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Asymptotic behaviour of Betti numbers
of real algebraic surfaces
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Abstract. Let Xm be a nonsingular real algebraic surface of degree m in the complex projective
space CP 3 and RXm its real point set in RP 3. In the spirit of the sixteenth Hilbert’s problem, one
can ask for each degree m about the maximal possible value βi,m of the Betti number bi(RXm)
(i = 0 or 1). We show that βi,m is asymptotically equivalent to li ·m3 for some real number li
and prove inequalities 13

36
≤ l0 ≤ 5

12
and 13

18
≤ l1 ≤ 5

6
.
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Introduction

A real algebraic surface X in the complex projective space CP 3 is the complex zero
set in CP 3 of some real homogeneous polynomial in four variables. The real zero
set of this polynomial is a surface RX, in the real projective space RP 3, called real
point set of X. (More generally, a real variety is a complex variety X equipped
with an antiholomorphic involution c : X → X, the real point set RX of X is then
the fixed point set of c.) From now on Xm will denote a real nonsingular surface
of degree m in CP 3.

This paper deals with the topological classification problem of real point sets
RXm for a given degree m (the case m = 4 is a part of the sixteen Hilbert’s problem
going back to 1900) and more specifically with the question of the maximal possible
values βi,m (i = 0 or 1) of the Betti numbers bi(RXm) (where homology groups
are taken with coefficients in Z/2). The topological classification problem (and
thus the last question) is now completely solved for m ≤ 4 (see [K1]). For m ≥ 5,
even the values of βi,m are not known (see [I-K1], [B2] and [O] for the case m = 5).
Here, we are interested in the asymptotic behaviour (when m → +∞) of βi,m. We
first show that βi,m is asymptotically equivalent to li ·m3 for some real number

The author acknowledges support from the Swiss National Science Foundation. He would
like to thank the universities of Geneve and Lausanne for their hospitality.



228 F. Bihan CMH

li (Proposition 1.1). A standard application of the Smith–Thom and Comessati
inequalities leads to the upper bounds l0 ≤ 5

12 and l1 ≤ 5
6 (see [D-K] for a recent

survey on the topology of real algebraic varieties). On the other hand, the best
lower bounds previously known were l0 ≥ 7

24 [V2] and l1 ≥ 97
144 [I2]. In this

paper, we shall improve these lower bounds by showing that l0 ≥ 13
36 and l1 ≥ 13

18
(Theorem 1.2).

We define algebraic surfaces of type D2k in some weighted projective space (see
2.1). Such a real nonsingular surface can be equivariantly deformed, by a small
deformation, to a real nonsingular surface of degree 2k in CP 3 with equation
fk(Z)2 − ε · f2k(Z) = 0, where fi(Z) is a real homogenous polynomial of degree
i in Z = (Z0 : Z1 : Z2 : Z3) and 0 < ε ¿ 1 (a small perturbation of a double
surface). Assuming that the surfaces X2k and Xk defined by f2k and fk, respec-
tively, are nonsingular surfaces intersecting transversely, the corresponding surface
of type D2k, and thus the real surface in CP 3 with equation fk(Z)2−ε ·f2k(Z) = 0
for small ε > 0, is then a nonsingular surface whose topological type of real point
set is determined by that of the triple (RP 3, RX2k, RXk). This construction of
real nonsingular hypersurfaces resulting from small perturbations of double hyper-
surfaces is classical in real algebraic geometry and seems to go back, at least, to
K. Rohn. In fact, this is essentially the construction used in [V2] where the bound
l0 ≥ 7

24 is obtained. The deformation we use comes from a paper of E. Horikawa
[Ho] where complex surfaces of type D6 are found in the deformation family of
sextics in CP 3.

In this paper, we apply the above construction in order to produce surfaces
in RP 3 with large Betti numbers. This is done using the famous construction
method of real algebraic hypersurfaces due to O. Viro (see [V3, V4, V5, R]), its
combinatorial version the combinatorial patchworking, and the extension of this
last version to the case of complete intersections obtained by B. Sturmfels [S1].
The construction presented in this paper has its own interest since it gives an
increasing function relating Betti numbers of real algebraic surfaces in CP 3 and
numbers of even (or odd) ovals of real plane curves (see Remark 2, Section 5).
Moreover, this construction can be easily generalized in higher dimensions.

From now on, all polytopes and polyhedral subdivisions shall have integral
vertices i.e. vertices with integer coordinates.

1. Results

As in the introduction, let βi,m denote the maximal possible value of bi(RXm) for
a given m (i = 0 or 1). The following result is due to I. Itenberg and V. Kharlamov
[I-K2].

Proposition 1.1. The sequence βi,m is asymptotically equivalent, when m →
+∞, to li ·m3 for some real number li.
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Proof. By Smith–Thom inequality the sequence βi,m

m3 is bounded, hence admits a
superior limit li. We are going to show that li is indeed the limit of βi,m

m3 in the
following way: for a given ε > 0, we construct using the Viro method a family
of surfaces Xm in CP 3 such that bi(RXm)/m3 ≥ li − ε for any sufficiently large
degree m.

Let Xk be a given surface in CP 3 (we shall have bi(RXk)/k3 close to li).
For any positive integer number m, denote by Tm the tetrahedron with vertices
(0, 0, 0), (m, 0, 0), (0,m, 0) and (0, 0,m) in R3. Let p be any positive integer
number. Take any convex triangulation of Tp all of whose tetrahedra have euclidian
volume 1

6 , or equivalently which contains the maximal number p3 of tetrahedra (see
2.2 for the definition of a convex triangulation and [I2] for examples of so-called
primitive or unimodular convex triangulations of Tp). Consider now the convex
triangulation of the tetrahedron Tp(k+4) obtained from the previous triangulation
by applying the transformation x → (k+4)·x. The resulting triangulation contains
p3 tetrahedra such that each of them has euclidian volume (k+4)3

6 . The crucial
point is that each of these p3 tetrahedra contains in its interior the image of Tk

under some affine unimodular integral transformation. Indeed, any tetrahedron
P (with integral vertices) having euclidian volume (k+4)3

6 is the image of Tk+4

under such a transformation ϕP . We have then ϕP ((1, 1, 1) + Tk) ⊂ Int(P ) since
(1, 1, 1) + Tk ⊂ Int(Tk+4). Therefore, we can refine the above triangulation of
Tp(k+4) in order to obtain a convex triangulation {Qj , j ∈ J} (here the Qj ’s
are tetrahedra) containing p3 disjoint images of Tk by affine unimodular integral
transformations. Now, let (Z0 : · · · : Z3) be homogenous coordinates of CP 3 and
assume that RXk∩{Zi = 0} = ∅ for i = 0, · · · , 3. Let f be some affine polynomial
defining the surface Xk in the chart {Z0 6= 0} with affine coordinates

(
Z1
Z0

, Z2
Z0

, Z3
Z0

)
.

The previous assumption implies that RXk = {f = 0}∩(R∗)3. We can associate to
the triangulation {Qj , j ∈ J} of Tp(k+4) a collection {fj , j ∈ J} of nondegenerate
polynomials (see 2.2 for the definition of a nondegenerate polynomial) verifying
the following conditions:

• fj has Qj as Newton polytope for any j ∈ J ,
• the truncation of fj and fj′ to a common face of Qj and Qj′ coincide,
• if Qj is one of the p3 images of Tk under some affine unimodular integral

transformation, then fj is the image of f under the corresponding monomial
change of coordinates.

The first two conditions allow us to apply the Viro method in order to construct a
nonsingular surface Xp(k+4) whose real point set is homeomorphic to a topological
surface obtained by gluing together the sets {fj = 0} ∩ (R∗)3 for j ∈ J (the
gluing being determined by the triangulation). The third condition ensures that
{fj = 0}∩(R∗)3 is homeomorphic to {f = 0}∩(R∗)3, hence to RXk. It follows that
these p3 homeomorphic copies of RXk are disjoint in RXp(k+4) since the gluing is
made along intersections of the {fj = 0} with the coordinate and infinity planes.
Note also that for the same reason these p3 homeomorphic copies of RXk contained
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in RXp(k+4) do not intersect the coordinate or infinity planes. In particular, we
obtain bi(RXp(k+4)) ≥ p3 · bi(RXk), which leads to

bi(RXp(k+4))
p3 · (k + 4)3

≥ bi(RXk)
k3

− bi(RXk)
k3

·
[
1− 1

(1 + 4/k)3
]
. (1)

Let ε > 0 be given. From the definition of li, for sufficiently large k there exists
a surface Xk verifying

bi(RXk)
k3

≥ li − ε/2. (2)

Then, such a surface can obviously be chosen in order to verify RXk∩{Zi = 0} = ∅
for i = 0, · · · , 3. Recall that the sequence βi,m

m3 is bounded. Therefore, by (1) one
can also assume that the surface Xp(k+4) constructed from Xk verifies

bi(RXp(k+4))
p3 · (k + 4)3

≥ bi(RXk)
k3

− ε/4. (3)

Now, fix some sufficiently large k in order to have the inequalities (2) and (3)
and consider a family of surfaces {Xp(k+4), p ≥ p0} constructed as before for each
p ≥ p0, where p0 is some positive integer number. Extend this family to a whole
family F = {Xm, m ≥ p0(k + 4)} in the following way: if m is any integer
number such that p(k + 4) < m < (p + 1)(k + 4) for some integer p ≥ p0, then
consider the union of Xp(k+4) with m − p(k + 4) planes which do not intersect
the p3 homeomorphic copies of RXk contained in RXp(k+4) (as we have noticed
before, these p3 homeomorphic copies do not intersect the coordinate planes, hence
we can take planes which are close to the coordinate ones) and take for Xm any
smoothing of the resulting surface. It follows that bi(RXm) ≥ p3 · bi(RXk) and,
using m < (p + 1)(k + 4), we obtain

bi(RXm)
m3

≥ bi(RXk)
k3

− bi(RXk)
k3

·
[
1− 1

[(1 + 4/k)(1 + 1/p)]3
]
. (4)

Recall that the sequence βi,m

m3 is bounded. Consequently, if p0 is chosen sufficiently
large, then by (4) and (3), for any surface Xm ∈ F we shall have

bi(RXm)
m3

≥ bi(RXk)
k3

− ε/2. (5)

and thus by (2)
bi(RXm)

m3
≥ li − ε.

¤

Remark 1.1. The previous proof works in any dimension. Namely, one can show
the asymptotic equivalence, when m → +∞, between the sequence β

(n)
i,m of the

maximal possible values of the Betti numbers bi(RXn
m) (i = 0, · · · , n−1) and some

real number l
(n)
i times mn (where i, n are fixed and Xn

m denotes a nonsingular real
algebraic hypersurface of degree m in CPn).



Vol. 78 (2003) Asymptotic behaviour of Betti numbers 231

The largest part of the paper is devoted to constructions of surfaces proving
the following result.

Theorem 1.1. Let i = 0 or 1. For any ε > 0, there exists a family of surfaces
Xm in CP 3 such that

bi(RXm) >
(13(1 + i)

36
− ε

)
·m3

for any sufficiently large degree m.

As a corollary of Theorem 1.1 and the classical upper bounds l0 ≤ 5
12 , l1 ≤ 5

6 ,
we obtain the main result of this paper.

Theorem 1.2. The real numbers l0 and l1 verify

13
36

≤ l0 ≤ 5
12

and
13
18

≤ l1 ≤ 5
6
.

2. Constructions

2.1. Surfaces of type D2k

Denote by CP 4(k) the four dimensional weighted complex projective space with
homogeneous coordinates Z0, Z1, Z2, Z3 of weight 1 and Z4 of weight k (where k
is some positive integer number). A real surface of type D2k is a surface Y defined
in CP 4(k) by a system of equations of type{

Z4
2 − f2k(Z) = 0,

fk(Z) = 0,

where f2k(Z) and fk(Z) are real homogeneous polynomials of degree 2k and k in
the variables Z = (Z0 : Z1 : Z2 : Z3), respectively. The surface Y is then real
with respect to the standard complex conjugation (Z : Z4) → (Z : Z4) in CP 4(k).
Assume that the real surfaces X2k and Xk defined, respectively, by f2k and fk in
CP 3 are nonsingular surfaces (this will be always the case later). Then, we shall
say that Y is associated with the pair (X2k, Xk).

Proposition 2.1 (see [Ho]). Let Y be a real surface of type D2k associated with
a pair of (nonsingular) surfaces (X2k, Xk) whose real point sets intersect trans-
versely. Then, there exists a small equivariant deformation of Y to a real nonsin-
gular algebraic surface of degree 2k in CP 3. In particular, the real point set of the
latter surface is homeomorphic to RY .

Proof. A desired deformation is given by the family of surfaces Y ε, ε ∈ R and
Y 0 = Y , defined in CP 4(k) by {Z4

2 − f2k(Z) = 0, fk(Z) − εZ4 = 0}. The
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projection CP 4(k) \ {(0 : 1)} → CP 3, (Z : Z4) → Z, produces an equivari-
ant isomorphism between Y ε, ε 6= 0, and the real surface Xε in CP 3 defined by( fk(Z)

ε

)2 − f2k(Z). Since RX2k and RXk are nonsingular surfaces intersecting
transversely, both surfaces RY and RXε are nonsingular and homeomorphic for
sufficiently small ε. ¤

Let Y be a surface of type D2k as in Proposition 2.1, then Y is isomorphic to the
double covering of Xk branched along the curve Xk∩X2k. Moreover, the topology
of RY is given by that of the triple (RP 3, RX2k, RXk). Namely, the surface RY
is projected two-to-one onto the interior of RX+

k = RXk ∩ {f2k(Z) ≥ 0} and
one-to-one onto the boundary RX2k ∩ RXk of RX+

k .

RYy 2

RX2k ∩ RXk ⊂ RX+
k

2.2. A particular case of Sturmfels’s theorem

We use the extension due to Sturmfels [S1] of the combinatorial patchworking in
order to construct a pair of surfaces (X2k, X̂k), where X2k is a real nonsingular
surface of degree 2k in CP 3 and X̂k is a real surface of degree k in CP 3 having
a single nondegenerate point as singularities. In the rest of this paper, we shall
assume k ≥ 3. Consider the sets

P1 = {(x, y, z) ∈ Z3, x, y, z ≥ 0, k − 1 ≤ x + y + z ≤ k},
P2 = {(x, y, z) ∈ Z3, x, y, z ≥ 0, x + y + z ≤ 2k},

and denote by Pi the convex hull of Pi. For each positive real number t, let
fi,t(z) ∈ R[z1, z2, z3] be a so-called affine Viro polynomial defined by

fi,t(z) =
∑

w∈Pi

si(w)tνi(w)zw,

where si takes values ±1 (si(w) will be sometimes called sign of w) and νi : Pi →
R+ is a convex function. Define the polytope P νi = conv{(w, νi(w)), w ∈ Pi} and
denote by Gνi the lower part of P νi . By projecting faces of Gνi ⊂ R3×R onto R3,
the function νi defines a polyhedral subdivision τi of Pi. Polyhedral subdivisions
of polytopes obtained in this way are called convex. Assume that τ1 and τ2 are
triangulations with sets of vertices P1 and P2, respectively. In this case, the above
Viro polynomials are called T-polynomials.

Consider the Minkowsky sums P = P1 + P2, P ν = P ν1 + P ν2 and denote by
Gν the lower part of P ν . Projecting faces of Gν ⊂ R3 × R onto R3, we get a
polyhedral subdivision τ of P . Each face F ν of Gν has a unique representation
F ν = F ν1 + F ν2 , where F νi is a face of Gνi , which induces, via the projection,
a particular representation F = F1 + F2, where Fi is a simplex of τi, of each
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polytope F of the subdivision τ . We shall refer to this particular representation
when writing F = F1 +F2 with F ∈ τ and Fi ∈ τi. Assume that for each polytope
F = F1 + F2 of τ , we have dim(F ) = dim(F1) + dim(F2). Then, the subdivision
(or decomposition) τ is called mixed decomposition ([S1]).

Let Rn be the group of symmetries in Rn generated by reflections with respect
to the coordinate hyperplanes. Let us identify (Z/2)n with Rn by sending r =
(r1, · · · , rn) to

(
(x1, · · · , xn) → ((−1)r1x1, · · · , (−1)r1xn)

)
. For any polytope T

in Rn, let T ∗ be the union of all the symmetric copies r(T ) of T for r ∈ Rn.
For any face Γ of T ∗ and any vector α ∈ Zn orthogonal to Γ, identify Γ with its
symmetric copy α(Γ) (where α denote the reduction of α in (Z/2)n). Denote by
T̃ the resulting space.

Denote by τ∗ (resp. τ∗i ) the unique subdivision of P ∗ (resp. P ∗
i ) which extends

τ (resp. τi) and which is invariant with respect to Rn. Extend si to a distribution
of signs on the set of vertices of τ∗i following the rule: si(r(w)) = si(w) · (−1)〈r,w〉,
where 〈 , 〉 is the usual scalar product in (Z/2)3. For each vertex w = w1 + w2 of
τ∗, where wi ∈ τ∗i , define its sign vector s(w) = (s1(w1), s2(w2)).

We perform the construction of piecewise linear surfaces in P̃i and P̃ . For any
tetrahedron of τ∗i having at least two vertices with different signs, consider its
edges having endpoints with different signs and select the triangle or quadrangle
having the middle points of these edges as vertices. The union of all the selected
pieces is a piecewise linear surface in P ∗

i . Denote by S̃i its image in P̃i. For any
three-dimensional polytope (a prism or a tetrahedron) F = F1+F2 of τ∗ such that
S̃1∩F1 6= ∅, select the Minkowsky sum (S̃1∩F1)+F2 (a quadrangle or a triangle).
The union of all the selected pieces is a piecewise linear surface in P ∗. Denote by
S̃1 its image in P̃ . Similarly, for any three-dimensional polytope F = F1 + F2 of
τ∗ such that S̃2∩F2 6= ∅, select F1 +(S̃2∩F2). The union of all the selected pieces
is a piecewise linear surface in P ∗ whose image in P̃ is denoted by S̃2.

Remark 2.1. By construction, we clearly have the following properties.

(1) The distribution si is constant on each connected component of P̃i \ S̃i and
its value changes while passing through S̃i.

(2) The coordinate si of the distribution of sign vectors s is constant on each
connected component of P̃ \ S̃i and its value changes while passing through
S̃i.

Consider the affine chart {Z0 6= 0} of CP 3 with coordinates z = (z1, z2, z3),
where zi = Zi

Z0
. Let q : CP̃ 3 → CP 3 be the blowing up of CP 3 at the point

O = (1 : 0 : 0 : 0) (so O has affine coordinates (0, 0, 0) in {Z0 6= 0}). Consider the
real structure on CP̃ 3 which lifts that of CP 3. Let X̂k and X2k be the real surfaces
in CP 3 which are defined in the chart {Z0 6= 0} by f1,t and f2,t, respectively.
Denote by L the exceptional divisor of q and by W1, W2 the strict transforms of
X̂k and X2k, respectively. Finally, denote by p the facet of P supported by the
plane {x + y + z = k − 1}.
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The following proposition is a particular case of a result of Sturmfels.

Proposition 2.2. Assume that τi (i = 1, 2) is a triangulation with set of vertices
Pi and τ is a mixed decomposition of P . Then, for sufficiently small t > 0, the
polynomials f1,t and f2,t are nondegenerate, the surfaces RW1 and RW2 intersect
transversely, and there exists a homeomorphism h : RP̃ 3 → P̃ sending RL, RW1

and RW2 to p̃, S̃1 and S̃2, respectively. Consequently, if U is any neighbourhood of
O ∈ RP 3 and V = h ◦ q−1(U), then h ◦ q−1 induces a homeomorphism RP 3 \ U →
P̃ \V sending RX̂k \RX̂k ∩U and RX2k \RX2k ∩U to S̃1 \ S̃1∩V and S̃2 \ S̃2∩V,
respectively.

An affine polynomial f in n variables is nondegenerate if for any face Γ of its
Newton polytope (including the Newton polytope itself), the truncation fΓ of f
to Γ defines a nonsingular hypersurface in the real torus (R∗)n (see [R]). The
non-degeneracy of f1,t and f2,t (for sufficiently small t > 0) implies that RW1,
RW2, RX2k are nonsingular surfaces and the surface RX̂k has the single point O
as singularities (moreover O is a nondegenerate singularity of RX̂k). Furthermore,
we obtain that for sufficiently small t > 0 the surfaces RX̂k and RX2k intersect
transversely since, by Proposition 2.2, this is the case for the surfaces RW1 and
RW2.

2.3. Smoothing

Let X̂k be a given real surface in CP 3 defined by some nondegenerate polynomial
f1 having as Newton polytope the polytope P1 described in 2.2. We use the Viro
method in order to smooth X̂k.

For any positive integer number m, let us denote by Tm the tetrahedron which
is the convex hull of {(x, y, z), x, y, z ≥ 0, x + y + z ≤ m}. Decompose the
tetrahedron Tk into the union of the polytopes P1, Tk−2 and the intermediate
polytope I = conv{(x, y, z), x, y, z ≥ 0, k − 2 ≤ x + y + z ≤ k − 1}. Let v
and g be nondegenerate real polynomials with Newton polytopes Tk−2 and I,
respectively, and assume that any truncation of two polynomials among f1,v and
g to a common face of their Newton polytopes coincide. Consider any convex
function ν : Tk → R+ which is linear on P1, Tk−2 and I but not linear on the union
of any two of them, and which vanishes identically on P1 but is strictly positive
outside P1. For example, take ν(x, y, z) = 0 on P1, ν(x, y, z) = (k−1)−(x+y+z) on
I and ν(x, y, z) = 2k−3−2(x+y+z) on Tk−2. The associated Viro polynomial pt(z)
is equal to f1(z) plus a polynomial with the property that each of its coefficients
contains t to a strictly positive real number. Therefore, the polynomial pt(z)
defines for a sufficiently small t a real surface Xk of degree k in CP 3 which is a
small perturbation of X̂k. By Viro theorem (see [V3] or Theorem 4.2 in [R]) we
obtain that RXk is a nonsingular surface homeomorphic to a topological surface
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obtained by gluing together {f1 = 0}∩ (R∗)3, {v = 0}∩ (R∗)3 and {g = 0}∩ (R∗)3

following the subdivision of Tk. In particular, if Vk−2 denotes the nonsingular real
surface of degree k − 2 in CP 3 defined by the polynomial v, the Viro theorem
implies the following statement.

Proposition 2.3. For sufficiently small t > 0, the polynomial pt(z) is nondegen-
erate and there exist two small neighbourhoods U1 and U2 of O ∈ RP 3, U1 ⊂ U2,
which can be chosen as small as wanted for t small enough, such that RXk is
homeomorphic,

(1) inside U1, to some affine part of RVk−2,
(2) outside U2, to RX̂k outside a small neighbourhood of O ∈ RP 3.

Furthermore, we have

bi(RXk) = bi(RVk−2) + O(k2).

The last inequality in Proposition 2.3 is an easy consequence of the Smith–
Thom inequality together with the equality 6[vol(Tk)−vol(Tk−2)] = k3−(k−2)3 =
O(k2) (where vol(·) denotes the euclidian volume). This inequality will be useful
later since we shall be interested in the Betti numbers of RXk for k big enough.

2.4. Real surfaces of type D2k

Let X2k and X̂k be surfaces in CP 3 defined by T-polynomials f2,t0 and f1,t0 , re-
spectively, as in 2.2, and assume that the value t0 is sufficiently small in order
to have the properties stated in Proposition 2.2. Perform the smoothing of X̂k

described in 2.3 and let Xk be the resulting surface defined by the Viro polynomial
pt. For t > 0 sufficiently small, the surface Xk is a nonsingular surface, further-
more, its real point set RXk intersects RX2k transversely, because so does RX̂k

and Xk is a small deformation of X̂k. Consequently, if Y is the surface of type D2k

associated with (X2k, Xk), then RY is nonsingular and there exists (Proposition
2.1) a small deformation of Y to a real nonsingular surface of degree 2k in CP 3

whose real point set is homeomorphic to RY .
The topogical type of RY (in fact, its “asymptotic part”) will be obtained using

the proposition below. Recall that the topological type of RY is closely related to
that of RX+

k = RXk ∩ {f2,t0(Z) ≥ 0}.

Proposition 2.4. Let U be any neighbourhood of O in RP 3 and V = h ◦ q−1(U)
be the corresponding neighbourhood of p̃ in P̃ (see Proposition 2.2). Suppose t > 0
is sufficiently small.

Then, there exists a homeomorphism

RP 3 \ U −→ P̃ \ V
sending RXk \ RXk ∩ U to S̃1 \ S̃1 ∩ V and RX2k \ RX2k ∩ U to S̃2 \ S̃2 ∩ V.
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Moreover, if U ∩ RX2k = ∅ and s2((0, 0, 0)) = +1 (the sign given by s2 at the
vertex (0, 0, 0) of P2), then

• RX+
k ∩ U coincides with RXk ∩ U ,

• the above homeomorphism RP 3 \U → P̃ \V sends RX+
k ∩(RP 3 \U) to S̃1,+∩

(P̃ \ V), where S̃1,+ is the intersection of S̃1 with the connected components
of P̃ \ S̃2 containing vertices on which s2 takes the value +1.

Proof. For sufficiently small values of t, the surface RXk is homeomorphic to RX̂k

in the complementary part of U in RP 3, and intersects transversely RX2k. Hence,
for sufficiently small t, the pair (RX2k, RXk) is homeomorphic to (RX2k, RX̂k) in
the complementary part of U in RP 3. It remains to use Proposition 2.2 to obtain
the desired homeomorphism RP 3 \ U → P̃ \ V.

Suppose now U ∩ RX2k = ∅ and s2((0, 0, 0)) = +1. Then f2,t0 takes a positive
value in the point O, hence in the whole U since U ∩ RX2k = ∅. Consequently,
connected components of RXk contained in U are connected components of RX+

k .
Moreover, the distribution s2 takes the value +1 in all the vertices of τ∗ contained
in p∗, hence in V since V ∩ S̃2 = ∅. The last part of the proposition is now obvious
in view of Remark 2.1. ¤

3. Application

We apply simultaneously the construction described in Section 2 in order to ob-
tain two real nonsingular surfaces Y c

2k and Y h
2k of type D2k associated with pairs

(Xc
2k, Xk) and (Xh

2k, Xk), respectively. The surfaces Y c
2k will give, via deformation,

surfaces in RP 3 with a large number of connected components while the surfaces
Y h

2k will give surfaces in RP 3 with a large number of handles (superscripts “c” and
“h” are for components and handles, respectively).

Let us describe a mixed decomposition τ of P and distributions of sign vectors
(s1, s

c
2) and (s1, s

h
2 ) producing as in 2.2 pairs of surfaces (X̂k, Xc

2k) and (X̂k, Xh
2k),

respectively. Denote by p1 the facet of P1 supported by the plane {x + y + z = k}
and by p2 the facet of P2 supported by {z = 0}. The decomposition τ of P we are
going to use is obtained as follows. First, decompose P into the Minkowsky sums
(see Figure 1)

P1 + (0, 0, 0), Λ1 = p1 + [(0, 0, 0), (2k, 0, 0)],
(0, 0, k) + P2, Λ2 = [(0, 0, k), (0, k, 0)] + p2.

Then, subdivise all these polytopes using convex triangulations τ1 and τ2 of P1

and P2, respectively. Namely, the decomposition consists of the following three
dimensional polytopes:

• σ + (0, 0, 0) for any tetrahedron σ ∈ τ1,
• (0, 0, k) + σ for any tetrahedron σ ∈ τ2,
• σ1 + σ2 for any triangle σ1 ∈ τ1 contained in p1 and any edge σ2 ∈ τ2

contained in the edge [(0, 0, 0), (2k, 0, 0)] of P2,
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• σ1 + σ2 for any edge σ1 ∈ τ1 contained in the edge [(0, 0, k), (0, k, 0)] of P1

and any triangle σ2 ∈ τ1 contained in p2.

k-1

1

2k

P  +(0,0,0)1 Λ 1

Λ 2

(0,0,k)+P2

Fig. 1. A mixed decomposition of P

Let Q ⊂ R×R3 be the convex hull of the set {e1}×P1∪{e2}×P2 (where ei is an
integer number). In other words, the polytope Q is the join {e1} × P1 ? {e2} × P2.

Lemma 3.1 (see [S2]). Mixed decompositions of P are in one-to-one correspon-
dence with convex triangulations of Q. Such a correspondence may be described as
follows. Let τQ be any triangulation of Q. It induces for i = 1, 2 a triangulation
τi of Pi and each four dimensional simplex of τQ is a join {e1} × σ1 ? {e2} × σ2,
where σi ∈ τi. The corresponding three dimensional polytope in the decomposition
of P is then the Minkowsky sum σ1 + σ2.

Take the joins {e1} × P1 ? {e2} × {(0, 0, 0)}, {e1} × {(0, 0, k)} ? {e2} × P2,
{e1} × p1 ? {e2} × [(0, 0, 0), (2k, 0, 0)] and {e1} × [(0, 0, k), (0, k, 0)] ? {e2} × p2,
and refine them in the unique possible way using convex triangulations τ1 and τ2.
The resulting triangulation τQ of Q is obviously convex and corresponds to the
decomposition τ above. Therefore, by Lemma 3.1, the decomposition τ is a mixed
decomposition.

To achieve the description of τ , it remains to define triangulations τ1 and τ2.
We simultaneously define associated distributions of signs s1, sc

2 and sh
2 . First, let

us recall the notion of T-curves, which are, by definition, those curves constructed
by means of the combinatorial patchworking (see [I1]).
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3.0.1. T-curves in RP 2. For any positive integer number m, denote by tm the
triangle with vertices (0, 0), (m, 0), (0,m) in R2. Start with a convex triangulation
(with integral vertices) γ of tm and a distribution of signs s : vert(γ) → ±1 at
the vertices of γ. Extend γ to a triangulation γ∗ of t∗m invariant with respect to
R2. Extend s to a distribution of signs on the set of vertices of γ∗ following the
rule: s(r(w)) = s(w) · (−1)〈r,w〉, where 〈 , 〉 is the usual scalar product in (Z/2)2.
For each triangle of γ∗ having at least two vertices with different signs, select the
segment joining the middle points of its two edges having endpoints with different
signs. The union of the selected pieces is a piecewise linear curve in t∗m, denote by
ã its image in t̃m.

Theorem 3.1 (Viro, see [I1]). There exists a nonsingular curve A of degree m in
RP 2 such that the pair (RP 2, RA) is homeomorphic to (t̃m, ã).

Such a curve A is called a T-curve and may be obtained as the zero set of
some T-polynomial associated with the considered triangulation and distribution
of signs.
3.0.2. Triangulation and distribution of signs for P1. Identify p1 with the
triangle tk in R2 using the map (x, y, z) → (y, z). We use a triangulation of tk and
a distribution of signs at its vertices which produce a T-curve of degree k in RP 2

being an M -curve, i.e. having (k−1)(k−2)
2 + 1 ovals (see [I1]). Namely, take any

primitive convex triangulation of tk (a triangulation of tm is called primitive if its
set of vertices coincides with that of all the integer points contained in tm) and
the distribution of signs at its vertices which takes values +1 in any point with
both coordinates even and −1 otherwise. Then, we extend the triangulation of p1

to any convex triangulation τ1 of P1, and choose any distribution of signs s1 at
the vertices of τ1 which extends the above distribution.
3.0.3. Triangulation and distributions of signs for P2. Identify p2 with
the triangle t2k using the map (x, y, z) → (x, y). Take any primitive convex tri-
angulation γ of t2k and consider any distribution of signs sγ at its vertices which
produce a T-curve of degree 2k in RP 2 whose real point set consists of 2k2 +O(k)
ovals such that 5k2

3 + O(k) of them are even ovals (an oval of a curve in RP 2 is
called even, resp. odd, if it is lying inside an even, resp. odd, number of ovals of
the curve). Such a T-curve does exist [Ha]. We define the restrictions of sc

2 and
sh
2 to the set of vertices of γ in the following way. On the subset of those vertices

lying on the segment [(0, 0), (2k, 0)], let sc
2 and sh

2 take value +1 in the points with
even x-coordinate and −1 in the other points. On the complementary subset, let
sc
2 coincide with sγ and sh

2 coincide with the opposite distribution −sγ . Finally,
take the cones with vertex (0, 0, 2k) over all the triangles of γ, and choose any sign
for the vertex (0, 0, 2k). Consider two T-curves Ac and Ah of degree 2k in RP 2

associated with (γ, sc
2) and (γ, sh

2 ), respectively (in fact the restrictions of sc
2 and

sh
2 to the set of vertices of γ). Both curves have 2k2 +O(k) ovals in RP 2 such that

5k2

3 + O(k) of them are even ovals. Let ãc and ãh be the corresponding piecewise
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linear curves constructed in t̃2k. Replacing sγ by −sγ if necessary, assume that
the ovals of ãc bording from the exterior components of t̃2k \ ãc on which sc

2 takes
values +1 are in one to one correspondence with the even ovals of Ac. Then, the
ovals of ãh bording from the exterior components of t̃k−2 \ ãh on which sh

2 takes
values +1 are in one to one correspondence with the odd ovals of Ah.

Let X̂k, Xc
2k and Xh

2k be surfaces in CP 3 defined by T-polynomials f1,t0 , fc
2,t0

and fh
2,t0 associated, respectively, with the pairs (τ1, s1), (τ2, s

c
2) and (τ2, s

h
2 ) de-

scribed above. Assume that t0 is sufficiently small in order to have the properties
stated in Proposition 2.2 for the pairs of surfaces (X̂k, Xc

2k) and (X̂k, Xc
2k). Let

Xk be a surface in CP 3 obtained starting from X̂k as in 2.3. It is defined by some
Viro polynomial pt. Denote by Ac and Ah the real curves given by the intersection
of Xk with Xc

2k and Xh
2k, respectively.

Proposition 3.1. For sufficiently small t > 0, the curves RAc and RAh are non-
singular curves with 3k3 + O(k2) connected components.

Proof. The proof is the same for both curves, let us only deal with the curve Ac.
For sufficiently small t > 0, the curve RAc is nonsingular since it is a transversal
intersection of two nonsingular surfaces. The polynomial fc

2,t0 does not vanish at
O, hence there exists a neighbourhood U of O in RP 3 such that RAc ⊂ RP 3 \ U .
Then, by Proposition 2.4, the curve RAc is homeomorphic to c̃ = S̃1 ∩ S̃2,c,
where S̃1 and S̃2,c are surfaces in P̃ constructed as in 2.2 starting from (τ1, s1)
and (τ2, s

c
2), respectively. Denote by S̃1 ⊂ P̃1 and S̃2,c ⊂ P̃2 the piecewise linear

surfaces constructed as in 2.2 from (τ1, s1) and (τ2, s
c
2), respectively.

The edge [(0, 0, 0), (2k, 0, 0)] of P2 is triangulated in 2k edges. All the symmetric
copies contained in {x ≥ 0} of these 2k edges have endpoints with different signs,
in other words, each of these copies is intersected by the surface S̃2,c. Therefore, in
each of the four orthants forming {x ≥ 0}, the corresponding copy of Λ1 contains 2k
pieces of S̃2,c and each piece is a triangle obtained as the Minkowsky sum of a copy
of p1 with the middle point of a copy of an edge lying on [(0, 0, 0), (2k, 0, 0)]. The
map (x, y, z) → (y, z) allows us to identify the triangulation, and the associated
distribution of signs, of each copy of p1 contained in {x ≥ 0} with those obtained
as in 3.0.1 for the corresponding copy of tk. We have chosen a triangulation of tk
and a distribution of signs at its set of vertices which produce a T-curve of degree
k in RP 2 having k2

2 + O(k) ovals. This means that the surface S̃1 intersects the
copies of p1 contained in {x ≥ 0} in k2

2 + O(k) ovals. Therefore, in {x ≥ 0},
the symmetric copies of Λ1 contain k2

2 + O(k) pieces of S̃1 and each piece is a
cylinder obtained as the Minkowsky sum of one of these ovals with a copy of
[(0, 0, 0), (2k, 0, 0)]. Finally, each of these cylinders intersects 2k triangles of S̃2,c,
hence we obtain k3 + O(k2) ovals of c̃ contained in the symmetric copies of Λ1.

The edge [(0, 0, k), (0, k, 0)] of P1 is triangulated into k edges. All the symmet-
ric copies, contained in the four orthants forming {y · z ≥ 0}, of these k edges
are intersected by the surface S̃1. Therefore, in each of these four orthants, the
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corresponding copy of Λ2 contains k pieces of S̃1 and each piece is a triangle ob-
tained as the Minkowsky sum of a copy of p2 with the middle point of a copy
of an edge lying on [(0, 0, k), (0, k, 0)]. The map (x, y, z) → (x, y) allows us to
identify the triangulation, and the associated distribution of signs, of each copy of
p2 contained in {y · z ≥ 0} with those obtained as in 3.0.1 for the corresponding
copy of t2k. We have chosen a triangulation of t2k and a distribution of signs at
its set of vertices which produce a T-curve of degree 2k in RP 2 having 2k2 +O(k)
ovals. This means that the surface S̃2,c intersects the copies of p2 contained in
{y · z ≥ 0} in 2k2 + O(k) ovals. Therefore, in {y · z ≥ 0}, the symmetric copies of
Λ2 contain 2k2 + O(k) pieces of S̃2,c and each piece is a cylinder obtained as the
Minkowsky sum of one of these ovals with a copy of [(0, 0, 0), (2k, 0, 0)]. Each of
these cylinders intersects k triangles of S̃1, hence we obtain 2k3 + O(k2) ovals of
c̃ contained in the symmetric copies of Λ2.

Consequently the curve RAc has at least 3k3 + O(k2) ovals. It is not difficult
to see that RAc has asymptotically no more connected components. Anyway, this
follows from Harnack theorem since the genus of Ac is 3k3 + O(k2). ¤

Proposition 3.2. For sufficiently small t > 0, the real point sets of the surfaces
Y c

m and Y h
m of type Dm associated with (Xc

2k, Xk) and (Xh
2k, Xk) (m = 2k), re-

spectively, are nonsingular surfaces. Moreover, if b0(RVk−2) = αk3 + O(k2) and
b1(RVk−2) = βk3 + O(k2), then one has

• b0(RY c
m) = 13+12α

48 ·m3 + O(m2) , b1(RY c
m) = 5+6β

24 ·m3 + O(m2),
• b0(RY h

m) = 5+12α
48 ·m3 + O(m2) , b1(RY h

m) = 13+6β
24 ·m3 + O(m2).

Proof. We have already seen in 2.4 that RY c
m and RY h

m are nonsingular surfaces for
sufficiently small t > 0. Set RXc

+ = {Z ∈ RXk, fc
2,t0(Z) ≥ 0} and RXh

+ = {Z ∈
RXk, fh

2k,t0
(Z) ≥ 0}. Let U be any neighbourhood of O in RP 3 such that RXc

2k ∩
U = ∅ (resp. RXc

2k ∩ U = ∅). By Propositions 2.3 and 2.4, for sufficiently small
t > 0, connected components of RXk contained in U are connected components
of RXc

+ (resp. RXh
+) and the topology of RXk ∩ U coincides with that of some

affine part of RVk−2. It follows (see Proposition 2.3) that the Betti numbers b0

and b1 of the largest subset of RXc
+ (resp. RXh

+) consisting of closed (i.e. without
boundary) connected components verify b0 = αk3 + O(k2) and b1 = βk3 + O(k2).

Let S̃1, S̃2,c and S̃2,h be surfaces constructed in P̃ starting from (τ1, s1), (τ2, s
c
2)

and (τ2, s
h
2 ), respectively. Denote by S̃c

+ (resp. S̃h
+) the intersection of S̃1 with

connected components of the complementary part of S̃2,c (resp. S̃2,h) in P̃ \ V on
which sc

2 (resp. sh
2 ) takes the value +1. In {x ≥ 0}, each cylinder of S̃1 (see the

proof of Proposition 3.1) contained in a symmetric copy of Λ1 is cut by S̃2,c (resp.
S̃2,h) into 2k+O(1) small cylinders and two non consecutive of them are connected
components of S̃c

+ (resp. S̃h
+). There are, in {x ≥ 0}, k2

2 + O(k) cylinders of S̃1

contained in the symmetric copies of Λ1, hence we obtain k3

2 + O(k2) connected
components of S̃c

+ (resp. S̃h
+), and thus of RXc

+ (resp. RXh
+) by Proposition 2.4,

which are homeomorphic to a cylinder. As in 3.0.1, let ãc and ãh be the piecewise
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linear curves constructed in t̃2k starting from (γ, sc
2) and (γ, sh

2 ), respectively. In
{y · z ≥ 0}, each symmetric copy of Λ2 contains k triangles of S̃1 and each oval
of ãc (resp. ãh) lying on a symmetric copy of t2k gives rise to k ovals of the curve
S̃1∩S̃2,c (resp. S̃1∩S̃2,h) lying on the corresponding k triangles of S̃1 (see the proof
of Proposition 3.1). Each connected component of t̃2k \ ãc (resp. t̃2k \ ãh) on which
sc
2 (resp. sh

2 ) takes the value +1 and lying on a symmetric copy of t2k gives rise to k
homeomorphic connected components of S̃c

+ (resp. S̃h
+) lying on the corresponding

k triangles of S̃1. The connected components of t̃2k \ ãc on which sc
2 takes the

value +1 are borded from the exterior by even ovals of ãc and from the interior by
odd ovals of ãc. Therefore, we obtain 5k3

3 + O(k2) connected components of S̃c
+,

and thus of RXc
+, which are homeomorphic to disks with holes. The total number

of these holes is k3

3 +O(k2). The connected components t̃2k \ ãh on which sh
2 takes

the value +1 are borded from the exterior by odd ovals of ãh and from the interior
by even ovals of ãh. Therefore, we obtain k3

3 +O(k2) connected components of S̃h
+,

and thus of RXh
+, which are homeomorphic to disks with holes. The total number

of these holes is 5k3

3 + O(k2). It is not difficult to see that RXc
+ (resp. RXh

+) has
asymptotically no more connected components (this follows from Proposition 3.1).
The computation of the asymptotic behaviour of the Betti numbers of RY c

m and
RY h

m is now obvious. ¤

4. Iteration and proof of Theorem 1.1

4.1. Iteration

We construct, by induction on the integer number n ≥ 0, two families Cn =
{Cn

m, m > mn} and Hn = {Hn
m, m > mn} consisting of nonsingular real surfaces

Cn
m and Hn

m of degree m in CP 3 for any integer number m > mn.
As starting families C0 and H0, let us take a family of surfaces Xm of degree

m in CP 3 constructed by Viro [V1] which verify b0(RXm) = m3

6 + O(m2) and
b1(RXm) = 2m3

3 + O(m2). We describe now the induction step. Assume that the
families Cn and Hn have been constructed. For each integer number k such that
k − 2 > mn, we construct the surfaces Cn+1

2k and Hn+1
2k of the families Cn+1 and

Hn+1 as follows. As in 2.3, use the surfaces Cn
k−2 and Hn

k−2 in place of the surface
Vk−2 in order to perform two smoothings of the surface X̂k constructed in Section 3
(perturbing Cn

k−2 and Hn
k−2 a little if necessary, one can assume that these surfaces

are defined by nondegenerate polynomials with Newton polytope Tk−2). Let Xc
k

and Xh
k be the resulting surfaces, respectively. Consider now surfaces Y c

2k and
Y h

2k of type D2k associated with (Xc
2k, Xc

k) and (Xh
2k, Xh

k ), respectively, where Xc
2k

and Xh
2k are the surfaces constructed in Section 3. Assume that the parameters

of Viro’s polynomials defining Xc
k and Xh

k are sufficiently small in order to have
the properties described in Proposition 3.2. The surfaces Cn+1

2k and Hn+1
2k are
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then obtained applying to Y c
2k and Y h

2k, respectively, the equivariant deformation
described in 2.1.

At this point of the construction, the family Cn+1 (resp. Hn+1) contains sur-
faces Cn+1

2k (resp. Hn+1
2k ) for any integer number k such that k−2 > mn. Take the

union of each surface Cn+1
2k (resp. Hn+1

2k ) with a plane and smooth the resulting sur-
face in order to obtain the whole families Cn+1 and Hn+1 with mn+1 = 2(mn +2).
The following result may be easily derived from Proposition 3.2.

Proposition 4.1. The surfaces Cn
m and Hn

m verify
(1) b0(RCn

m) ∼ αn
c ·m3 and b1(RCn

m) ∼ βn
c ·m3 when m → +∞, where αn

c

and βn
c are recursively defined by

α0
c =

1
6

, αn+1
c =

13 + 12αn
c

48
and β0

c =
2
3

, βn+1
c =

5 + 6βn
c

24
,

(2) b0(RHn
m) ∼ αn

h ·m3 and b1(RHn
m) ∼ βn

h ·m3 when m → +∞, where αn
h

and βn
h are recursively defined by

α0
h =

1
6

, αn+1
h =

5 + 12αn
c

48
and β0

h =
2
3

, βn+1
h =

13 + 6βn
h

24
.

4.2. Proof of Theorem 1.1

The sequences αn
c and βn

h defined in Proposition 4.1 converge to 13
36 and 13

18 , re-
spectively. Therefore, for sufficiently large n and m, we have

b0(RCn
m) >

(13
36
− ε

)
·m3 and b1(RHn

m) >
(13

18
− ε

)
·m3

for a given ε > 0.

5. Concluding remarks

1. Viro’s conjecture. Viro proposed the inequality b1(RX) ≤ h1,1(X) for any
real nonsingular projective and simply connected surface X as a natural gen-
eralization of the Ragsdale conjecture for real plane curves. Since then, both
conjectures were shown to be false in general (see [I1, I2, B2, B1]). However,
both remain open if the surface (resp. the curve) is assumed to be an M -surface
(resp. an M -curve) i.e. if it is maximal with respect to the Smith–Thom in-
equality (resp. Harnack inequality). For a surface Xm in CP 3, Viro’s conjecture
asserts that b1(RX) ≤ 2

3m3 + −2m2 + 7
3m. Furthermore, Xm is an M -surface

if b∗(RXm) = 2b0(RXm) + b1(RXm) = m3 − 4m2 + 6m. We note that the
surfaces Hn

m constructed in this paper are not far from being M -surfaces since
b∗(RHn

m) = m3 + O(m2) (this follows from 2αn
h + βn

h = 1, which is easily proven
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recursively) and are at the same time (for large m and n) strong counter-examples
to the Viro conjecture.

2. Limits of the method. There is an increasing function relating the coeffi-
cients 13

36 and 13
18 in Theorem 1.2 with the coefficient 5

3 in the number 5
3 ·k2+O(k) of

even ovals of the plane curves we have used. Namely, using curves with a·k2+O(k)
even ovals, one obtains coefficients a

6 + 1
12 and a

3 + 1
6 instead of 13

36 and 13
18 in The-

orem 1.2, respectively. The inequality a ≤ 7
4 is well-known in the topology of

real algebraic curves. This implies that our construction cannot give lower bounds
better than 3

8 and 3
4 for l0 and l1, respectively.

3. Generalization. Our construction can be generalized in order to construct
real nonsingular algebraic hypersurfaces in CPn with large Betti numbers for any
integer number n ≥ 1. In this way, we obtain increasing functions relating the real
numbers l

(n)
i introduced in Remark 1.1 with corresponding real numbers for lower

dimensional real hypersurfaces. All this will appear in a forthcoming paper.
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