Proof of Theorem G

Let g be a Lie algebra over our ground field F , which is a form of A1 ⊕G2. Then
g = g1 ⊕ g2, where g1 is a three-dimensional simple Lie algebra (that is, a form of
A1) and g2 is a form of G2. Thus, g2 ∼= Der C for an octonion algebra C over F .

Assume that g has a faithful irreducible module M of dimension 14, then
since the minimal dimension of a faithful irreducible module for F̄ ⊗ g is 14, M is
absolutely irreducible and F̄ ⊗M is the tensor product of the two dimensional irre-
ducible module Ū for A1 = sl2(F̄ ) and of the seven dimensional irreducible module
V̄ for G2. Then g1 ⊆ Endg2(M) (endomorphisms of M as a g2-module), but this
latter algebra is a form of EndF̄ (Ū), and therefore Endg2(M) is a quaternion alge-
bra Q over F and g1 = [Q,Q] = Q0. But, if Q were a quaternion division algebra,
then 14 = dimF M = 4dimQ M , a contradiction. Hence, Q ∼= Mat2(F ) and
g1 ∼= sl2(F ). Moreover, as a Endg2(M) ∼= Mat2(F )-module, M splits as a direct
sum of seven copies of the two dimensional irreducible module for Mat2(F ), so that
M = U ⊗ V , where U is the two dimensional irreducible module for g1 ∼= sl2(F )
and V is a seven dimensional vector space. But then, g2 ⊆ Endg1(M) ∼= EndF (V ),
since Endg1(U) = F . Hence V is the unique seven dimensional irreducible module
for g2 ∼= Der C.

This finishes the proof of Theorem G and, therefore, determines the forms of
G(3) up to equivalence. However, something else can be said here.

Lemma 2.1. (See [P, Proposition 5.5].) Let g = g0̄ ⊕ g1̄ be a finite dimensional
Lie superalgebra over F with g0 = sl2(F ) ⊕ s and g1 = U ⊗ V , where U is the
natural two-dimensional module for sl2(F ) and V is a module for s. Assume that
the multiplication of odd elements is given by

[u1 ⊗ v1, u2 ⊗ v2] = b(v1, v2)σu1,u2 + ϕ(u1, u2)v1 ∗ v2 (2.1)

for any u1, u2 ∈ U and v1, v2 ∈ V , for some s-invariant bilinear maps b : V ×V →
F (symmetric) and ∗ : V × V → s (skewsymmetric), and where ϕ : U × U → F
is the unique (up to multiplication by nonzero scalars) nonzero skewsymmetric
sl2(F )-invariant bilinear form and σu1,u2 = ϕ(u1,−)u2+ϕ(u2,−)u1 (∈ sp(U,ϕ) =
sl2(F )).

Then for any nonzero scalar µ ∈ F , the Lie superalgebras g and gµ are isomor-
phic.

Proof. It is enough to take an element a ∈ Mat2(F ) with det(a) = µ and to
consider the even linear map Φ : gµ → g given by Φ(x) = axa−1 for any x ∈
sl2(F ), Φ(s) = s for any s ∈ s and Φ(u ⊗ v) = au ⊗ v for any u ∈ U and
v ∈ V . Then, for any u1, u2 ∈ U and v1, v2 ∈ V , σau1,au2 = ϕ(au1,−)au2 +

ϕ(au2,−)au1 = a
(
ϕ(u1, a

∗−)u2 + ϕ(u2, a
∗−)u1

)
= µaσu1,u2a

−1, because the
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adjoint a∗ of a relative to ϕ is µa−1, and thus

Φ
(
[u1 ⊗ v1, u2 ⊗ v2]µ

)
= µΦ

(
b(v1, v2)σu1,u2 + ϕ(u1, u2)v1 ∗ v2

)

= µ
(
b(v1, v2)aσu1,u2a

−1 + ϕ(u1, u2)v1 ∗ v2

)
= b(v1, v2)σau1,au2 + µϕ(u1, u2)v1 ∗ v2

= b(v1, v2)σau1,au2 + ϕ(au1, au2)v1 ∗ v2

=
[
Φ(u1 ⊗ v1),Φ(u2 ⊗ v2)

]
. �

It is an immediate consequence of this Lemma and of Theorem G that equiv-
alent forms of G(3) are in fact isomorphic. Therefore, the forms of G(3) are
completely determined up to isomorphism once we know which octonion algebra
C is involved in the decomposition of g0̄

∼= sl2(F ) ⊕ Der C.
In [BE,BZ], a generalized Tits construction has been considered that extends

the celebrated Tits construction, which gives all the exceptional simple classical
Lie algebras in a unified framework. In particular, given an octonion algebra C
and a simple Jordan superalgebra J with a normalized trace tr over F (see [BE]
for details), the space

T (C, J) := DerC ⊕ (C0 ⊗ J0) ⊕ Der J, (2.2)

where J0 = {x ∈ J : tr(x) = 0}, with the superanticommutative product specified
by

Der C and DerJ are commuting subsuperalgebras of T (C, J),
[D, a ⊗ x] = D(a) ⊗ x, [d, a ⊗ x] = a ⊗ d(x),
[a ⊗ x, b ⊗ y] = tr(xy)Da,b + [a, b] ⊗ x ∗ y + 2t(ab)dx,y

for all D ∈ Der C, d ∈ DerJ , a, b ∈ C0, x, y ∈ J0, where Da,b(c) = [[a, b], c] −
3
(
(ab)c−a(bc)

)
and dx,y(z) = x(yz)−(−1)x̄ȳy(xz) for any c ∈ C and z ∈ J , is a Lie

superalgebra. Moreover, in case J is the Jordan superalgebra of a nondegenerate
superform with trivial even part and two dimensional odd part, denote it by Ĵ ,
then T (C, Ĵ) is a form of G(3) with even part sl2(F ) ⊕ DerC.

Then, Theorem G and Lemma 2.1 immediately give:

Corollary 2.2. The F -forms of G(3) are exactly the Lie superalgebras T (C, Ĵ)
for an octonion algebra C. Two such forms are isomorphic if and only if so are
the corresponding octonion algebras.
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3. Proof of Theorem F

Now, let g be a Lie algebra over our ground field F which is a form of A1 ⊕ B3.
Then g = g1 ⊕ g2, where g1 is a three-dimensional simple Lie algebra and g2 is
a form of B3. Assume that g has a faithful irreducible module M of dimension
16. Since the minimal dimension of a faithful irreducible module for ḡ = F̄ ⊗ g is
14 = 2× 7, it is easy to check that M is absolutely irreducible and M̄ = F̄ ⊗M is
the tensor product of the two dimensional natural representation for ḡ1 = F̄ ⊗ g1

and the spin representation for ḡ2 = F̄ ⊗ g2.
We are left with two different possibilities:

Fi) M decomposes as a sum of two irreducible eight dimensional modules for
g2 which, since F̄ ⊗ Endg2(M) = Endḡ2(M̄) ∼= Mat2(F̄ ), must be isomor-
phic (otherwise the centralizer Endg2(M) would be the direct sum of the
centralizer of the two modules). Therefore, M = U ⊗ W for an irreducible
g2-module W and a two dimensional vector space U .

Fii) M is irreducible as g2-module.
In case Fi) above, g1 ⊆ Endg2(M) ∼= EndF (U) ∼= Mat2(F ) and g1 ∼= sl2(F ).

Lemma 3.1. Let s be a form of B3 over F and let W be an irreducible s-module
of dimension 8. Then there is a Cayley–Dickson algebra C over F with norm n
such that s is isomorphic to the orthogonal Lie algebra o(C0, n) and, through this
isomorphism, W is the spin module C for o(C0, n).

Proof. Since W̄ = F̄ ⊗ W is the spin representation for B3, it is known (see the
comments after (1.1)) that there is a unique, up to nonzero scalars, symmetric
bilinear form b : W × W → F which is s-invariant. Thus s can be embedded as
a subalgebra of the orthogonal Lie algebra o(W, b). Consider the trace form on
o(W, b), which is nonzero. Since dim s = 21 and dim o(W, b) = 28, the restriction
of the trace form to s is nonzero and, by simplicity of s, nondegenerate. Therefore,
o(W, q) = s ⊕ s⊥ (orthogonal relative to the trace form) and [s, s⊥] ⊆ s⊥. Since
s is not an ideal of the simple Lie algebra o(W, b), it follows that [s, s⊥] �= 0 and
thus s embeds as a Lie subalgebra of the orthogonal Lie algebra o(s⊥) (relative to
the trace form). By dimension count, they are equal. The conclusion is that, up
to isomorphism, s is the orthogonal Lie algebra o(V, q) for some vector space V of
dimension 7 and nondegenerate quadratic form q on V . (Recall that, in general,
not all forms of B3 are such orthogonal Lie algebras.)

But W̄ is the spin module for s̄ = F̄ ⊗ s = o(V̄ , q̄), so that the representa-
tion of s on W comes from an isomorphism of the even Clifford algebra Clev(V, q)
onto EndF (W ), which shows that the Clifford invariant of (V, q) is trivial. Com-
plementing V with an orthogonal complement of dimension 1 we obtain an eight
dimensional quadratic form with trivial discriminant and Clifford invariant and
a result of Pfister applies (see [KMRT, (35.2)]) to show that (V, q) is similar to
(C0, n) for a Cayley–Dickson algebra C with norm n, as required. �
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This Lemma settles part I) of Theorem F.
In case Fii) above, by Schur Lemma and since F̄ ⊗ Endg2(M) = Endḡ2(M̄) ∼=

Mat2(F̄ ), Endg2(M) is a quaternion division algebra Q and g1 ⊆ [Q,Q] = Q0.
There are two possibilities for g2 [J,S]: either it is isomorphic to the orthogonal
Lie algebra o(V, q) for some seven dimensional vector space with a nondegenerate
quadratic form, or it is isomorphic to the Lie algebra Skew(D, j) of skew symmetric
elements of a central division algebra D of degree 7 relative to an orthogonal
involution j. In this last case, if K/F is a quadratic field extension which splits
Q, K ⊗D is again a division algebra over K (because 2 and 7 are relatively prime,
see [R, Corollary 7.2.4]) and hence K ⊗ s ∼= sl2(K)⊕Skew(K ⊗D, 1⊗ j), but this
is in contradiction with case Fi).

Therefore, in case Fii) above, up to isomorphism, s = Q0⊕o(V, q) for some regu-
lar quadratic space (V, q). By uniqueness, M must be isomorphic to the irreducible
module for the even Clifford algebra Clev(V, q) and, by density, Clev(V, q) ∼=
EndQ(M) ∼= Mat4(Q). This shows that the Clifford invariant of (V, q) is the
class of Q in Br(F ).

Conversely, given a seven dimensional regular quadratic space (V, q) with Clif-
ford invariant [Q] for some division quaternion algebra Q, Clev(V, q) ∼= EndQ(M)
for some Q-vector space M of dimension 4. Then M is an irreducible and faithful
module of dimension 16 for the Lie algebra Q0 ⊕ o(V, q), where the action of Q0 is
given by the structure of M as a Q-vector space, and the action of o(V, q) by its
embedding as a Lie subalgebra of Clev(V, q).

This completes the proof of Theorem F.

Exactly as for G(3), two equivalent forms of F (4) of type I) in Theorem F are
actually isomorphic, thanks to Lemma 2.1. Also, in [BZ,BE], it has been shown
that the Tits construction T (C, J), this time with J the simple Jordan superalge-
bra D2, are forms of F (4). Given any 0 �= α ∈ F , the Jordan superalgebra Dα has
even part with basis {e, f} and odd part with basis {x, y} and the multiplication
is given by:

e2 = e, f2 = f, ef = 0,

xy = e + αf, ex =
1
2
x = fx, ey =

1
2
y = fy.

(3.1)

The same arguments as for G(3) give:

Corollary 3.2. The F -forms of F (4) of type I) in Theorem F are exactly the Lie
superalgebras T (C,D2) for an octonion algebra C. Two such forms are isomorphic
if and only if so are the corresponding octonion algebras.

For forms of F (4) corresponding to case II) of Theorem F, it is not known
wether equivalent superalgebras are isomorphic. However, some partial results
can be given. First, Lemma 2.1 can be strengthened to:
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Lemma 3.3. Let g = g0̄ ⊕ g1̄ be a finite dimensional Lie superalgebra with g0̄ =
Q0 ⊕ s for a quaternion algebra Q and such that ḡ = F̄ ⊗ g satisfies the conditions
of Lemma 2.1 (with sl2(F̄ ) = F̄ ⊗ Q0). Then for any a ∈ Q with n(a) = µ �= 0, g
is isomorphic to gµ.

Proof. If Q = Mat2(F ) this is given by Lemma 2.1. Otherwise, Q is a quaternion
division algebra contained in Ends(g1̄), so that g1̄ is a vector space over Q. The
map Φ : gµ → g given by Φ(q) = aqa−1, Φ(s) = s and Φ(z) = az for any q ∈ Q0,
s ∈ S and z ∈ g1̄ gives the desired isomorphism (by extending scalars, this is the
same map as in Lemma 2.1). �

Let now g be a form of F (4) of type II) in Theorem F, so that g0̄ = Q0⊕o(V, q).
We can assume that the discriminant of (V, q) is trivial, since we can substitute q
by any nonzero scalar multiple. Let τ be the canonical involution of Cl(V, q) (the
one that fixes V elementwise) and denote also by τ its restriction to Clev(V, q) ∼=
EndQ(M). Let us denote by ∆ a fixed isomorphism Clev(V, q) ∼= EndQ(M) . Then
there is an ε-hermitian form h : M × M → Q (ε = ±1), that is

h(am, n) = ah(m,n), h(m,n) = εh(n,m)

for any a ∈ Q, m,n ∈ M (a �→ ā denotes the standard involution in Q), such
that the involution τ in Clev(V, q) corresponds to the adjoint ∗ relative to h in
EndQ(M). Since o(V, q) ⊆ Skew

(
Clev(V, q), τ

) ∼= Skew(EndQ(M), ∗), h is invari-
ant under the action of o(V, q) on M (where Q is regarded as a trivial o(V, q)-
module). Besides, for any a ∈ Q0 and m,n ∈ M , [a, h(m,n)] = ah(m,n) −
h(m,n)a = h(am, n) + h(m,an), and thus h is invariant under the action of Q0,
considering Q as a module for Q0 under the adjoint map. As such, the map
a �→ a − ā is a Q0-homomorphism. In consequence, the unique (up to scalars)
g0̄-invariant map M ⊗ M → Q0 is given by m ⊗ n �→ h(m,n) − h(m,n) =
h(m,n) − εh(n,m). But after scalar extension, there is a unique such invari-
ant map and it is symmetric (it is given by the multiplication of odd elements in
F (4)). Therefore ε = −1 and the map given by m⊗ n �→ h(m,n) + h(n,m) is the
only, up to scalars, g0̄-invariant map M ⊗ M → Q0.

Moreover, considering o(V, q) as a trivial Q0-module, the maps

Γ : M ⊗ M → o(V, q)∗

m ⊗ n �→
(
ϕ �→ t

(
h(ϕ.m, n)

)) Ω : o(V, q) → o(V, q)∗

ϕ �→
(
γ �→ trV (ϕγ)

)

where t is the trace in Q, trV the trace in EndF (V ) and ϕ.m denotes the action
of o(V, q) in M , are Q0 ⊕ o(V, q)-invariant and, therefore, the only, up to scalars,
g0̄-homomorphism M ⊗ M → g0̄ is Υ = Ω−1Γ. Note that the action of o(V, q) on
M is given by embedding o(V, q) in Clev(V, q) and then using the isomorphism ∆,
thus ϕ.m = ∆(ϕ)(m), for any ϕ ∈ o(V, q) and m ∈ M .
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Since we can scalar h conveniently, the above argument shows that the multi-
plication of odd elements in a form g of F (4) of type II), with g0̄ = Q0 ⊕ o(V, q)
and g1̄ = M as above, is

[m,n] =
(
h(m,n) + h(m,n)

)
+ δΥ(m ⊗ n) (3.2)

for all m,n ∈ M , where δ is a suitable nonzero scalar.

Lemma 3.4. Let g be a form of F (4) of type II) in Theorem F, with g0̄ =
Q0 ⊕ o(V, q) such that the discriminant of q is trivial and its Clifford invariant is
[Q]. Then for any v ∈ V with q(v) �= 0, g is isomorphic to g−q(v).

Proof. Consider the automorphism Int(v) of Clev(V, q) given by x �→ vxv−1 for any
x ∈ Clev(V, q) (the multiplication is performed in Cl(V, q)). It clearly commutes
with the canonical involution τ , because Int(v)(w) = q(v,w)

q(v)
v−w = −sv(w) ∈ V (sv

denotes the reflection relative to the hyperplane orthogonal to v) for any w ∈ V .
Moreover, Int(v) restricts to the isomorphism ϕ �→ svϕsv of o(V, q).

Take z an odd element in the center of Cl(V, q) with z2 = 1 (recall that we
are assuming that the discriminant of q is trivial). Then Int(v) = Int(vz) and
vz ∈ Clev(V, q). Let ψ ∈ EndQ(M) be given by ψ = ∆(vz). Since vzτ(vz) =
−vzzv = −v2 = −q(v),

ψψ∗ = −q(v)I. (3.3)

Now, for any m,n ∈ M and ϕ, γ ∈ o(V, q):

h
(
ϕ.(ψ(m)), ψ(n)

)
= h

(
∆(ϕ)ψ(m), ψ(n)

)

= h
(
ψψ−1∆(ϕ)ψ(m), ψ(n)

)

= −q(v)h
(
∆(svϕsv)(m), n

)

= −q(v)h
(
(svϕsv).m, n

)

and trV

(
(svϕsv)γ

)
= trV

(
ϕ(svγsv)

)
, so that

Υ
(
ψ(m) ⊗ ψ(n)

)
= −q(v)svΥ(m ⊗ n)sv (3.4)

for any m,n ∈ M .
Finally define the even linear map Φ : g−q(v) → g by means of Φ(a) = a,

Φ(ϕ) = svϕsv and Φ(m) = ψ(m) for any a ∈ Q0, ϕ ∈ o(V, q) and m ∈ M . From
(3.2), (3.3) and (3.4) we conclude that Φ is an isomorphism. �

Corollary 3.5. Let g be a form of F (4) of type II) in Theorem F, with g0̄ =
Q0 ⊕ o(V, q) such that the Clifford invariant of q is [Q] and q is universal. Then
any Lie superalgebra equivalent to g is in fact isomorphic to g.

As we shall see in the last section, this is what happens over the real field.
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4. Proof of Theorem D

Let us first consider the following example. Take the real Lie algebra g = sl2(R)⊕
sl2(C). It has a faithful and irreducible eight dimensional module M = R2 ⊗R

C
2, where R

2 and C
2 are the natural modules for the simple ideals sl2(R) and

sl2(C) of g, which is not absolutely irreducible (for instance, one checks that
Endg(M) ∼= Endsl2(C)(C

2) ∼= C). Therefore, contrary to the situation in the
previous paragraphs, absolute irreducibility will have to be imposed here.

Before proceeding further, let us recall briefly some facts concerning the norm
or corestriction (see [R]). Given a finite Galois field extension E/F , an element σ
in the Galois group Gal(E/F ) and a (not necessarily associative) E-algebra R, the
E-algebra σ−1R is defined on the same ring R (same addition and multiplication)
but with the new scalar product given by µ(σ−1r) = σ−1

(
σ(µ)r

)
, for any µ ∈ E

and r ∈ R, where the elements of σ−1R are denoted σ−1r, r ∈ R. Assume that L
is an intermediate field, F ⊆ L ⊆ E and let G = Gal(E/F ), H = Gal(E/L) and
σ1, . . . , σn ∈ G such that G = Hσ1 ∪ . . .∪Hσn (disjoint union). Then if τi = σ−1

i

for i = 1, . . . , n, G = τ1H ∪ . . . ∪ τnH and the restriction of τ1, . . . , τn to L give
the different embeddings L ↪→ E.

Let A be an algebra over L, then the E-linear map

E ⊗F A −→
n⊕

i=1

σ−1
i

(
E ⊗L A

)

1 ⊗ a �→
(
σ−1

1 (1 ⊗ a), . . . , σ−1
n (1 ⊗ a)

)

is an isomorphism of E-algebras. Assume now that A is associative, then for
any σ ∈ G there is a permutation π such that σiσ ∈ Hσπ(i), i = 1, . . . , n. Let
σiσ = γiσπ(i), with γi ∈ H for any i. On the E-algebra

Ã = σ−1
1

(
E ⊗L A

)
⊗E · · · ⊗E σ−1

n

(
E ⊗L A

)

consider, for any σ ∈ G, the σ-semilinear automorphism Φσ given by

Φσ

(
⊗n

i=1 σ−1
i (µi ⊗ ai)

)
= ⊗n

i=1

(
σ−1

i

(
γi(µπ(i)) ⊗ aπ(i)

))

for ai ∈ A and µi ∈ E, i = 1, . . . , n. Then ΦσΦτ = Φστ , Φ1 = 1, and therefore,
{x ∈ Ã : Φσ(x) = x ∀σ ∈ G} is an F -subalgebra of Ã, called the norm of A and
denoted by NL/F (A). It does depend only on the L-algebra A and not on E or the
transversal chosen. Moreover, if A is central simple over L, so is NL/F (A) over F

and Ã ∼= E ⊗F NL/F (A).
We are in position now to prove Theorem D. Let g be a Lie algebra over a

ground field F of characteristic �= 2, which is a form of A1 ⊕ A1 ⊕ A1, and let M
be a faithful and absolutely irreducible eight dimensional module for g. There are
three different possibilities for g:
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Di) g = g1⊕g2⊕g3, where each gi (i = 1, 2, 3) is a three dimensional simple Lie
algebra over F . Thus g = Q0 fo a quaternion algebra over L = F × F × F ,
or

Dii) g = g1 ⊕ g2, where g1 is a three dimensional simple Lie algebra over F and
g2 is a three dimensional simple Lie algebra over a quadratic field extension
K of F . Here g = Q0 for a quaternion algebra over L = F × K, or

Diii) g is a three dimensional simple Lie algebra over a separable cubic field
extension L of F , so that g = Q0 for some quaternion algebra over L.

The proof of Theorem D will be split according to these three possibilities.
Assume first that we are in case Di), then g1 ⊆ Endg2⊕g3(M), which is a

quaternion algebra over F (extending scalars to the the algebraic closure it becomes
isomorphic to EndF̄ (Ū) ∼= Mat2(F̄ )). Denote by Q1 this quaternion algebra, which
acts as endomorphisms of M . Then g1 ⊆ [Q1, Q1] = Q0

1 and, by dimension count,
g1 = Q0

1 and Q1 = F1 ⊕ g1. In the same vein, there are quaternion algebras
Q2 and Q3 so related to g2 and g3. Since the actions of g1, g2 and g3 on M
commute, so do the actions of Q1, Q2 and Q3 and thus there is a homomorphism
of associative algebras

Q1 ⊗ Q2 ⊗ Q3 → EndF (M)

which, by simplicity and dimension count, is an isomorphism. Hence Q1 ⊗ Q2 ⊗
Q3

∼= EndF (M) ∼= Mat8(F ) and, with L = F × F × F and Q = Q1 × Q2 × Q3,
g = Q0 and NL/F (Q) = Q1⊗Q2⊗Q3 gives the trivial class in Br(F ), as required.

Conversely, with L and Q = Q1 × Q2 × Q3 as above, if NL/F ([Q]) = 1, then
Q1 ⊗ Q2 ⊗ Q3

∼= Mat8(F ), so that Q1 ⊗ Q2 ⊗ Q3
∼= EndF (M) for an eight

dimensional vector space M over F . By means of the map

Q0
1 ⊕ Q0

2 ⊕ Q0
3 −→ Q1 ⊗ Q2 ⊗ Q3

∼= EndF (M)
(x1, x2, x3) �→ x1 ⊗ 1 ⊗ 1 + 1 ⊗ x2 ⊗ 1 + 1 ⊗ 1 ⊗ x3

M becomes a faithful and absolutely irreducible module for g = Q0
1 ⊕ Q0

2 ⊕ Q0
3.

Now assume that we are in case Dii). Here L = F ×K with K a quadratic field
extension of F and g = g1 ⊕ g2, where g1 (respectively g2) is a three dimensional
simple Lie algebra over F (respectively K). Moreover, g1 = Q0

1 (respectively
g2 = Q0

2) for a quaternion algebra over F (respectively K). Let Q = Q1×Q2 be the
corresponding quaternion algebra over L and let ι be the nontrivial automorphism
in the Galois group of the quadratic extension K/F .

Now the K-linear map given by

K ⊗ g ∼= (K ⊗ g1) ⊕ g2 ⊕ ι−1g2 −→ (K ⊗ Q1) ⊗K Q2 ⊗K ι−1Q2

1 ⊗ x1 �→ (1 ⊗ x1) ⊗ 1 ⊗ ι−1(1)

x2 �→ (1 ⊗ 1) ⊗ x2 ⊗ ι−11

ι−1x2 �→ (1 ⊗ 1) ⊗ 1 ⊗ ι−1x2
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takes g ⊆ K ⊗ g isomorphically into NL/F (Q) = Q1 ⊗ NK/F (Q2) (which is an
F -subalgebra of (K ⊗ Q1) ⊗K Q2 ⊗K ι−1(Q2)). Besides, K ⊗ g generates (Q1 ⊗
K) ⊗K Q2 ⊗K ι−1Q2 = K ⊗

(
Q1 ⊗ NK/F (Q2)

)
, so g generates Q1 ⊗ NK/F (Q2).

If g admits a faithful eight dimensional absolutely irreducible module M the
there is a commutative diagram

g ↪→ EndF (M)
↓ ↓

K ⊗ g ↪→ EndK(K ⊗ M)

The argument for case Di) shows that the bottom map embeds in a commutative
diagram

K ⊗ g ↪→ EndK(K ⊗ M)
↓ �

(Q1 ⊗ K) ⊗K Q2 ⊗K ι−1Q2 → EndK(K ⊗ M)

whose bottom map is an isomorphism. Since g generates Q1 ⊗ NK/F (Q2), by
dimension count this last bottom map restricts to an isomorphism NL/F (Q) =
Q1 ⊗ NK/F (Q2) ∼= EndF (M), so NL/F (Q) gives the trivial class in the Brauer
group.

Conversely, if NL/F ([Q]) = 1, there is an isomorphism of F -algebras NL/F (Q) =
Q1⊗NK/F (Q2) ∼= EndF (M) for some eight dimensional vector space M , and since
g generates NL/F (Q), this gives an absolutely irreducible and faithful eight dimen-
sional module for g.

Finally, in case Diii), g = Q0 for a quaternion algebra over a cubic separable
field extension L of F and either L/F = E/F is a cyclic Galois field extension, or
there is a Galois field extension E/F containing L with Galois group isomorphic to
the symmetric group S3. In any case there is a cyclic group of order 3: {1, σ, σ2}
of G = Gal(E/F ) and the restrictions of 1, σ, σ2 to L give the three different
embeddings of L into E. As for Dii), there is a sequence of maps

g ↪→ E ⊗ g = (E ⊗L g) ⊕ σ−1(E ⊗L g) ⊕ σ−2(E ⊗L g)

↪→ (E ⊗L Q) ⊗E σ−1(E ⊗L Q) ⊗E σ−2(E ⊗L Q)

which takes g into NL/F (Q) and shows that g generates NL/F (Q). A similar
argument as for Dii) concludes the proof of Theorem D.

Given a form of G(3) or a form of F (4) such that its even part contains an ideal
isomorphic to sl2(F ), it was shown in Corollaries 2.2 and 3.2 that this form is given
by a Tits construction T (C, J) for a Cayley–Dickson algebra C and a suitable
Jordan superalgebra J . In the same vein, some forms of the Lie superalgebras
D(2, 1;α) appear as Tits constructions. Assume that g is a form of some D(2, 1;α)
such that g0̄ contains an ideal isomorphic to sl2(F ) and g is of type Di). Then
because of Theorem D and the fact that the class of any quaternion algebra in the
Brauer group has order 1 or 2, necessarily g0̄ = sl2(F )⊕Q0 ⊕Q0 for a quaternion
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algebra Q over F . Note that in this situation, the map Q0 ⊕ Q0 → o(Q,n)
(the orthogonal Lie algebra relative to the norm of Q) which assigns to any pair
(p, q) of elements in Q0 the map x ∈ Q �→ px − xq is an isomorphism, so that
g0̄ = sl2(F ) ⊕ o(Q,n). We are then in the situation of the next Lemma, whose
first part has been proved in [BE]:

Lemma 4.1. Let Q be a quaternion algebra over F and let U be a two dimensional
space with a nonzero skew-symmetric form ϕ : U × U → F . For u, v ∈ U , let
σu,v ∈ sp(U,ϕ) ∼= sl2(F ) (the symplectic Lie algebra) be given by

σu,v(w) = ϕ(v, w)u + ϕ(u,w)v.

For nonzero α, β ∈ F , let g = g0̄ ⊕ g1̄ be the superalgebra with

g0̄ = sp(U,ϕ) ⊕ Q0 ⊕ Q0

g1̄ = U ⊗ Q

and with multiplication given by
• the usual Lie bracket in g0̄,
• [(f, p, q), u ⊗ x] = f(u) ⊗ x + u ⊗ (px − xq),
• [u ⊗ x, v ⊗ y] =

(
t(x̄y)σu,v,−αϕ(u, v)(xȳ − yx̄),−βϕ(u, v)(x̄y − ȳx)

)
,

for u, v ∈ U , x, y ∈ Q, f ∈ sp(U,ϕ) and p, q ∈ Q0. Then:
(i) g is a Lie superalgebra if and only if α + β = −1, and in this case, g is a

form of the exceptional classical simple Lie superalgebra D(2, 1;α). Denote
it by gQ(α) (α �= 0,−1).

(ii) If α, α′ ∈ F \ {0,−1}, Q,Q′ are quaternion algebras and gQ(α) ∼= gQ′(α′),
then Q and Q′ are isomorphic. Moreover, if Q is a quaternion division
algebra, gQ(α) ∼= gQ(α′) if and only if either α′ = α or α′ = −(1+α), while
if Q is the algebra Mat2(F ), gQ(α) ∼= gQ(α′) if and only if

α′ ∈
{

α,
1
α

,−(1 + α),
−1

1 + α
,

−α

1 + α
,
−(1 + α)

α

}
.

Proof. The first part has been proved in [BE, Lemma 3.1]. For (ii), note first
that if gQ(α) ∼= gQ′(α′), then the even parts are isomorphic and this forces that
the Lie algebras Q0 and (Q′)0 are isomorphic, but this implies that Q and Q′

are isomorphic too (the norm n of Q is determined by n(1) = 1 and 8n(p) is the
trace of ad2

p for any p ∈ Q0, so the norm n is determined by the Lie algebra Q0).
Moreover, the map:

gQ(α) → gQ

(
− (1 + α)

)
(f, p, q) �→ (f, q, p)

u ⊗ x �→ u ⊗ x̄
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is an isomorphism. Besides, if Q is the algebra Mat2(F ), as shown in the proof of
[BE, Lemma 3.1], gQ(α) is the Lie superalgebra Γ(1, α,−(1 + α)) in the notation
of [Sc, §1. Example 5] and the same arguments that work in characteristic zero
are valid here.

On the other hand, if Q is a division algebra and Φ : gQ(α) → gQ(α′) is an
isomorphism, since Q0 is not isomorphic to sl2(F ) and any automorphism of Q0

extends to an automorphism of Q, which is inner, it follows that either

Φ
(
(f, p, q)

)
=

(
Int(g)(f), Int(a)(p), Int(b)(q)

)
, or

Φ
(
(f, p, q)

)
=

(
Int(g)(f), Int(b)(q), Int(a)(p)

)

for any f ∈ sl2(F ), p, q ∈ Q0, where g ∈ GL(U), a, b are invertible elements in
Q and Int(g)(f) = gfg−1 and similarly for Int(a), Int(b). Take h ∈ GL(U) with
det h = n(a)n(b)−1. Then the linear map

Ψ : gQ(α) → gQ(α)

(f, p, q) �→
(
Int(h)(f), Int(a−1)(p), Int(b−1)(q)

)
u ⊗ x �→ h(u) ⊗ a−1xb

is an automorphism. Composing with it and changing the value of g, we may
assume that either

Φ
(
(f, p, q)

)
=

(
Int(g)(f), p, q

)
or Φ

(
(f, p, q)

)
=

(
Int(g)(f), q, p

)
.

By standard arguments, it follows that there are h ∈ EndF (U) and ρ ∈ EndF (Q)
such that Φ(u⊗x) = h(u)⊗ρ(x) for any u ∈ U and x ∈ Q, with gfg−1h(u) = h(fu)
for any f ∈ sp(U,ϕ) and u ∈ U . Therefore g−1h commutes with any element in
sp(V, ϕ) and hence, since we can scalar g, we may assume that h = g.

In case Φ
(
(f, p, q)

)
=

(
Int(g)(f), p, q

)
, we must have too ρ(px − xq) = pρ(x) −

ρ(x)q for any x ∈ Q and p, q ∈ Q0. This gives ρ(p) = pz, ρ(q) = zq, with z = ρ(1).
It follows that z commutes with all the elements in Q0, so ρ is the multiplication
by a nonzero scalar µ. Then for any u, v ∈ U and x, y ∈ Q, [Φ(u⊗ x),Φ(v ⊗ y)] =
Φ

(
[u ⊗ x, v ⊗ y]

)
, and this gives

µ2
(
t(x̄y)σg(u),g(v),−α′ϕ(g(u), g(v))(xȳ − yx̄), (1 + α′)ϕ(g(u), g(v))(x̄y − ȳx)

)

=
(
t(x̄y)gσu,vg−1,−αϕ(u, v)(xȳ − yx̄), (1 + α)ϕ(u, v)(x̄y − ȳx)

)

for any x, y ∈ Q and u, v ∈ U . But σg(u),g(v) = (det g)gσu,vg−1 and ϕ(g(u), g(v)) =
(det g)ϕ(u, v), thus giving µ2 det c = 1 and µ2(det c)α′ = α, so that α′ = α.

On the contrary, if Φ
(
(f, p, q)

)
=

(
Int(g)(f), q, p

)
, the same arguments as before

give that ρ(x) = µx̄ for a nonzero scalar µ ∈ F and that −α′ = 1 + α. �



224 A. Elduque CMH

As in the previous sections, this gives that some forms of the Lie superalgebras
D(2, 1;α) are given by the Tits construction. Here a quaternion instead of an
octonion algebra is used and the Jordan superalgebra that appears is the simple
Jordan superalgebra Dα in (3.1):

Corollary 4.2. (See [BE, Theorem 4.2].) Let Q be a quaternion algebra and
α ∈ F \ {0,−1}. Then T (Q,Dα) is a form of the Lie superalgebra D(2, 1;α).

There is another family of forms of some D(2, 1;α) whose even part contains
an ideal isomorphic to sl2(F ). It corresponds to case Dii). Let g0̄ = sl2(F ) ⊕ Q0,
where Q is a quaternion algebra over a quadratic field extension K of F with
NK/F ([Q]) = 1. By the Albert–Riehm–Scharlau Theorem (see [KMRT, (3.1)]), Q
admits a K/F -involution of the second kind τ . Then if Gal(K/F ) = {1, ι}, Q is a
four dimensional K-module for Q ⊗K ι−1Q by means of

(p ⊗ q).x = pxτ(q) (4.1)

for any p, q, x ∈ Q. Let W = {x ∈ Q : τ(x) = x}. W is a four dimensional
vector space over F which is fixed by the action of the F -subalgebra NK/F (Q) of
Q ⊗K ι−1Q, and hence becomes an irreducible module for NK/F (Q). Note that
the Lie F -algebra Q0 embeds in NK/F (Q) by means of q �→ q⊗ 1 + 1⊗ ι−1q. This
makes W a module for the Lie F -algebra Q0.

Tensoring with K we have the following isomorphisms of Lie algebras and
modules (over K):

K ⊗ Q0 → Q0 ⊕ Q0

1 ⊗ q �→ (q,−τ(q))

K ⊗ W → Q

1 ⊗ x �→ x
(4.2)

where the K-vector space Q is a module for the Lie K-algebra Q0 ⊕Q0 by means
of (p, q).x = px − xq for any p, q ∈ Q0 and x ∈ Q. Since the dimension of the
K-vector space HomQ0⊕Q0(Q ⊗K Q,K) = Homo(Q,n)(Q ⊗K Q,K) is 1 and the
dimension of HomQ0⊕Q0(Q⊗K Q,Q) is 2 (after scalar extension, Q0⊕Q0 becomes
sl2(F̄ )⊕ sl2(F̄ ) and Q = Ū ⊗F̄ Ū , with Ū the natural two dimensional module for
sl2(F̄ ), and these computations are easy), it follows that

HomQ0(W ⊗ W,F ) = F -span〈x ⊗ y �→ t(x̄y)〉,
HomQ0(W ⊗ W,W ) = K-span〈x ⊗ y �→ xȳ − yx̄〉.

Note that for any x, y ∈ W , t(x̄y) = t(τ(x̄y)), so t(x̄y) ∈ F and, by dimension
count, Q0 ∼= o(W, t(x̄y)), the orthogonal Lie algebra relative to this bilinear form.

The analogous result to Lemma 4.1 in this case is the following:

Proposition 4.3. Let K/F be a quadratic field extension, let Q be a quaternion
algebra over K with NK/F ([Q]) = 1, τ a K/F -involution of the second kind on Q
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and W the set of fixed elements by τ . Let U be a two dimensional space with a
nonzero skew-symmetric form ϕ : U ×U → F . For u, v ∈ U , let σu,v ∈ sp(U,ϕ) ∼=
sl2(F ) as in Lemma 4.1. For nonzero µ ∈ K, let g = g0̄ ⊕ g1̄ be the superalgebra
with

g0̄ = sp(U,ϕ) ⊕ Q0

g1̄ = U ⊗ W

and with multiplication given by
• the usual Lie bracket in g0̄,
• [(f, p), u ⊗ x] = f(u) ⊗ x + u ⊗ (px + xτ(p)),
• [u ⊗ x, v ⊗ y] =

(
t(x̄y)σu,v,−µϕ(u, v)(xȳ − yx̄)

)
,

for u, v ∈ U , x, y ∈ W , f ∈ sp(U,ϕ) and p, q ∈ Q0. Then:
(i) g is a Lie superalgebra if and only if µ + ι(µ) = −1, and in this case, g is a

form of the exceptional classical simple Lie superalgebra D(2, 1;µ). Denote
it by gQ/K(µ).

(ii) gQ/K(µ) does not depend on the involution τ . If other K/F -involution is
used, an isomorphic Lie superalgebra is obtained.

(iii) If 0 �= µ, µ′ ∈ K satisfy µ + ι(µ) = −1 = µ′ + ι(µ′), and Q,Q′ are quater-
nion algebras over K with K/F -involutions of second kind, then gQ/K(µ) ∼=
gQ′/K(µ′) if and only if Q is isomorphic to Q′ (as K-algebras) and either
µ′ = µ or µ′ = ι(µ) = −(1 + µ).

Proof. By extending scalars to K and using (4.2), it follows that K ⊗ g is the
K-superalgebra considered in Lemma 4.1 with α = µ and β = ι(µ), whence (i)
follows.

Assume that τ ′ is another involution of second kind of the K-algebra Q, then
there is an invertible element u ∈ Q with τ(u) = u such that τ ′ = Int(u)τ ([KMRT,
(2.18)] and W ′ = uW = Wu−1, where W ′ denotes the set of fixed elements by τ ′.
Hence the map W → W ′ given by x �→ xu−1 is an isomorphism of Q0-modules
since (px+xτ(p))u−1 = p(xu−1)+ (xu−1)τ ′(p) for any p ∈ Q0 and x ∈ W . Given
0 �= µ ∈ K with µ+ ι(µ) = −1, denote by g the Lie superalgebra constructed with
τ and by g′ the one constructed with τ ′. Then the map which is the identity on
g0̄ and takes u ⊗ x ∈ U ⊗ W to u ⊗ xu−1 gives an isomorphism g ∼= g′

n(u) (notice
that since τ(u) = u, n(u) = uū ∈ F ). Now Lemma 2.1 shows that g and g′ are
isomorphic. This proves (ii).

If gQ/K(µ) and gQ′/K(µ′) are isomorphic, so are the Lie F -algebras Q0 and
(Q′)0. The centroid of any of these algebras is K, so there is a semilinear isomor-
phism between the K-Lie algebras Q0 and (Q′)0 which extends to a semilinear
isomorphism between Q and Q′. Thus either Q and Q′ are isomorphic as K-
algebras, or Q′ is isomorphic to ι−1Q. But Q⊗K ι−1Q ∼= EndK(Q) (see (4.1)), so
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ι−1Q ∼= Qop ∼= Q as K-algebras. Finally, it is easy to check that the map

gQ/K(µ) → gQ/K(ι(u))
(f, p) �→ (f,−τ(p))
u ⊗ x �→ u ⊗ x̄

is an isomorphism. On the other hand, if gQ/K(µ) ∼= gQ/K(µ′), then extending

scalars we get an isomorphism D(2, 1;µ)∼=D(2, 1;µ′), so that µ′ ∈
{

µ,
1
µ

,−(1+µ),

−1
1 + µ

,
−µ

1 + µ
,
−(1 + µ)

µ

}
. But µ+ ι(µ) = −1 = µ′ + ι(µ′) and hence the only pos-

sibilities for µ′ are to be either µ or ι(µ). �

Remark 4.4. Lemma 2.1 and Proposition 1.1 show that the Lie superalgebras
gQ(α) in Lemma 4.1 (Q a quaternion algebra over F , α ∈ F \ {0,−1}) are, up to
isomorphism, the Lie superalgebras which are forms of some D(2, 1;β) and such
that its even part is the direct sum of sl2(F ) and two copies of a three dimensional
simple Lie F -algebra; while the Lie superalgebras gQ/K(µ) in Proposition 4.3 (Q
a quaternion algebra over a quadratic field extension K of F and 0 �= µ ∈ K with
µ + ι(µ) = −1) are, up to isomorphism, the Lie superalgebras which are forms of
some D(2, 1;β) and such that its even part is the direct sum of sl2(F ) and a three
dimensional simple Lie algebra over a quadratic field extension of F .

5. Real forms of the exceptional simple classical Lie super-
algebras

Our previous results give, in particular, the classification up to isomorphism, and
not just equivalence, of the real forms of the exceptional simple classical Lie su-
peralgebras.

First we need some extra notation, that we take from [K]. The complex Lie
algebra G2 has, up to isomorphism, two real forms, G2;1 = DerC, for C the
split Cayley–Dickson algebra over R, and G2;2 = Der O, where O is the classical
division algebra of real octonions. Accordingly, consider G(3; 1) = T (C, Ĵ) and
G(3; 2) = T (O, Ĵ) (see Corollary 2.2).

Now, B3 has four nonisomorphic real forms, namely the orthogonal Lie algebras
o(p, 7− p) (p = 0, 1, 2, 3) of the quadratic forms x2

1 + · · ·+ x2
p − (x2

p+1 + · · ·+ x2
7).

For p = 0, o(p, 7− p) = o(7) = o(O0, n), while for p = 3, o(3, 4) = o(C0, n), where
C and O are, as above, the two real Cayley–Dickson algebras and n denotes their
norm. In both cases, the quadratic space involved has trivial Clifford invariant.
However, the Clifford invariant of the quadratic spaces with signatures (1, 6) and
(2, 5) is nontrivial (hence equal to the class of the classical division algebra H of
real quaternions). In both cases, the quadratic form is universal, so Corollary 3.5
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applies. The corresponding forms of F (4) are denoted by F (4; p) (p = 0, 1, 2, 3)
and their respective even parts are sl2(R) ⊕ o(7), su(2) ⊕ o(1, 6), su(2) ⊕ o(2, 5)
and sl2(R) ⊕ o(3, 4), according to Theorem F.

The real Lie superalgebras that appear in Lemma 4.1 have even part either
sl2(R) ⊕ H

0 ⊕ H
0 ∼= sl2(R) ⊕ su(2) ⊕ su(2) ∼= sl2(R) ⊕ o(4) or sl2(R) ⊕ sl2(R) ⊕

sl2(R) ∼= sl2(R) ⊕ o(2, 2). Denote the corresponding Lie superalgebras gH(α) and
gMat2(R)(α) by D(2, 1;α; p) (p = 0, 2, α ∈ R \ {0,−1}). On the other hand, the
Lie superalgebras that appear in Proposition 4.3 have even part sl2(R)⊕ sl2(C) ∼=
sl2(R) ⊕ o(1, 3). Denote the corresponding Lie superalgebras gMat2(C)/C

(α) by
D(2, 1;α; 1), where now α ∈ C with α + ᾱ = −1.

Theorem 5.1.
a) G(3) has, up to isomorphism, two real forms: G(2; p), p = 1, 2.
b) F (4) has, up to isomorphism, four real forms: F (4; p), p = 0, 1, 2, 3.
c) If α∈C\

(
R∪{z∈C : |z| = 1}∪{z ∈ C : |z +1| = 1}∪{z ∈ C : z + z̄ = −1}

)
,

then D(2, 1;α) has no real form.
d) If α ∈ R \ {0,−1, 1,−2,−1

2}, then D(2, 1;α) has four nonisomorphic real
forms: D(2, 1;α; 2), D(2, 1;α; 0), D(2, 1; 1

α , 0) and D(2, 1; −α
1+α ; 0).

e) If α = 1,−2 or −1
2 , then D(2, 1;α) = osp(4, 2) has four nonisomorphic real

forms: D(2, 1; 1; 2), D(2, 1; 1; 0), D(2, 1;−1
2 ; 0) and D(2, 1;−1

2 ; 1).
f) If α ∈ {z ∈ C : |z| = 1} ∪ {z ∈ C : |z + 1| = 1} ∪ {z ∈ C : z + z̄ = −1}, but

α /∈ R, then D(2, 1;α) has exactly, up to isomorphism, a real form, namely,
D(2, 1;α; 1) if α + ᾱ = −1, D(2, 1; −α

1+α ; 1) if |α| = 1 and D(2, 1; 1+α
−α ; 1) if

|α + 1| = 1.

Proof. For G(3) and F (4) it is clear from the previous results. Now, there are no
cubic field extensions of R and the only quadratic field extension is given by C, and
the quaternion algebras Q over L = R×R×R or L = R×C with trivial NL/R([Q])
involved are, up to isomorphism, Mat2(R)×Mat2(R)×Mat2(R), Mat2(R)×H×H

and Mat2(R) × Mat2(C). Therefore the even parts are restricted to sl2(R) ⊕
sl2(R)⊕ sl2(R), sl2(R)⊕ su(2)⊕ su(2) and sl2(R)⊕ sl2(C). In the first two cases,
the Lie superalgebras are described in Lemma 4.1 (or Corollary 4.2) and in the
third case in Proposition 4.3, including the necessary and sufficient conditions for
isomorphisms. Now, one has to take into account simply that for α, β ∈ C\{0,−1},
D(2, 1;α) ∼= D(2, 1;β) if and only if β ∈

{
α,

1
α

,−(1 + α),
−1

1 + α
,

−α

1 + α
,
1 + α

−α

}
.

(Note that if |α| = 1 and β = −(1 + α) and γ = −1
1+α , then |β + 1| = 1 and

γ + γ̄ = −1.) �
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