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c© 2003 Birkhäuser Verlag, Basel

Commentarii Mathematici Helvetici

On the projective geometry of rational homogeneous varieties

Joseph M. Landsberg and Laurent Manivel

Abstract. We determine the varieties of linear spaces on rational homogeneous varieties, provide
explicit geometric models for these spaces, and establish basic facts about the local differential
geometry of rational homogeneous varieties.

Mathematics Subject Classification (2000). 14M15, 20G05.

Keywords. Flag variety, fundamental forms, linear spaces, octonion.

1. Introduction

Let G be a complex simple Lie group and PS a parabolic subgroup corresponding to
a subset S of nodes of the Dynkin diagram (so that a maximal parabolic subgroup
is defined by a single root). Then G/PS has a minimal homogeneous embedding
in the projective space of the highest weight module of G corresponding to the
weight λ =

∑
i∈S ωi, where ωi is the i-th fundamental weight. We study the local

differential geometry of the embedded variety G/PS ⊂ PVλ and the projective
linear subspaces on G/PS ⊂ PVλ.

We describe the varieties parametrizing such linear spaces in §4–6. In most
cases (those of “non-short roots”) the parameter varieties are determined in terms
of Dynkin diagram data as explained in §4. (See in particular Theorem 4.9.) The
exceptional (exposed short root) cases are determined by use of explicit models
in §5 for the case of classical groups and §6 for the exceptional groups. In all
cases, each connected component of the variety of linear spaces on a G/P is quasi-
homogeneous; more precisely, it is the union of a finite number of G-orbits.

The case of unirulings by lines was studied in [4] by means of Tits buildings.
Our approach is by means of projective differential geometry. This method is
well suited because the variety G/PS is homogeneous and in particular cut out
by quadrics, so the varieties of linear spaces on it are determined by second order
data at a point x ∈ G/PS .

In §2 we establish basic connections between local differential geometry and
representation theory. We study the semisimple part H of PS , which fixes the point
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x = [vλ] corresponding to the highest weight line in its action on the tangent space
TxG/PS . As an H-module, TxG/PS decomposes into a direct sum of generalized
minuscule H-modules. If S = {α} where α is a non-short root, the space of
tangent directions to lines is a minuscule variety of H (an irreducible, minimally
homogeneously embedded Hermitian symmetric space of H).

We study minuscule varieties in §3 and prove our main result on their infinites-
imal geometry in §4.

This is the first paper in a series [15, 14, 16, 17, 18] establishing new relations
between the representation theory of complex simple Lie groups and the algebraic
and differential geometry of their homogeneous varieties. The surprising connec-
tion between secant varieties and prolongations developed in this paper is exploited
in the sequels.

Acknowledgements. We thank J. Wolf, J.-M. Hwang and D. Snow for useful
conversations, and an anonymous referee for the simplified proof of Theorem 4.3.

2. Under the microscope

In this section we establish the basic connections between differential invariants
of homogeneous varieties and representation theoretic data. In §2.1 we review
the projective fundamental forms of an arbitrary projective variety Xn ⊂ Pn+a

and establish a connection between secant varieties and fundamental forms. In
§2.2 we express the fundamental forms of homogeneously embedded homogeneous
varieties X = G/P ⊂ PVλ in terms of the universal envelopping algebra U(g). In
§2.3 we discuss the P -module structure on TxX, introduce an important class of
homogeneous varieties, the generalized minuscule varieties and explain their role
in the study of fundamental forms of rational homogeneous varieties.

2.1. Fundamental forms of projective varieties

2.1.1. Notation

We let V = Cn+a+1 and PV the corresponding projective space. If Y ⊂ PV
is a set, we let Ŷ ⊂ V denote the corresponding cone in V . If v ∈ V , we let
[v] ∈ PV denote the corresponding point in projective space. For any vector space
W , we let W ∗ denote the dual vector space. Let X ⊂ PV = Pn+a be a projective
variety of dimension n, and let x ∈ X be a smooth point. We let TxX denote the
(intrinsic) Zariski tangent space to X at x, T̃xX ⊂ Pn+a denote the embedded
tangent projective space (the Pn ⊂ Pn+a that best approximates X at x), and

T̂xX = ̂̃TxX ⊂ V . We have the relation TxX = x̂∗⊗(T̂xX)/x̂ and we also have,
for any p ∈ V with x = [p], T̂xX = T affine

p X̂, the affine tangent space at p.
We let NxX = TxPV/TxX denote the normal space of X at x.
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2.1.2. Fundamental forms in coordinates

Let Xn ⊂ Pn+a be a projective variety, and let x ∈ X be a smooth point. Take
local linear coordinates (x1, ..., xn, xn+1, ..., xn+a) adapted to x, which means that
they are centered at x and that xn+1 = · · · = xn+a = 0 are equations of the
embedded tangent space of X at x. Write X, locally in the complex topology, as
a graph

xµ =
∑

1≤α,β≤n

qµ
αβxαxβ +

∑
1≤α,β,γ≤n

rµ
αβγxαxβxγ + . . . ,

where n + 1 ≤ µ ≤ n + a. The geometric information in the series (that is,
information independent of choice of adapted coordinates) can be encoded in a
series of tensors, the simplest of which is the projective second fundamental form

FF2
X,x =

∑
1≤α,β≤n,

n+1≤µ≤n+a

qµ
αβdxα ◦ dxβ⊗ ∂

∂xµ
∈ S2T ∗x X⊗NxX.

If x is a general point, FF2
X,x even contains information about the global geometry

of X, see [9], [12]. It is useful to consider the second fundamental form as a system
of quadrics |FF2

X,x| := P(FF2
X,x(N∗

xX)) ⊆ PS2T ∗x X parametrized by N∗
xX, and

Base |FF2
X,x| ⊂ PTxX, their common zero locus.

We let T̂
(2)
x X = T̂xX +O(1)x⊗FF2

X,x(N∗
xX) ⊂ V , the second osculating space

to X at x, and N2 = N2,xX = O(−1)⊗(T̂x
(2)X/T̂xX).

More generally, the k-th projective fundamental form of X at x is a tensor

FFk
X,x ∈ SkT ∗x X⊗Nk,xX

where Nk = Nk,xX = O(−1)x⊗(T̂x
(k)X/T̂x

(k−1)X) and T̂x
(k)X = T̂x

(k−1)X +
O(−1)x⊗FFk(SkTxX) is the k-th osculating space to X at x. To define FFk

X,x

one can use the same definitions as one does for the Euclidean fundamental forms,
either in coordinates or as the derivatives of successive Gauss mappings (see [12]).
Note that the osculating spaces determine a flag of V ,

0 ⊂ x̂ ⊂ T̂xX ⊂ T̂x
(2)X ⊂ ... ⊂ T̂x

(f) = V.

More generally, given a mapping φ : Y → PV , one defines its fundamental
forms FFk

φ in the same manner. FF2
φ,x quotiented by kerφ∗x is isomorphic to the

second fundamental form of the image, FF2
φ(Y ),φ(x). See [13] for details.

In what follows, we slightly abuse notation by ignoring twists by the line bundles
O(j), which will not matter as we study fundamental forms only at some fixed base
point. We let |FFk

X,x| ⊂ PSkT ∗x X denote P(FFk
X,x(N∗

k,xX)) and Base |FFk
X,x| ⊂

PTxX denote its base locus.

2.1.3. Prolongation

Let V be a vector space, let A ⊂ SdV ∗ be a linear subspace, and let

A(l) := (A⊗SlV ∗) ∩ Sd+lV ∗,
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the l-th prolongation of A. Here the inclusion Sd+lV ∗ ↪→ SdV ∗ ⊗ SlV ∗ is dual to
the multiplication map SdV ⊗ SlV −→ Sd+lV . If P ∈ Sd+lV ∗, we still denote by
P (v1, . . . , vd+l) its polarization. Then P ∈ A(l) if and only if for all v ∈ V , the
degree d polynomial w 7→ P (v, . . . , v, w, . . . , w) belongs to A. The notation is such
that A(0) = A.

Let Jac(A) := {vyP |v ∈ V, P ∈ A} ⊆ Sd−1V ∗, the Jacobian space of A. Then
A(1) = {P ∈ Sd+1V ∗|Jac(P ) ⊂ A}. Here y denotes contraction, vyP (w1, ..., wd−1)
= P (v, w1, . . . , wd−1).

A basic fact about fundamental forms, due to Cartan ([2], p. 377) (and redis-
covered in [9]), is that if x ∈ X is a general point, then the prolongation property
holds at x:

|FFk
X,x| ⊆ |FFk−1

X,x |(1).
A geometric consequence is as follows. Define the k-th secant variety σk(Y ) of

a projective variety Y ⊂ PN to be the closure of the union of the linear spaces
spanned by k points of Y . The notation is such that σ1(Y ) = Y .

Proposition 2.1. Let Xn ⊂ Pn+a be a variety and x ∈ X a general point. Then
for k ≥ 2,

Base |FFk
X,x| ⊇ σk−1(Base |FF2

X,x|).
Proposition 2.1 is a consequence of the following lemma:

Lemma 2.2. Let A ⊂ S2V ∗ be a system of quadrics with base locus Base (A) ⊂
PV . Then

Base (A(k−1)) ⊇ σk(Base (A)).

Moreover, if Base (A) is linearly non-degenerate, then for k ≥ 2, Ik(σk(Base (A)) =
0, and if A = I2(Base (A)), then Ik+1(σk(Base (A)) = A(k), where Id(Z) ⊂ SdV ∗

is the component of the ideal of Z ⊂ PV in degree d.

Proof. We prove the lemma for k = 2, the generalization being clear. We first need
to prove that any polynomial P ∈ A(1) vanishes on v = sx+ ty for all s, t ∈ C and
x, y ∈ B, the cone over Base (A). Since P (x, x, ·) = P (y, y, ·) = 0, we have

P (v) = P (v, v, v) = s3P (x, x, x)+3s2tP (x, x, y)+3st2P (x, y, y)+ t3P (y, y, y) = 0.

Now, say Q ∈ I2(σ2(Base (A)). Then for all x, y ∈ B and s, t ∈ C, Q(sx+ty) =
0, which implies Q(x, y) = 0, which implies Q = 0 since Base (A) is non-degenerate.

Finally, consider a polynomial P ∈ I3(σ2(B(A)). Since P vanishes on v =
sx + ty for all x, y ∈B and all s, t ∈C, we have P (x, x, y) = 0 for all x ∈B, and
all y ∈ B, hence all y ∈ V since Base (A) is non-degenerate. Thus for all y ∈ V ,
P (·, ·, y) is a quadric vanishing on Base (A), hence belongs to A = I2(Base (A)).
This means that P is in A(1). ¤

An elementary fact about projective varieties is that if Xn ⊂ Pn+a is a variety
whose ideal is generated in degree ≤ d, and L a linear space osculating to order
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d at a smooth point x ∈ X, then L ⊂ X. The ideal of a projective homogeneous
variety is generated in degree two (see e.g. [19]), so if X ⊂ PV is homogeneous,
then Base |FF2

X,x| is the set of tangent directions to lines on X through x. If
y ∈ T̃xX ∩X then the line P1

xy is contained in X.

2.2. Osculating spaces of homogeneous varieties

Let G be a simply connected complex semi-simple Lie group, g its Lie algebra, g⊗

the tensor algebra of g and U(g) = g⊗/{x⊗y−y⊗x− [x, y] | x, y ∈ g}, the universal
envelopping algebra. U(g) inherits a filtration from the natural grading of g⊗,
and the associated graded algebra is the symmetric algebra of g. Fix a maximal
torus T and a Borel subgroup B of G containing T . We adopt the convention that
B is generated by the positive roots, and we write the corresponding root space
decomposition of g as

g = t⊕
⊕

α∈∆+

(gα ⊕ g−α),

where∆+ denotes the set of positive roots. We use the ordering of the roots as in [1].
Let Vλ be an irreducible G-module with highest weight λ, and vλ ∈ Vλ a

highest weight vector. The induced action of g extends to the universal envelopping
algebra, inducing a filtration of Vλ whose k-th term is

V
(k)
λ = Uk(g)vλ.

Let x = [vλ] ∈ PVλ and let X = G/P ⊂ PVλ be its G-orbit. Here P is the
stabilizer of x, it is a parabolic subgroup of G. The tangent bundle TX is a
homogeneous bundle and we identify TxX with the associated P -module g/p. The
osculating spaces and the fundamental forms of X have a simple representation-
theoretic interpretation:

Proposition 2.3. Let X = G/P ⊂ PVλ be a homogeneous variety with base point
x = [vλ]. Let T̂

(k)
x X denote the cone over the k-th osculating space at x and let

Nk = T̂
(k)
x X/T̂

(k−1)
x X be the k-th normal space twisted by O(−1). Then

T̂ (k)
x X = V

(k)
λ , Nk = V

(k)
λ /V

(k−1)
λ .

Moreover, there is a commutative diagram

Skg = Uk(g)/Uk−1(g)
↓ ↓

FFk
X,x : SkTxX −→ Nk,

where the bottom horizontal map is the k-th fundamental form at x.

Proof. The diagram above is the k-th fundamental form of the mapping φ : G →
PV at e ∈ G, where φ(G) = X. ¤
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V
(k)
λ has a natural P -module structure. Thus the osculating spaces of X at x

correspond to the increasing filtration of P -modules

0 ⊂ x̂ ⊂ T̂xX = V
(1)
λ ⊂ V

(2)
λ ⊂ · · · ⊂ V

(f)
λ = Vλ.

Our next goal is to understand the first quotient of this filtration, namely the
structure of TxX as a P -module.

2.3. Decomposing the tangent space

Let P = Pαi
denote the maximal parabolic subgroup of G corresponding to the

simple root αi. Let P = LPu be a Levi decomposition of P , where Pu is unipotent,
L is reductive and contains the maximal torus T . If α is a positive root, let
α =

∑
j mj(α)αj be its decomposition in terms of simple roots. Let ∆X = {α ∈

∆+|mi(α) > 0}. We have the root space decompositions

p = t⊕ (
⊕

α∈∆+
gα)⊕ (

⊕
α∈∆+\∆X

g−α),
l = t⊕⊕

α∈∆+\∆X
(gα ⊕ g−α),

pu =
⊕

α∈∆X
gα.

Proposition 2.4. Let G be simple, let α̃ be the highest root of g, let αi be a simple
positive root, and let P = Pαi

be the associated maximal parabolic subgroup. For
1 ≤ k ≤ mi(α̃), let

sk =
⊕

mi(α)≥−k

gα.

This defines an increasing filtration of g/p by P -submodules. The quotients

Tk =
⊕

mi(α)=k

g−α

are irreducible P -modules.

Proof. The fact that each sk/sk−1 is a P -module is clear. The irreducibility of Tk

is a special case of [25], 8.13.3 (which is attributed to Kostant). ¤

The irreducibility of Tk implies that the set {α ∈ ∆+ | mi(α) = k} has a unique
minimal element which we denote by −φk when we consider the root as a weight
of Tk. In particular, the highest weight of T1 is

φ1 = −αi = −
∑

j

n(αi, αj)ωj ,

where n(αi, αj) denotes the entries of the Cartan matrix. This weight is easy to
read directly on the Dynkin diagram of G. Let H denote the semi-simple part
of L. As an H-module, the filtration of TxX into irreducible P -modules becomes
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a direct sum decomposition into irreducible H-modules. Note that L has a one
dimensional center and that the Lie algebra of H is

h = kerωi ⊕
⊕

α∈∆+\∆X

(gα ⊕ g−α),

where ker ωi ⊂ t. The Dynkin diagram of H is therefore deduced from that of G
by suppressing the node corresponding to the simple root αi. In particular, we
conclude:

Proposition 2.5. Let X = G/P be a homogeneous variety with P a maximal
parabolic and let H be the semi-simple part of P . Then T1, the first irreducible
component of TxX as an H-module, is obtained by marking the nodes of D(H)
adjacent to the node from D(G) that was removed. A node β is given multiplicity
two (resp. three) if there is an arrow emanating from α towards β with a double
(resp. triple) bond.

The above observations can be found in [7].

Definition 2.6. A fundamental weight ωi is minuscule if the Weyl group acts
transitively on the set of weights of the corresponding fundamental representation.

In an irreducible root system, a fundamental weight ωi is cominuscule if the
highest root has coefficient one on αi. In a reducible root system, a weight is comi-
nuscule if it is a sum of cominuscule fundamental weights, one for each irreducible
factor of the root system.

The relation between these two notions is as follows. In the irreducible case, ωi

is minuscule if and only if in the dual root system, the highest root has coefficient
one on the coroot α̌i ([1], Chap. 8).

Geometrically, when G is simple, the weight ωi is cominuscule exactly when
G/Pi admits the structure of an irreducible Hermitian symmetric space whose
automorphism group is locally isomorphic to G (we call G/Pi a G-Hermitian sym-
metric space). This was pointed out by Kostant in [11]. We use the following
definition (be careful that minuscule varieties are in correspondence with comi-
nuscule weights, not minuscule weights!):

Definition 2.7. A G-minuscule variety X = G/P ⊂ PV is a G-Hermitian (not
necessarily irreducible) symmetric space in its minimal homogeneous embedding.
A generalized minuscule variety is a Hermitian symmetric space X = G/P ⊂ PV
in some G-homogeneous embedding, but the automorphism group of X need not
be locally isomorphic to G, and the embedding need not be minimal.

Proposition 2.8. Let X = G/P with G simple, and P = Pαi
a maximal subgroup

with semi-simple part H. If αi is not short, then the closed H-orbit Y1 ⊂ PT1 is
an H-minuscule variety.
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See 2.11 below for a more general statement.

Proof. The observations above imply that Y1 = H1/Q1 × · · · × Hr/Qr, where
H1, . . . , Hr are simple Lie groups whose Dynkin diagrams are the branches from
αi of D(G), and Q1, . . . , Qr are maximal parabolic subgroups defined for each
branch by the node adjacent to αi. Since the root system of each Hk is formed
by the roots of G with support on the corresponding branch, we just need to
prove that if a root β of G has coefficient mi(β) = 0 on αi, its coefficient on an
adjacent root αk cannot exceed one. But this follows immediately from the equality
n(β, αi) =

∑
j mj(β)n(αj , αi) (where the integers n(αj , αi) are non-positive, and

negative exactly when αj is adjacent to αi), and the fact that, since αi is not short,
|n(β, αi)| ≤ 1. The minimality of the embedding of Y1 in PT1 similarly follows
from the fact that n(αj , αi) = −1 for αj connected to αi. ¤

We can say slightly more when G is simply laced.

Proposition 2.9. Let G be a simple Lie group of type A,D or E, let P be a
maximal parabolic subgroup, let T1 ⊂ TxG/P be as in 2.4. Then T1 is a minuscule
H-module.

Proof. The weights of T1 are, by definition, the opposites of the roots β such that
mi(β) = 1. If G is simply laced, these roots all have the same length and lemma
4.4 shows that the Weyl group of H acts transitively on them. ¤

The above discussion can easily be extended to homogeneous spaces X = G/P
with P not necessarily maximal. Suppose that P = PS is the parabolic subgroup
generated by the complement of a set S of simple positive roots. Then there is
an irreducible component of the L-module T = Tx(G/P ) for each choice of the
coefficients of the positive roots on these simple roots. If we choose such a family
of coefficients a = (ai)i∈S , and let

sa =
⊕

α∈∆+, mi(α)≥−ai

gα and Ta =
⊕

α∈∆+, mi(α)=ai

g−α,

then sa is a P -submodule of g/p, and Ta is an irreducible L-submodule of sa.
An important difference with the case of maximal parabolics is that the incidence
relations between the non-zero sa’s is no longer a simple chain of inclusion, but
defines a partial order.

Let εi be the family of coefficients ai = 1, and aj = 0 for j ∈ S − i. The
analogues of T1 in the maximal case are the H-modules Tεi

(note that only the
irreducible factors of H corresponding to the branches of D\S connected to αi act
non trivially on Tεi

; we denote their product by Hεi
). Again we need to know

whether αi is short or not, but this condition is relevant only with respect to a
subdiagram of D(G).
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Definition 2.10. We call α ∈ S an exposed short root if the connected component
of α in D\(S\α) contains a root longer than α, i.e., if an arrow in D\(S\α) points
towards α.

Proposition 2.11. Notations as above. Let Y i
1 ⊂ PTεi

be the closed orbit. Then
Y i

1 is a generalized minuscule variety. Moreover, it is a Hεi
-minuscule variety,

except for situations equivalent to the following cases:
1. Cn/Pk for k < n. Here Y1 = Seg(Pk−1×P2n−2k−1), H = SLk×Sp2n−2k (

SLk × SL2n−2k.
2. Cn/Pn. Here Y1 = v2(Pn−1), which is An−1-minuscule but not in its mini-

mal embedding.
3. F4/P4. Here Y1 = B3/P3, a six-dimensional quadric.
4. G2/P2. Here Y1 = v3(P1) is the twisted cubic, which is A2-minuscule, but

not in its minimal embedding.

Let X = G/P with P maximal, let H the semi-simple part of P . We obtain
a splitting TxX = ⊕pTp, with each Tp an irreducible H-module. Let Yp ⊂ PTp

denote the closed orbit.

Proposition 2.12. The closed orbit Yp is contained in Base |FFp+1
X,x |, and there

is a rational normal curve in X of degree at most p + 1, passing through x with
tangent vector in Yp.

This proposition indicates that it is possible to study the G-homogeneous ratio-
nal curves on G/P of degree greater than one using the methods we use to study
lines on G/P .

Proof. Let P = Pαj
and let β be such that mj(β) = p. Let Xβ ∈ g−β . Let v ∈ V

be a highest weight vector and x = [v]. Then Xβv ∈ Ŷp ⊂ Tp. By [6], lemme 7.2.5,
Xp+1

β v = 0 so the rational curve exp(tXβ)v is contained in X and is of degree at
most p. ¤

These propositions stress the importance of minuscule varieties in our study.
The next section is devoted to their properties.

3. Minuscule varieties

We explicitly describe the tangent and normal spaces to minuscule varieties X =
G/P in §3.1 and §3.3 as H-modules, where H is the semi-simple part of the Levi
factor of P . In §3.2 we state an prove our main theorem that determines the
fundamental forms of minuscule varieties. In §3.4 we remark on some interesting
complexes obtained from the normal spaces of minuscule varieties.
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3.1. Their tangent spaces

We summarize characterizations and tangent space structures of minuscule vari-
eties: Let G be a simple Lie group and P =Pαi

a maximal parabolic subgroup. Let
G/P ⊂PV be the minimal homogeneous embedding. The following are equivalent:

1. mi(α̃) = 1 (the highest root α̃ has coefficient one on the simple root αi),
2. pu is an abelian subalgebra of g,
3. T = T[e](G/P ) contains no P -invariant submodule,
4. G/P admits an irreducible Hermitian symmetric metric with local holonomy

G induced from a Fubini-Study metric on PV , and the embedding to PV is the
smallest such embedding.

Here is a table of the G-minuscule varieties: there are four infinite series and
two exceptional spaces.

Name Grassmannian Quadric LagrangianGrassm. Quadric

Notation G(k, n + 1) Q2n−1 GLag(n, 2n) Q2n−2

G An Bn Cn Dn

ω ωk ω1 ωn ω1

D(G)
◦ ◦ ◦ ◦ ◦ ◦• ◦ ◦ ◦ ◦ ◦ ◦>• ◦ ◦ ◦ ◦ ◦ ◦<• ◦ ◦ ◦ ◦ ◦HH©©

◦
◦•

H Ak−1 ×An−k Bn−1 An−1 Dn−1

φ1 ωk−1 + ωk+1 ω1 2ωn−1 ω1

D(H)
◦ ◦ ◦• • ◦ ◦ ◦ ◦ ◦>• ◦ ◦ ◦ ◦ ◦•2 ◦ ◦ ◦ ◦HH©©

◦
◦•

T E∗⊗Q E∗⊗(E⊥/E) S2Q E∗⊗(E⊥/E)

Name Spinor variety Cayley plane ??

Notation Sn OP2 Gω(O3, O6)
G Dn E6 E7

ω ωn ω1 ω7

D(G)
◦ ◦ ◦ ◦ ◦HH©©

•
◦

◦ ◦ ◦ ◦ ◦•
◦

◦ ◦ ◦ ◦ ◦ ◦•
◦

H An−1 D5 E6

φ1 ωn−2 ω4 ω6

D(H)
◦ ◦ ◦ ◦ ◦HH• ◦

◦ ◦ ◦ ◦•
◦

◦ ◦ ◦ ◦ ◦•
◦

T Λ2E∗ S+ J3(O)

Here E and Q are the tautological and quotient vector bundles on the Grass-
mannian or their pullbacks to the varieties in question. S+ is the half spin rep-
resentation of D5, and J3(O) is the space of 3 × 3 O-Hermitian matrices, the
representation Vω1 for E6 (see §6.2 for details). Gω(O3, O6) may be interpreted as
the space of O3’s in O6 that are null for an O-Hermitian symplectic form, see [15].
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3.2. The strict prolongation property

We prove our main theorem on the infinitesimal geometry of minuscule varieties.

Theorem 3.1. Let X = G/Pαi
⊂ PVωi

be a minuscule variety and x ∈ X. Then
for k ≥ 2,

|FFk+1
x,X | = |FF2

x,X |(k−1).

Remark 3.2. This result says that the leading terms of the Taylor series in local
coordinates adapted to the filtration by osculating spaces, are determined by the
quadratic terms in an elementary manner. In [15], we show moreover that there
are no terms in the Taylor series except for the leading terms. (Minuscule varieties
are the unique homogeneous varieties having this property.)

Proof. Let v = vωi
∈ Vωi

be the highest weight vector, and let T = T[v]X. We
denote by Rk ⊂ SkT the space of relations of degree k, that is, the space of
homogeneous polynomials Pk of degree k in the Xα, with α ∈ ∆X , such that Pk.v ∈
T̂

(k−1)
[v] X, the (k − 1)-st osculating space. We have the following commutative

diagram, where horizontal middle long sequence and the vertical short sequences
are exact:

0 0 0
↓ ↓ ↓

· · · −→ Rk−1⊗Λ2T −→ Rk⊗T −→ Rk+1 −→ 0
↓ ↓ ↓

· · · −→ Sk−1T⊗Λ2T −→ SkT⊗T −→ Sk+1T −→ 0
↓ ↓ ↓

· · · −→ Nk−1⊗Λ2T −→ Nk⊗T −→ Nk+1 −→ 0
↓ ↓ ↓
0 0 0

Lemma 3.3. N∗
k+1 = N

∗(1)
k for all k ≥ 2 if and only if the relations are generated

in degree two, that is, the map Rk⊗T → Rk+1 is surjective for all k ≥ 2.

Proof. We first note that N∗
k+1 = N

∗(1)
k holds if and only if the sequence

N∗
k+1 −→ N∗

k⊗T ∗ −→ N∗
k−1⊗Λ2T ∗

is exact at the middle term. This is because, by definition, N∗
k

(1) = (N∗
k⊗T ∗) ∩

Sk+1T ∗ and Sk+1T ∗ is the kernel of the map SkT ∗⊗T ∗ → Sk−1T ∗⊗Λ2T ∗.
A diagram chase, using the above partially exact diagram, shows that the

exactness of the dual sequence Nk−1⊗Λ2T −→ Nk⊗T −→ Nk+1 is equivalent to
the surjectivity of the map Rk⊗T → Rk+1. ¤
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Now we analyze the space of relations. By [6] (Lemme 7.2.5 p. 225), the
relations all come from the identities

X2
αi

v = 0 and Xβv = 0 for mi(β) = 0.

More precisely, if Pk is a homogeneous relation of degree k, there exists an
identity of the following kind in U(n) (where n is the subalgebra of g generated by
positive root vectors):

Pk + Q<k +
∑

mi(β)=0

RβXβ + SX2
αi

= 0,

where Q<k is a polynomial of degree less than k in the Xα, α ∈ ∆X , and the Rβ

and S are polynomials in the Xγ , γ ∈ ∆+. Now we fix an ordered basis of n,
beginning first with the Xβ , β 6= αi, such that mi(β) > 0, then Xαi

, and then
continuing with the Xγ for which mi(γ) = 0. By the Poincaré–Birkhoff–Witt
theorem ([6], Théorème 2.1.11 p. 69), the monomials in the Xγ compatible with
this order form a basis of U(n).

We say that a polynomial expression in the Xγ , γ ∈ ∆+, is well-ordered if
each of its monomials is compatible with our ordered basis. We may suppose that
in the identity above, all the polynomials Pk, Q<k, Rβ and S are well-ordered.
We may even suppose that the products RβXβ are well-ordered, as if they are
not, reordering them gives a sum of expressions of the same type, since the space
generated by the Xγ for which mi(γ) = 0 is stable under the Lie bracket. However,
and this is the crucial point, we cannot suppose a priori that the product SX2

αi
is

also well-ordered.
The conclusion of this analysis is that all relations appear in the following

way: we first chose a well-ordered monomial Xβ1 · · ·Xβm
, with mi(β1) = · · · =

mi(βm) = 0; we reorder its product with X2
αi

, which gives an expression of the
form:

Xβ1 · · ·Xβm
X2

αi
=

∑
γδ

cγδXαi+γXαi+δ + CX2αi+β1+···+βm
+

∑
mi(η)=0

UηXη,

where Uη is some polynomial in the Xγ and C is a constant. We then multiply on
the left by a monomial in the Xβ with mi(β) > 0 and reorder if necessary, then
we make linear combinations, and finally, we only keep the homogeneous terms of
maximal degree in the resulting expression.

This doesn’t seem very enlightening, but since X is a minuscule variety, if
mi(β) = mi(γ) = 1, then Xβ and Xγ commute. So the above relation simplifies
to an expression of the form

Xβ1 · · ·Xβm
X2

αi
=

∑
γδ

cγδXαi+γXαi+δ +
∑

mi(η)=0

UηXη.

Moreover, the relations are then obtained by multiplying the sums∑
γδ cγδXαi+γXαi+δ by monomials in the Xαi+η, which need no reordering; and
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finally, the resulting expression is necessarily homogeneous, since we can assume
that all its monomials have the same total weight.

This means in particular that all relations are deduced from the degree two
relations ∑

γδ

cγδXαi+γXαi+δ = 0

by simple polynomial multiplication in T . Thus the maps R2⊗Sk−1T → Rk+1 are
surjective for k ≥ 2, which implies surjectivity of Rk⊗T → Rk+1. ¤

3.3. Their normal spaces

An interesting property of G-minuscule varieties is that the irreducibility of the
tangent space propagates to the irreducibility of all normal spaces. Indeed, the
normal spaces and fundamental forms of the minuscule varieties are as follows:

Proposition 3.4. The tangent space T , and the normal spaces Nj, with 2 ≤ j ≤ l,
of the classical irreducible minuscule varieties X are given by the following table:

X G(k, n) GLag(n, 2n) S2n Qn

G SLn Sp2n Spin2n SOn+2

H SLk × SLn−k SLn SLn SOn

T Wωk−1+ωk+1 = E∗⊗Q W2ω1 = S2U Wωn−2 = Λ2U Wω2

Nj Wωk−j+ωk+j
= ΛjE∗⊗ΛjQ W2ωj

= S2...2U Wωn−2j
= Λ2jU C

l min(k, n− k) n [n
2 ] 2

For the two exceptional irreducible minuscule varieties, we have the following
table:

X G H T N2 N3

OP2 E6 Spin10 Wω2 Wω6 0
Gω(O3, O6) E7 E6 Wω6 Wω1 C

The fundamental forms may be described explicitly as follows:

For a non-degenerate quadric Qn, the second fundamental form is a nondegen-
erate quadratic form with base locus a smooth quadric Qn−2.

For the respective cases G(k, v), Gω(k, V ), S, Gω(O3, O6), T is a (subset) of
a matrix space, respectively T = E∗⊗Q,S2E∗,Λ2E∗,J3(O). In all but S, the
last fundamental form is the set of maximal minors (the determinant for S2E∗

and J3(O)), and the lower fundamental forms are just the successive Jacobian
ideals. For S, the last form is the Pfaffian (since the determinant is a square) and
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the other forms are the successive Jacobian ideals, which are the Pfaffians of the
minors centered about the diagonal.

For the OP2 case, let V = C10. Then T = S+(V ) is a half-spin representation,
and N2 is the vector representation V . The half-spin representations S+ and
S− can be constructed as the even and odd parts of the exterior algebra of a
null 5-plane E in V (see e.g. [10]): S+, S− are dual to one another, the wedge
product giving a perfect pairing S+⊗S− −→ Λ5E = C. Moreover, the full exterior
algebra of E is a module over the Clifford algebra of V . If F is a complementary
null 5-plane of E, then E acts on S+ by exterior multiplication, F by interior
multiplication, and this action of V = E⊕F extends to the whole Clifford algebra.
In particular, there is a natural map from V to End(S−, S+) ' S+⊗S+. The
transpose of the symmetric part of this morphism is the second fundamental form.

Alternatively, identifying S+(V ) = O⊕O (see [10]) with octonionic coordinates
u, v, we have |FF2

X,x| = {uu, uv, vv} where, considering O as an eight dimensional
vector space over C, the middle equation is eight quadrics.

Remark 3.5. Note that in all cases, the only H-orbit closures in PT1 are the
secant varieties. This actually characterizes the minuscule varieties, see [15]. A
special case of this phenomenon is observed in [22]. Note that this property also
allows one to easily classify the G-orbits in τ(X) when X is minuscule. See [14]
for examples.

Corollary 3.6. Let X be a minuscule variety, and let x ∈ X. Then

Base |FFk
X,x| = σk−1(Base |FF2

X,x|).
Moreover, |FFk

X,x| = Ik(Base |FFk
X,x|).

Proof of the corollary. Immediate from our explicit descriptions of the fundamental
forms. ¤

Proof of the proposition. For each of these varieties, and each integer j, we check
that there is a unique irreducible H-module which is a component of both SjT
and of the restriction ResG

HVωi
. Then Nj must be this H-module. For an ordi-

nary Grassmannian G(k, n) = G(k, V ), T = E∗⊗Q, where E is the tautological
subbundle and Q = V/E the quotient bundle. Its symmetric powers are given by
the Cauchy formula ([21], p. 33)

SjT =
⊕
|λ|=j

SλE∗⊗SλQ,

the sum is over all partitions λ with the sum of its parts |λ| equal to j. We have

ResG
HΛkV = Λk(E ⊕Q) =

⊕
h≥0

ΛhE∗⊗ΛhQ =
⊕
h≥0

Wωk−h+ωk+h
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since rank (E) = k. The only common component of these two decompositions
is ΛjE∗⊗ΛjQ = Wωk−j+ωk+j

. The case of Lagrangian Grassmannians is similar.
Here Q ' E∗, T = S2E∗ and we use the formula ([21], p. 45)

SjT =
⊕
|λ|=j

S2λE∗.

We compute the decomposition

ResG
HVωn

=
⊕
h≥0

S 2...2︸︷︷︸
h

E∗ =
⊕
h≥0

W2ωh
,

and the conclusion follows as above. On spinor varieties, Q ' E∗ again, T = Λ2E∗

and we use the formula ([21], p. 46)

SjT =
⊕
|λ|=j

Sλ(2)E
∗,

where if λ = (λ1, . . . , λm), then λ(2) = (λ1, λ1, . . . , λm, λm). Finally, the case of
quadrics is immediate since they are hypersurfaces.

For exceptional minuscule varieties the same argument goes through, except
that we use the LiE package [20], or Littelmann paths, instead of the above classical
decomposition formulas. ¤

3.4. Algebraic structures induced by infinitesimal geometry

We remark on some consequences of the strict prolongation property for minuscule
varieties.

Proposition 3.7. Let Xn ⊂ Pn+a be a variety such that strict prolongation holds
at x ∈ X. Let Nj = Nj,xX. Then there are natural maps

N∗
i ⊗N∗

j → N∗
i+j .

Proof. The maps are the restrictions of the symmetrization maps SiT ∗⊗SjT ∗ →
Si+jT ∗ and the image is assured to lie in N∗

i+j by the strict prolongation property.
¤

Corollary 3.8. Let X = G/P ⊂ PV be a minuscule variety. Let H be the semi-
simple part of P . Then there is a natural structure of a graded H-algebra on V .

In the case of Grassmannians, the algebra structure on ΛkV is given by the
multiplication of minors. For Lagrangian Grassmannians, it is related to the mul-
tiplication of Pfaffians. The exceptional cases are related to certain exceptional
algebraic structures introduced by Freudenthal, that we meet again in §6. For
example, consider the minuscule variety of E7: this is a 27-dimensional subvariety
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of the projectivization of the minimal representation V of E7, whose dimension is
56. As an H-module, we have

V = V0⊕V1⊕V2⊕V3 = C⊕J3(O)⊕J3(O)∗⊕C,

where J3(O) denotes the exceptional Jordan algebra of 3×3 O-Hermitian matrices.
The group H = E6 is realized as the subgroup of GL(J3(O)) preserving the cubic
form defined by the determinant. Its polarization defines the map V1⊗V1 → V2.
The map V1⊗V2 → V3 is just the evaluation.

Another consequence of the strict prolongation property at a point of any
variety is the appearance of Koszul complexes:

Corollary 3.9. Let Xn ⊂ Pn+a be a variety such that strict prolongation holds at
x ∈ X. Let Nj = Nj,xX. Then there is a Koszul complex:

· · · −→ N∗
j−1⊗Λk+1T ∗ −→ N∗

j ⊗ΛkT ∗ −→ N∗
j+1⊗Λk−1T ∗ −→ · · ·

induced by the maps T ∗⊗N∗
j → N∗

j+1 (recall that T ∗ = N∗
1 ).

If N∗
j is replaced by the space of sections Γ(X,OX(j)) for a subvariety X ⊂ PT ,

the homology of the corresponding Koszul complexes compute the syzygies of X
[8].

For a classical minuscule variety X, there is a strange relation between the
complexes constructed from their normal spaces, and the Koszul complexes com-
puting the syzygies of another minuscule variety Z. Indeed, we obtain this second
family of complexes from the first, by a natural involution on the set of highest
weights of irreducible L-modules.

For L = GLn, this involution is defined in the following way: to the Schur
power Sλ we associate Sλ∗ , where λ∗ is the conjugate partition of λ, obtained
by symmetry along the main diagonal of its diagram (which actually defines a
bijection between partitions inscribed in a k × (n − k) rectangle, and partitions
inscribed in a (n−k)×k rectangle). The complex associated to our example above
is therefore

· · · −→ SjE⊗SjF⊗Λk(E⊗F ) −→ Sj+1E⊗Sj+1F⊗Λk−1(E⊗F ) −→ · · ·
In small degrees, for X = G(k, n), GLag(n, 2n), Sn, we obtain the Koszul

complexes associated to Z = Pn−k−1×Pk−1, G(2, n), v2(Pn−1) respectively. (Note
that Y1 = Pk−1 × Pn−k−1, v2(Pn−1), G(2, n) respectively.)

4. Linear spaces on homogeneous varieties

In this section we explicitly describe the lines through a point of a homogeneous
variety X = G/P ⊂ PV , the Fano variety parametrizing all lines on X (in §4.2),
as well as the Fano varieties parametrizing higher dimensional linear spaces on X
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in §4.3. These parameter spaces all come equipped with natural embeddings to
projective spaces whose associated vector spaces are G-modules as described in
§4.4. We give an amusing recipe for recovering the Dynkin diagram of G from
second fundamental form data in §4.5. We begin, in §4.1 with a construction due
to Tits that is essential to our work.

4.1. Tits fibrations

Let G be a simple Lie group, let S, S′ be two subsets of the sets of simple roots of
G. Consider the diagram

G/PS∪S′

π ↙ ↘ π′

X = G/PS X ′ = G/PS′

Let x′ ∈ X ′ and consider Y := π(π′−1(x′)) ⊂ X. Then X is covered by such
varieties Y . Tits shows in [24] that Y = H/Q where D(H) = D(G)/(S\S′), and
Q ⊂ H is the parabolic subgroup corresponding to S′\S. He calls such subvarieties
Y of X, L-subvarieties, and Y the shadow of x′.

Example 4.1. For X = Dn/P3 and X ′ = Dn/Pn, we read off the diagram below
that Y = G(3, n).

◦ ◦ ◦ ◦ ◦HH©
©• ◦×
◦

4.2. Lines

Let D = D(G) be the Dynkin diagram of a complex simple Lie group G. We
identify the nodes of D with the set of simple roots with respect to a choice of
maximal torus T and Borel subgroup B which we fix once and for all. Let α ∈ D.
Let N(α) = {β ∈ D | (α, β) < 0} denote the neighbors of α, the simple roots
connected to α by an edge in D.

Proposition 2.5 implies the following (with the same notations):

Corollary 4.2. Let X = G/P , with G simple and P a maximal parabolic sub-
group. Let Y1 ⊂ PT1 be the closed orbit. Then Y1 is isomorphic to the shadow of
a point x ∈ X on the space X ′ = G/P ′ of G-lines in X.

Here P ′ is the parabolic subgroup of G defined by the neighbors of the root
defining P .

We will see that if we consider the minimal homogeneous embedding X ⊂ PV ,
these G-Tits lines are linearly embedded. We first need to recall a few basic facts
on the Picard group of a rational homogeneous space.
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It a classical fact, due to Chevalley, that Pic(G/B) = H2(G/B, Z) = P , the
weight lattice ([3], Exposé 15). More generally, Pic(G/PS) = H2(G/PS , Z) =
P (S), the sublattice generated by the fundamental weights ωi dual to the roots
αi ∈ S (or rather to the corresponding coroots). Dually, H2(G/PS , Z) ' Ř(S), the
lattice generated by the coroots α̌i to the roots αi ∈ S, with the obvious pairing
with P (S). Each class α̌j can be realized geometrically by considering the double
fibration

G/PS∪N(αj)

↙ ↘
G/PS G/PS\αj∪N(αj)

Indeed, the shadow on G/PS of a point in G/PS\αj∪N(αj) is a rational curve, on
which a line bundle Lλ defined by a weight λ ∈ P (S) has degree 〈λ, α̌j〉 (see [5],
Lemme 2 p. 58).

In particular, suppose that G/PS is embedded in some PVλ by a very ample
line bundle Lλ, where λ =

∑
i∈S liωi, and contains a line of PVλ whose homology

class is β̌ =
∑

i∈S miα̌i. Then
∑

i∈S limi = 1, which implies that β̌ = α̌j for
some j ∈ S with lj = 1. Moreover, the variety F j

1 (X) of these αj-lines on X is
independent of the λ with lj = 1 chosen. Note that it contains G/PS\αj∪N(αj).

Theorem 4.3. Let S ⊆ D, consider X = G/PS in its minimal homogeneous
embedding. Then

1. F1(X) =
∐

j∈S F j
1 (X), where F j

1 (X) is the space of lines of class α̌j ∈
H2(G/PS , Z).

2. If αj is not an exposed short root, then F j
1 (X) = G/PS\αj∪N(αj).

3. If αj is an exposed short root, then F j
1 (X) is the union of two G-orbits, an

open orbit and its boundary G/PS\αj∪N(αj).

Assertions 1. and 2. are rephrasings of results in [4], which were published
just after the first version of this paper was written (but note that Cohen and
Cooperstein work over an arbitrary field). Assertion 3. and its proof below were
communicated to us by an anonymous referee (our original proof contained some
case by case arguments).

In §6 we give explicit descriptions of the open orbits of 3. for each short root.

Proof. The argument, proceeds in three steps: first we give a criterion for identi-
fying distinct orbits in F j

1 (X); up to the action of WS , the subgroup of the Weyl
group W generated by the simple reflections si, i /∈ S, there is a unique T -fixed
point in each G-orbit passing through a base point x ∈ X, where T denotes the
maximal torus in G. We then show that there is a unique tangent direction in Tj1

corresponding to a line up to WS-equivalence, and finally, if αj is an exposed short
root with −(α, αj) = 2 (resp. 3), then there is a unique vector in Tj2 (resp. Tj3)
modulo WS-equivalence corresponding to a T -fixed line. Finally we show that the
orbit of the Tj2 (resp. Tj3) line is not closed.
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We first observe that every G-orbit in F j
1 (X) contains a T -fixed line. Indeed, if l

is an αj-line, by homogeneity we can suppose it contains the base point x = [PS ] ∈
X. If y ∈ l is another point, y lies in a unique Bruhat cell B(w) = {wxh−1 | h ∈
B}, w ∈ W . Then there exists h ∈ B such that h(y) = w(x), and since h(x) = x,
the line l′ = xw(x) is T -stable in Gl.

By T -stability, the tangent direction to l′ at x must be a g−α for some α ∈ ∆X .
The orbit through x of the SL2 corresponding to α is l, and thus 〈λ, α̌〉 = 1 because
λ is also the highest weight of the SL2-module l̂ ' C2.

Write α = pαj + γ with mj(γ) = 0. We have

1 = 〈λ, α̌〉 = p
(αj , αj)
(α, α)

+ Σi6=j li〈ωi, α̌〉.

Since the equality holds for any choices of coefficients li, we must have 〈ωi, α̌〉 = 0
for all i ∈ S\j. Thus (α, α) = p(αj , αj) and we have two cases.

If αj is not an exposed short root, then p = 1 and by Lemma 4.4 below, α is
WS-conjugate to αj . There is therefore a unique G-orbit in F j

1 (X).
If αj is an exposed short root, then either p = 1 and α is short, or p > 1 and α

is long. Then Lemma 4.4 and Lemma 4.6 below imply that there are at most two
G-orbits in F j

1 (X).
The following lemma was communicated to us anonymously.

Lemma 4.4. Let β ∈ ∆X have the same length as αi, and mi(β) = 1. Then there
exists w ∈ WS with wαi = β.

Proof. We use induction on the height of β, i.e., the sum of its coefficients in
its decomposition on simple roots. Suppose that β 6= αi, and (β, αj) ≤ 0 for
all j 6= i. Then (β, αi) ≥ (β, β) > 0, thus n(β, αi) = 1 and si(β) = γ, where
si(β) = β − 〈β, α̌i〉αi. Therefore, since β, γ and αi have the same length, we get
−1 = n(γ, αi) = n(αi, γ), hence n(β, γ) = 1 and (β, γ) > 0.

We can therefore let k 6= i such that (β, αk) > 0. Then the root sk(β) verifies
the same assumptions as β, but its height is smaller, and we conclude the proof
by induction. ¤

Lemma 4.5. αj is an exposed short root iff there exists α ∈ ∆+\S such that
|n(α, αj)| > 1.

Proof. If αj is not an exposed short root, n(α, αj) 6= 0 implies that α and αj have
the same length, hence |n(α, αj)| = |n(αj , α)| ≤ 1. Now say αj is an exposed short
root. Then there exists a long root α supported outside S such that (α, αj) 6= 0.
Thus |n(α, αj)| > |n(αj , α)| = 1. ¤

Lemma 4.6. If αj is an exposed short root, then any pair of long roots of the
form pαj + γ, where γ is supported outside S, are conjugate in WS.
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Proof. If p = 3, we are in the G2 case which is clear. So assume p = 2. Let
δ = 2αj + γ, γ supported outside S.

Assume δ is such that (δ, αi) ≤ 0 for each i 6= j with mi(δ) 6= 0. Then
(δ, αj) ≥ (δ, δ) > 0. Since αj is short, we have n(δ, αj) = 2, so sj(δ) = γ and
γ is a long root. Also, n(αj , δ) = 1, so that n(δ, αi) = 0 for all i 6= j with
mj(δ) 6= 0. Thus δ is the highest root with support in the subdiagram supp(δ).
But n(δ, αj) = 2, therefore this subdiagram must be of type Cr+2 for some r ≥ 0.
Since j is an end of it, it is uniquely determined, and δ is a uniquely determined
root δ0.

Thus if δ 6= δ0, there exists i 6= j, αi ∈ D\S, with (δ, αi) > 0. And we can then
proceed by induction on the root si(δ), whose height is smaller than that of δ. ¤

Finally we show that when αj is an exposed short root, the orbit corresponding
to a long root α is not closed. The case of G2 is easy (see §6.1), so assume p = 2
and, using the notation of lemma 4.5, take α = δ0. The corresponding line is
lα = vλvλ−α, where vλ is a highest weight vector in Vλ and vλ−α = X−αvλ,
X−α ∈ g−α. Let us compute the tangent space Tα at lα of its G-orbit. For X ∈ g,
we have

X(vλ ∧ vλ−α) = Xvλ ∧ vλ−α + vλ ∧XX−αvλ.

If X ∈ g−β , α 6= β ∈ ∆X , then Xvλ ∧ vλ−α, and therefore also X(vλ ∧ vλ−α), are
non zero. If X ∈ pS , then Xvλ = 0, hence X(vλ ∧ vλ−α) = vλ ∧ [X,X−α]vλ. If
X is a root vector, this is non zero if and only if X ∈ gα−β , with β ∈ ∆X . This
implies that, as a T -module,

Tα =
⊕
β∈Γ

g−β , Γ = (∆X − {α}) ∪ {β − α ∈ ∆, β ∈ ∆X}.

(Note that since α is a long root, we also have Γ = (∆X − {α})∪ sα(∆X − {α}).)
To prove that the G-orbit of lα is not closed, we need to prove that its stabilizer

cannot contain a Borel subgroup, and for this it is enough to exhibit a root β ∈ Γ
such that−β also belongs to Γ. But this is easy: indeed, recall that the subdiagram
of D supporting α is of type Cr+2, and that α is the corresponding highest root,
that is α = 2αj + · · · + 2αr+j + αr+j+1 for a suitable numbering of the simple
roots. Then we can take β = αj + · · · + αr+j + αr+j+1 ∈ ∆X , since −β + α =
αj + · · ·+ αr+j ∈ ∆+. ¤

Remark 4.7. This proof gives a formula for the dimension of the open orbit of
lines in the case of an exposed short root, namely the cardinality of Γ = (∆X −
{α}) ∪ sα(∆X − {α}).

On the infinitesimal level, Cx ⊂ PTxX, the set of tangent directions to lines on
X passing through x, is a union of disjoint varieties, one component Cα

x for each
possible class α of lines. The proof of the preceding theorem implies the following:



Vol. 78 (2003) On the projective geometry of rational homogeneous varieties 85

Theorem 4.8. Let G be a complex simple Lie group, let S be a subset of the
simple roots. Let α ∈ S. Let D(H) be the components of (D(G)\S)\α containing
an element of N(α), where by D(G)\S we mean D(G)\S plus any nodes of S
attached to a node of D(G)\S. Let Cα

x ⊂ PTxX denote the class of α-lines through
x.

1. If α is not an exposed short root, then Cα
x ' H/PN(α).

2. If α is an exposed short root, then Cα
x is a union of an open PS-orbit and

its boundary H/PN(α).

With the notations of §2, the closed PS-orbit in C
αj
x is Y j

1 , and the open orbit
is PSY j

2 . The cases of Cα
x for exposed short roots are described explicitly on a

case by case basis in §6.

4.3. Linear spaces of higher dimension

A k-plane in X must come from a linear Pk−1 in some Cα
x . We call such a Pk,

of class α, and let Fα
k (X) denote the variety parametrizing the α-class Pk’s on

X. Fα
k (X) may have several components. The space of Pk’s in X, Fk(X), is the

disjoint union of the Fα
k (X)’s.

If α = αj ∈ S is not an exposed short root, it follows from Theorem 4.3 that the
projection G/PS → G/PS\j is constant on each α-line, hence it is also constant on
each α-class Pk. It follows that the space of α-class Pk’s is a fibration over G/PS\j ,
and to determine the fiber, we can restrict to the subdiagram of D consisting in
the connected component of αj in D\(S\j). In particular, we are reduced to the
case of a maximal parabolic subgroup, corresponding to a non-short root. Then
we know that Cx = Y1 is a minuscule variety, so it is again a homogeneous space
of type H/Q with Q a maximal parabolic subgroup corresponding to a long root,
or possibly a product of such spaces. We can therefore apply Theorem 4.3 to
Y1 to describe its lines, which gives P2’s in the original space, and so on. The
conclusion is that, not only P1’s, but all linear spaces can be described in terms
of Tits’ geometries.

Theorem 4.9. Let G be a simple group and let X = G/PS ⊂ PV be a rational
homogeneous variety in its minimal homogeneous embedding.

If α ∈ S is not an exposed short root, then for all k, Fα
k (X) is the disjoint

union of homogeneous varieties G/PΣβj
where {βj} ⊂ ∆+ is a minimal set of

positive roots such that the component of D(G)\{βj} containing α is isomorphic
to D(Ak), intersects S only in α, and α is an extremal node of this component.

Corollary 4.10. Let G be a simple Lie group, let S ⊂ D(G), let α ∈ S with α
not exposed short. Let X = G/PS be the corresponding homogeneous variety in a
homogeneous embedding such that there are α̌-lines. Suppose that the longest of
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the chains of type A in D(G) beginning at α and containing no other element of
S, is isomorphic to D(An). Then the largest linear space of class α on X is a Pn.

Example 4.11. Consider the case of G/B ⊂ PVλ, λ = ω1 + · · ·+ ωr, the sum of
the fundamental weights. There are no unexposed short roots, so Cx is the union
of r points, F1(X) =

∐
j G/PD\αj

and Fk(X) = ∅ for k ≥ 2.

Example 4.12. In the case of Dn/Pn, we have a unique family of lines, parametr-
ized by isotropic subspaces of dimension n − 2, Dn/Pn−2 and a unique family of
two planes parametrized by the Q-isotropic flag variety Dn/Pn−3,n−1. There are
two families of P3’s, namely Dn/Pn−3 and Dn/Pn−4,n−1. For 4 ≤ k ≤ n− 1 there
is a unique family of Pk’s, namely Dn/Pn−k−1,n−1.

Example 4.13. The largest linear space on En/P1 is a Pn−1, via the chain termi-
nating with αn, so En/P1 is maximally uniruled by Pn−1’s and there is a second
chain terminating with α2, so En/P1 is also maximally uniruled by P4’s. (The
unirulings by the P4’s are maximal in the sense that none of the P4’s of the unirul-
ing are contained in any P5 on En/P1.) The varieties parametrizing these rulings
are respectively En/P2 and En/Pn.

• • • • • ••
◦

α1 • • • ◦ ◦ ◦
•

α1

Now we address the case of exposed short roots. First note that if X = G/Pα =
Bn/Pn, G2/P1 or Cn/P1, then the space of Pk’s on X is G̃-homogeneous, where
D(G) is the fold of D(G̃), as in these cases G/P ' G̃/P̃ . In general, we have:

Theorem 4.14. If α ∈ S is an exposed short root, then for all k, Fα
k (X) consists

of a finite number of G-orbits (at least two).

If α ∈ S is an exposed short root, Fα
k (X) can be deduced from Fk(G/Pα). In

each of these cases we determine the unextendable linear spaces through a point
explicitly. By further calculation, one can deduce all linear spaces through a point
and prove the theorem.

4.4. Natural embeddings of linear spaces

For X = G/PS ⊂ PV , we have Fk−1(X) ⊂ G(k, V ) ⊂ PΛkV . Thus the connected
components of the Fk−1(G/PS)’s come naturally embedded in some irreducible
component of ΛkV with highest weight λ supported on the weights dual to the
roots appearing in the (unique) closed orbit G/PS′ consisting of G-homogeneous
Pk’s in the component (i.e. Pk’s that are L-varieties in the sense of Tits). While S′

can be determined pictorially, the multiplicities of the weights in general cannot.
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We now determine the multiplicities in several cases, in particular the elementary
representations defined below.

Fix an end of the Dynkin diagram of G, and label the end node α1. Following
[7], define the branch of α1, B(α1), as the largest chain in D(G) containing α1

that is isomorphic to D(Ap) or D(Cp), such that no node in B(α1) before the last
has valence three. We say such a branch has length p. We label the roots on
B(α1) as α1, ..., αp and denote the fundamental representation corresponding to
ω1 by V = Vend = Vω1 . Such an irreducible representation is called an elementary
representation in [7].

• • • • •HH©
©end

α1 αp

◦
◦

The following result is evidently due to Cartan, a proof can be found in [7]
except for the ‘moreover’ assertions which may be verified on a case by case basis.

Proposition 4.15. With the notations above, Vωk
is an irreducible component

of ΛkV , with multiplicity one for 2 ≤ k ≤ p. More precisely, ωk is the unique
extremal weight of ΛkV .

Moreover, Λp+1V also has a unique extremal weight which is
1. 2ωp+1 for a double edge with arrow pointing away from ω1.
2. 3ωp+1 for a triple edge with arrow pointing away from ω1.
3. ωp+1 + ωp+2 if ωp corresponds to a node of valence three.

Idea of proof. One simply checks that among the weights of V , there is a maximal
chain µ1, . . . , µp+1 with µi = ω1 − (α1 + · · · + αi−1). In particular, µ1 + · · · + µk

is the unique maximal weight of ΛkV for 1 ≤ k ≤ p + 1, and it is straightforward
to check that this weight is as announced in the proposition. ¤

It is an easy exercise to prove that the wedge product of the weight vectors
corresponding to the weights µ1, . . . , µk generate a Pk−1 that is contained in the
closed orbit Xend. Thus the G-submodule of ΛkV which hosts Fk−1(X) is precisely
the fundamental representation Vωk

.
It follows for example that in the case of simply-laced groups, we can obtain

all fundamental representations from the elementary ones, in a simple geometric
way.

Example 4.16. For E6 we have three elementary representations, the minimal
representation Vω1 , its dual Vω6 and the adjoint representation Vω2 .

Start with Vω1 , so X = E6/P1 is the Cayley plane. Then PVω3 is the ambient
space for F1(X), PVω4 is the ambient space for F2(X) and PVω2 is the ambient
space for F5(X).

Start with Vω2 = e6, so X = E6/P2 is the adjoint variety. Then PVω4 is the
ambient space for F1(X) and PVω3 is the ambient space for F4(X). (Note that
E6/P1 is a space of spinor varieties D5/P5 on X.)
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A case by case analysis with LiE [20] leads to the following more precise result:

Proposition 4.17. Notations as above.
1. If Xend is a minuscule variety and V is not symplectic or (Dn, ωn) '

(Dn, ωn−1), then for 2 ≤ k ≤ p, Vωk
= ΛkV . This is the case for (G,ω) =

(An, ω1), (Bn, ω1), (Dn, ω1) and (E6, ω1) ' (E6, ω6).
2. If Xend is a minuscule variety and V has a symplectic form Ω, set Λ〈k〉V =

ΛkV/(Ω ∧ Λk−2V ). Then Vend−k = Λ〈k〉V . This is the case for (G,ω) = (Cn, ω1)
and (E7, ω7).

3. If Xend is an adjoint variety, so V = g, let Λ[2]g = ker [ , ], where
we consider the Lie bracket as a map [ , ] : Λ2g → g. The adjoint varietes
corresponding to elementary representations are those of the exceptional groups:
(G,ω) = (G2, ω2), (F4, ω1), (E6, ω2), (E7, ω1) and (E8, ω8). In each of these
cases, except for G2, Vend−1 = Λ[2]g. (And afterwards there is always a double
bond or node with triple valence.)

4. If Xend = G2/P1 then Vω2 = Λ2Vω1/(V ∗
ω1

yφ) where φ ∈ Λ3Vω1 is the
defining three form.

5. If Xend = F4/P4, then Vω2 = Λ2Vω4/f4.

Remark 4.18. Consider the case of An. The adjoint variety X = G/P1,n is the
flag variety of lines in hyperplanes in Pn. The space of lines in X is disconnected:
it is the disjoint union of F2,n and F1,n−1, the corresponding embeddings of which
are not their minimal ones, since

Λ[2]sln+1 = V2ω1+ωn−1 ⊕ Vω2+2ωn
.

Remark 4.19. For X = F4/P4, F5(X) = F4/P1, but here the variety occurs in its
third Veronese re-embedding, i.e. V3ω1 ⊂ Λ3Vω4 . For X = G2/P1, F2(X) occurs
in its second Veronese embedding, PV2ω1 .

4.5. Dynkin diagrams via second fundamental forms

We describe how to recover D∗(G), the marked Dynkin diagram of G, from the
second fundamental form at a point of any X = G/P where P is maximal and not
short:

Fix x ∈ X and start with a marked node, which corresponds to P . Say Y1

is the Segre product of Veronese re-embeddings of k minuscule varieties. Then
attach k edges to the node, with nodes at the end of each edge. For each factor
in the Segre that is minimally embedded, the edge is simple. If there is a factor
that is a quadratic (resp. cubic) Veronese, then make the corresponding edge a
double (resp. triple) bond. Now compute Base |FF2

X,x| of each factor and repeat
the process starting with the node corresponding to the factor. Continue until
arriving at the empty set. The resulting diagram is D(G).
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A shortcut: if at any point one obtains an H/Q as a factor where the marked
Dynkin diagram associated to H/Q is known, one can simply attach the diagram.
In particular, if one arrives at a Pl, just attach a copy of D(Al).

Example 4.20. Beginning with X = En/P1, one has

Base |FF2
X | = Sn−1, Base |FF2

Sn−1
| = G(2, n− 1),

Base |FF2
G(2,n−1)| = Seg(P1 × Pn−2), Base |FF2

Seg(P1×Pn−2)| = P0 t Pn−3.

So the construction is:

◦ - ◦ ◦• - ◦ ◦ ◦• - ◦ ◦ ◦ • •
•

5. Classical homogeneous varieties

In this section we present the higher normal spaces of the classical homogeneous
varieties which are not minuscule, as well as the base loci of the higher fundamental
forms. We give most results without their proofs, which are computational.

5.1. Orthogonal Grassmannians

Let Go(k, n) denote the orthogonal Grassmannian of null k-planes in V = Cn

where V is equipped with a nondegenerate quadratic form Q and 2k < n. It
is a subvariety of the ordinary Grassmannian, and its minimal embedding is the
Plücker embedding in PVωk

= P(ΛkV ).
Introduce the notation

(ΛpE∗⊗ΛpE∗)+ =
{

S2(ΛpE∗) if p is even
Λ2(ΛpE∗) if p is odd

and

(ΛpE∗⊗ΛpE∗)− =
{

Λ2(ΛpE∗) if p is even
S2(ΛpE∗) if p is odd.

Proposition 5.1. Let Ek be the tautological vector subbundle on Go(k, n), let
E⊥ ⊃ E denote its Q-orthogonal complement, and let Un−2k = E⊥/E. Then the
tangent space and normal spaces of Go(k, n), as H = SL(E) × SO(U) modules,
are

T1 = E∗⊗U, T2 = Λ2E∗,

N2 = (Λ2E∗⊗Λ2U ⊕ S2E∗)⊕ (Λ2E∗⊗E∗⊗U)⊕ (Λ4E∗ ⊕ S22E
∗).

Np =
⊕

a>0(Λ
p−aE∗⊗ΛpE∗⊗ΛaU)⊕

⊕(ΛpE∗⊗ΛpE∗)+ ⊕ (Λp−1E∗⊗Λp−1E∗)−.
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In particular, the length of the normal graduation is k when k is even and the
last non zero term is Nk ' ΛkE∗⊗(Λ0E∗⊗ΛkU + · · ·+ ΛkE∗⊗Λ0U)⊕S2(ΛkE∗).
When k is odd, the length is k + 1 and the last non zero term is Nk+1 ' C.

Remark 5.2. Note that in contrast to the case of minuscule varieties, here N∗
3 6=

N
∗(1)
2 .

Corollary 5.3. The base locus Base |FFp
Go(k,n),E | of the p-th fundamental form is,

for p even,

P{e1⊗u1 + · · ·+ ep⊗up⊕ e1 ∧ e2 + · · ·+ ep−1 ∧ ep, | ej ∈ E∗, uj ∈ U},
and for p odd,

P{e1⊗u1 + · · ·+ ep⊗up⊕ e1 ∧ e2 + · · ·+ ep−2 ∧ ep−1, | ej ∈ E∗, uj ∈ U}.

5.2. Symplectic Grassmannians

We let Gω(k, 2n) = Cn/Pk denote the Grassmanian of k-planes isotropic for a
symplectic form. Its minimal embedding is to Vωk

= Λ〈k〉V = ΛkV/(Ω ∧ Λk−2V ),
the k-th reduced exterior power of V = C2n, where Ω denotes the symplectic form.

A straightforward computation shows that Vωk
has the following decomposition

as an H = SLk × Sp2n−2k-module:

Λ〈k〉V =
⊕
a,b

ΛbE∗⊗Λa+bE∗⊗Λ〈a〉U.

Note that U = E⊥/E is endowed with a symplectic form induced by the symplectic
form on V = C2n.

Proposition 5.4. Let E be the tautological vector sub bundle on Gω(k, 2n), let
E⊥ ⊃ E denote the Ω-orthogonal complement to E and let U = E⊥/E. Then the
tangent space and normal spaces of Gω(k, 2n) are, as H-modules,

T1 = E∗⊗U, T2 = S2E∗,

N2 = Λ2E∗⊗Λ〈2〉U ⊕ S21E
∗⊗U ⊕ S22E

∗,

Np =
⊕

a+b+c=p Λ〈a〉U⊗S 2...2︸︷︷︸
b−c

1...1︸︷︷︸
a+2c

E∗

=
⊕

d+e=p ΛdU⊗S 2...2︸︷︷︸
e

1...1︸︷︷︸
d

E∗.

In particular, the length of the normal graduation is equal to k, the last non zero
term being Nk ' Λk(C⊕U).
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Corollary 5.5.

Base |FF2
Gω(k,2n),E | = P{e⊗u⊕ e2 | e ∈ E∗\{0}, u ∈ U\{0}}.

This base locus contains an open and dense P -orbit, the boundary of which is the
union of the two (disjoint) closed H-orbits

Y1 ' Pk−1 × P2n−2k−1 ⊂ P(T1) and Y2 ' v2(Pk−1) ⊂ P(T2).

Proof. This can be seen directly. A line in Gω(k, 2n) through a point E is given
by a (k − 1)-plane H ⊂ E, and a (k + 1)-plane K ⊃ E. K does not need to be
isotropic, each point of the corresponding line is generated by H and a vector of K,
and is isotropic if and only if this vector is ω-orthogonal to H. The condition on
K is thus K ⊂ H⊥. K is therefore determined by a line in H⊥/E ' U ⊕H⊥/E⊥.

If e ∈ E∗ is an equation of H, the line H⊥/E⊥ ' (E/H)∗ ⊂ E∗ is generated
by E, so that a vector in H⊥/E can be written as u ⊕ λe, where u ∈ E. Our
claim follows, the closed orbits Y1 and Y2 corresponding to the cases where u or λ
is equal to zero. ¤

Corollary 5.6. More generally, the base locus of the p-th fundamental form is

Base |FFp
Gω(k,2n),E | = P{e1⊗u1 + · · ·+ ep⊗up⊕ e2

1 + · · ·+ e2
p, | ej ∈ E∗, uj ∈ U}.

Remark 5.7. Since Cn/Pk = Gω(k, 2n) is a subvariety of the ordinary Grass-
mannian G(k, 2n), the Pl’s it contains are easy to describe: letting Ma

0 , N b
0 denote

fixed linear spaces of dimensions a and b, they are of the form

{Mk−1
0 ⊂ L ⊂ Nk+l

0 ⊂ M⊥
0 },

with l ≤ 2n− 2k + 1, or

{Mk−l
0 ⊂ L ⊂ Nk+1

0 ⊂ M⊥
0 },

with 1 < l ≤ k and N0 isotropic. This second family of Pl’s has two Cn-orbits,
while the first family breaks into a number of Cn-orbits that grows with k, indexed
by the rank of the restriction of Ω to N0.

5.3. Odd spinor varieties

We call the homogeneous spaces Bn/Pn the odd spinor varieties. They are the
usual Dn-spinor varieties seen as Bn-homogeneous spaces.

Proposition 5.8. The tangent space and normal spaces of the odd spinor varieties
Bn/Pn, as H = An−1-modules, are (dimE = n):

T1 = E∗, T2 = Λ2E∗,
Np = Λ2p−1E∗ ⊕ Λ2pE∗.
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Corollary 5.9.

Base |FF2
Bn/Pn

| = P{e⊕ e ∧ f, e ∈ E∗\{0}, f ∈ E∗\Ce} ' G(2, n).

This base locus contains an open and dense H-orbit, the boundary of which is the
union of the two (disjoint) closed H-orbits

Y1 = PE∗ = P(T1) and Y2 ' G(2, E∗) = G(2, n− 1) ⊂ P(T2).

The base locus of the k-th fundamental form is

Base |FFk
Bn/Pn

| = P{e⊕ Ω, e ∈ E∗\{0}, rank Ω|e⊥ < rank Ω ≤ 2k − 2}.

Proof. Consider V 2n+1 ⊂ W 2n+2, and En ⊂ Fn+1, where F is a null plane in W .
let L = E⊥ ⊂ F Then Λ•E∗ ' ΛevenF ∗. We may write N2 = Λ3E∗⊗L⊕Λ4E∗ =
Λ4F = I2(G(2, F )). The analogous identities hold for the higher normal spaces.
After all, this is the same projective variety as Dn/Pn. ¤

Remark 5.10. The varieties parametrizing the Pl’s of Bn/Pn = Dn+1/Pn+1 are
stratified as Bn-spaces. For k ≥ 2, a connected component of this variety is
Dn+1/Pn,n−k−1. If Ṽ = C2n+2is endowed with a nondegenerate quadratic form,
a point of this space is a flag F0 ⊂ M0 of isotropic subspaces of Ṽ of respective
dimensions n − k − 1 and n. The associated line in Dn+1/Pn+1 is the space of
n-dimensional isotropic subspaces of Ṽ containing F0 and cutting M0 in dimension
n− 1. Let V be the hyperplane of Ṽ preserved by Bn. Then the Bn-orbits inside
Dn+1/Pn,n−k−1 are indexed by the relative position of F0 and V . There is a closed
orbit corresponding to F0 ⊂ V , isomorphic to Bn/Pn−k−1, and its complement
is an open orbit. For k = 1 or k = 3, there is another connected component,
parametrized by Dn+1/Pn−1 and Dn+1/Pn−2 respectively. Each of them has two
Bn-orbits, the closed orbits being Bn/Pn−1 and Bn/Pn−2 respectively.

6. Exceptional short roots and the octonions

In this section we calculate Base |FF2
X,x| for the exceptional spaces corresponding

to short roots, and give geometric interpretations of these varieties and their linear
spaces in terms of the octonions.

6.1. G2/P1

As an algebraic variety, G2/P1 is a familiar space, G2/P1 = Q5 ⊂ P6. Studying it
from an octonionic perspective will help us to understand F4/P4 by analogy.

Identify C7 ' ImO = Vω1 = V . Let φ ∈ Λ3V ∗ be a generic element and let ρ :
GL(V ) → GL(Λ3V ∗) be the induced representation. Here are some descriptions
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of G2 ⊂ GL(V ) (see [10] pp. 114, 116, 278 and [23] chapter 2):

G2 = Aut(O)
= {g ∈ GL(V ) | ρ(g)φ = φ}
= {g = (g+, g−, g0) ∈ Spin8(V ) | g+ = g− = g0}.

The third line should be understood as follows: let S+, S−, V0 denote the vector
and two spin representations of Spin8 and choose appropriately an identification
of each of the three spaces with O, so that they are acted on by g ∈ Spin8 in three
different ways, call them (g+, g−, g0). In this case (see [10] p. 278), the triality
principle of E. Cartan leads to the identification

Spin8 = {(g+, g−, g0) ∈ SO(O)× SO(O)× SO(O) | g+(uv) = g−(u)g0(v)},
where uv denotes octonionic multiplication. When the three coincide one obtains
an automorphism of the octonions, showing the equivalence of the second and third
definition. Harvey’s description is explicit in bases. The connection between the
first two interpretations is that if one makes suitable identifications, for u, v, w ∈
ImO, we have φ(u, v, w) = Re[(uv)w].

The first definition is due to R. Bryant. It shows that G2 is not really an
exceptional group, because it is defined by a generic form. (Generic three forms
on Cm for m > 8 are not preserved by a positive dimensional group. For m = 6, 8,
the groups preserving such a form are classical.)

The third interpretation can be understood in terms of folding Dynkin dia-
grams:

• ◦ ◦
◦

©©
HH

D4

−→ ◦ •>

G2

This indicates that G2/P1 should be be understandable in terms of D4/P1 = Q6,
and in fact it is a generic hyperplane section. ImO ⊂ O should be thought of as
the traceless elements, where the trace of an element is its “real” part and we call
the hyperplane section {tr = 0}. In what follows, uv etc... refers to octonionic
multiplication.

Proposition 6.1. Consider Q5 ' G2/P1 = P(ImO)0 ⊂ P(ImO) ' P(Vω1).
Then TxG2/P1 = T1⊕T2⊕T3 as an H = SL2-module. Let A = C2, the

standard representation of SL2. Then T1 = A, T2 = C (the trivial representation)
and T3 = A∗. Moreover, in a suitable normalization,

Base |FF2
G2/P1

| = P{a⊕ t⊕ a∗ | 〈a, a∗〉 = t2}.

Proposition 6.2. We have the following octonionic interpretations:

G2/P1 = {[u] ∈ P(ImO) | u2 = 0}
T̂[u]G2/P1 = {v ∈ ImO | uv + vu = 0} = {v ∈ ImO | Re(uv) = 0}

T̂[u]1G2/P1 = {v ∈ ImO | uv = 0}.
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Proposition 6.3. The space G(P1, G2/P1) of lines on G2/P1, has the following
description:

G(P1, G2/P1) = {P{u, v} | [u], [v] ∈ G2/P1 such that uv + vu = 0}.
Note that G(P1, G2/P1) = Go(2, 7) and in particular is of dimension seven.

The space G2/P2 = G0(P1, P(ImO)0) of G2-homogeneous lines on G2/P1 has
dimension 5, and admits the following descriptions:

i. G2/P2 = {PE ∈ G(P1, PVω1) | Eyφ = 0}
ii. G2/P2 = {PE = P{u, v} | [u], [v] ∈ G2/P1, uv = 0}.

Proofs are left to the reader. The arguments are similar to, but simpler than
the arguments for the F4/P4 case below.

Remark 6.4. Recall that Vω2 is the adjoint representation of G2, so that G2/P2

is an adjoint variety. The relation with our description of G2/P2 as a space of
special lines on the quadric G2/P1 is as follows. Let [u], [v] ∈ G2/P1 be such that
uv = vu = 0. One can then check that the map

du,v(z) = u(vz)− v(uz), z ∈ O,

defines a nilpotent derivation of O,with d2
u,v = 0.

Note that GQ(3, 7) ' Q6, the space of P2’s on G2/P1, contains a special family
of planes isomorphic to G2/P1 as follows: through each point of G2/P1 there is a
plane contained in G2/P1 tangent to T1 (and it is completely tangent to T1 at this
point only). Perhaps it is better to say the space of special P2’s is parametrized
by v2(G2/P1) as the variety sits inside V2ω1 ⊂ Λ3Vω1 . (Although Vω1 ⊂ Λ3Vω1 ,
the Veronese re-embedding is the correct factor as were there linear spaces on the
parameter space, they would determine larger linear spaces on G2/P1 which do
not exist.)

6.2. The Cayley plane OP2

Let J3(O) be the space of 3× 3 O-Hermitian symmetric matrices

J3(O) =


A =


r1 x3 x2

x3 r2 x1

x2 x1 r3


 , ri ∈ C, xj ∈ O


 .

J3(O) can be equipped with the structure of a Jordan algebra for the commu-
tative product A ◦ B = 1

2 (AB + BA), where AB is the usual matrix product.
dim CJ3(O) = 27 and it is a model for the E6-module Vω1 . There is a well-defined
determinant on J3(O), which is defined by same expression as the classical deter-
minant in terms of traces:

det A =
1
6
(trace A)3 − 1

2
(trace A)(trace A2) +

1
3
trace A3.
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E6 is the subgroup of GL(J3(O)) = GL(27, C) preserving det. The notion of rank
one matrices is also well defined and the Cayley plane, E6/P1 = OP2 ⊂ P(J3(O))
is the projectivization of the rank one elements, with ideal the 2× 2 minors (see
[13]).

Since α1 is not short, all linear spaces on OP2 are described by Tits geometries.
In particular, E6/P3 is the space of lines on OP2 and E6/P2 is the space of P5’s
on OP2.

6.3. F4/P4 = OP2
0

Here are some descriptions of F4 ⊂ GL(J3(O)):

F4 = {g ∈ GL(J3(O)) | tr((ρ(g)A)i) = trAi for i = 1, 2, 3}
= Aut(J3(O))
= {g ∈ E6 | g+ = g−}

The third description is motivated by folding of Dynkin diagrams:

◦ ◦ ◦ •

◦ ◦
©©

©©

HH
HH

E6

−→ ◦ ◦ ◦ •>

F4

6

?

The equivalence of the second and third descriptions can be proved by using
the quadratic form tr(A2) to identify J3(O) with J3(O)∗ and considering g+ (resp.
g−) as the two resulting elements of GL(J3(O)). Harvey shows that the second
definition implies the first [10] p. 296. For the first definition, one only needs two
of the three forms to be preserved, as any group preserving two preserves the third.

Geometric folding indicates F4/P4 should be understood in terms of OP2, and,
as with G2/P1 above, it is the hyperplane section {tr = 0}. In what follows, AB
denotes the usual matrix product of A and B. Note that A2 = A ◦A.

Proposition 6.5. Consider OP2
0 = F4/P4 ⊂ P(J3(O)0) ' P(Vω4). Then

Tx(F4/P4) = T1⊕T2 as an H = Spin7-module. Let U be the 7-dimensional vector
representation of Spin7 and S(U) the spin representation, then T1 = S(U) and
T2 = U . The spinor variety Y1 = S(U) is a six dimensional quadric, and Y2 = Q5

is a five dimensional quadric. Moreover, we may identify T1 ' O and T2 ' ImO
and with this identification

Base |FF2
OP2

0
| = P{(u, v) ∈ T1 ⊕ T2 | uu = 0, vv = 0, uv = 0} = S5 ∩H

where S5 ∩ H is a generic hyperplane section of the spinor variety S5 = D5/P5.
In particular, Base |FF2

OP2
0
| is of dimension 9, and is the closure of a Spin7-orbit,

the boundary of which is the disjoint union of Y1 and Y2. It is not homogeneous
for any group.
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Proof. The decomposition of the tangent space follows from §2.3. Moreover,
Base |FF2

OP2
0
| must be a generic hyperplane section of S5 = Base |FF2

OP2 | because
F4/P4 is a generic hyperplane section of E6/P6. The explicit description follows
using the description of TxOP2 ' O ⊕ O and the explicit description of IIOP2

in [13], verifying that O⊕O0 is indeed a generic hyperplane section or using the
explicit description below. Finally, we check that there is no homogeneous space
of dimension 9 homogeneously embedded in a P14. ¤

Proposition 6.6. We have the following octonionic interpretations:

OP2
0 = F4/P4 = {[A] ∈ PJ3(O)0 | A2 = 0}

T̂[A]OP2
0 = {B ∈ J3(O)0 | A ◦B = 0}

T̂1[A]OP2
0 = {B ∈ J3(O)0 | AB = 0}

Proof. A calculation shows that an element A ∈ J3(O) is rank one and traceless
if and only if A2 = 0. Differentiation yields the second line.

To prove the third line, we first need to show that if [A] ∈ OP2
0 and B ∈

T̂[A]OP2
0, the equation AB = 0 is F4 invariant (although the matrix product AB is

not F4 invariant). Note that F4 is generated by SO3 and Spin8, where the action
of g ∈ SO3 is by A 7→ gAtg, and that of (g+, g−, g0) ∈ Spin8 by

r1 x3 x2

x3 r2 x1

x2 x1 r3


 7→


 r1 g+(x3) g−(x2)

g+(x3) r2 g0(x1)
g−(x2) g0(x1) r3


 .

(This defines an automorphism of the Jordan algebra J3(O)0 because of the triality
principle.) The SO3 invariance is clear. Moreover, if we take

A =


i 1 0

1 −i 0
0 0 0




then

T̂[A]OP2
0 =


itr(x3) x3 ix1

x3 −itr(x3) x1

ix1 x1 0




where tr(u) = u− u0 = 1
2 (u + u) is the “real” part of u. The Spin8 invariance of

the equation AB = 0 is a straightforward calculation, and follows again from the
triality principle. With this model, {B ∈ T̂[A]OP2

0 | AB = 0} ' {x1, tr(x3)} and
we may consider {x1} ⊂ T̂[A]/{A} ' T . Note that T is acted on by the subgroup
of Spin8 that preserves A, which means that g+(1) = 1. By [10] p. 285,

Spin7 = {(g+, g−, g0) ∈ Spin8 | g− = g0}
= {(g+, g−, g0) ∈ Spin8 | g+(1) = 1 ∈ O}

(Note that this embedding of Spin7 in Spin8 is not the standard one). Thus
we explicitly see the Spin7 = H action on T and the decomposition of T into
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T1 ' {x1} and T2 ' {(x3)0}, respectively as the spin and vector representations.
In particular, {T1 + A} = {B ∈ T̂ | AB = 0}. ¤

Proposition 6.7. The space G(P1, OP2
0) of lines on OP2

0 has dimension 23, and
admits the following description:

G(P1, OP2
0) = {P{A,B} | [A], [B] ∈ OP2

0 such that A ◦B = 0}
The space F4/P3 = G0(P1, OP2

0) of F4-homogeneous lines on OP2
0 has dimen-

sion 20, and admits the following description:

G0(P1, OP2
0) = {P{A,B} | [A], [B] ∈ OP2

0 such that AB = 0}.

Proof. The geometric descriptions of G(P1, OP2
0) and G0(P1, OP2

0) follow immedi-
ately from proposition 6.6, because F4/P3 is the space of lines on F4/P4 tangent
to Y1. Moreover,

dim (G(P1, OP2
0)) = dim OP2

0 + dim (Base |FF2
OP2

0
|)− 1 = 15 + 9− 1 = 23

verifies the dimension assertion. ¤

Proposition 6.8. There are four types of maximal (i.e. unextendable) linear
spaces through a point of F4/P4:

The space of P5’s which is 5-dimensional, parametrized by the quadric Q5 ⊂
PT2.

A space of P4’s which is 6-dimensional, parametrized by the quadric Q6 ⊂ PT1

or equivalently SQ5 , the variety of P2’s in Q5 ⊂ PT2.
A space of P4’s which is 6-dimensional and having two components, the two

copies of SQ6 , the variety of P3’s in Q6 ⊂ PT1.

All other linear spaces can be deduced from these.

Proof. A Pk in F4/P4 corresponds to a Pk−1 in S5 ∩ H. Let L = Pm ⊂ S5 ∩ H.
The dimension d2 of its projection p2(L) onto Q5 ⊂ PT2 is P4 invariant.

We choose a splitting T = T1⊕T2 in order to use the equations above describing
Base |FF2

X,x|. Relative to a choice of splitting, L is just the span of p1(L) and p2(L)
so we can analyze L accordingly.

Since B3 acts transitively on GQ(k, T2), we may choose convenient k-planes to
calculate with.

Without loss of generality, take v = ε1 + iε2 ∈ T2, Then, writing u = α0 +
α1ε1 + · · · + α7ε7, and using the standard octonionic multiplication table (e.g.,
see [13]) the condition uv = 0 implies u = iα3 + α1ε1 + iα1ε2 + α3ε3 + iα5ε4 +
α5ε5 +α6ε6 + iα6ε7. In other words, we obtain a P3

v ⊂ Q6 “polar” to v which gives
rise to an unextendable L4 = 〈v, P3

v〉. Note that we automatically have uu = 0.
Taking M = 〈v, v′〉 with v′ = ε6 + iε7, the additional condition uv′ = 0 implies
u = α(ε6 + iε7), i.e., is a point q ∈ Q6. A similar computation shows that any
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q ∈ Q6 has a P2’s worth of points in Q5 ‘polar’ to it so we obtain an unextendable
L3 = 〈P2

q, q〉. If p2(L) is empty, then we are of course free to take one of the two
families of P3’s on Q6 as our maximal linear space. ¤

6.4. F4/P3 = G0(P1, OP2
0)

Proposition 6.9. Consider F4/P3 ⊂ PVω3 . Then T = T1 ⊕ T2 ⊕ T3 ⊕ T4 as an
H = SL3 × SL2-module. Let dim E = 3 and dimU = 2, then

T1 = E∗⊗U, T2 = E⊗S2U, T3 = U, T4 = E∗,

Base |FF2
G0(P1,OP2

0)
|

= P{e∗⊗u + e⊗u2 ∈ T1 ⊕ T2 | e∗ ∈ E∗, e ∈ E, u ∈ U, 〈e∗, e〉 = 0}.
This base locus B is a nontrivial Q4-bundle over PU = P1. In particular, dim B =
5 and it has a dense open SL3 × SL2-orbit, the boundary of which is the union of
the two closed orbits Y1 ⊂ PT1 and Y2 ⊂ PT2. It is not homogeneous for any Lie
group.

Proposition 6.10. The space G(P1, F4/P3) of P1’s on F4/P3 has dimension 24,
and admits the following description:

G(P1, F4/P3)

= {{A} ⊂ {A,B,C} | [A], [B], [C] ∈ OP2
0 such that AB = AC = 0, B ◦ C = 0}.

The space F4/P2,4 = G0(P1, OP2
0) of F4-homogeneous P1’s on F4/P3 has dimension

22, and admits the following description:

F4/P2,4 = G0(P1, OP2
0)

= {{A} ⊂ {A,B,C} | [A], [B], [C] ∈ OP2
0 with AB = AC = BC = 0}.

Corollary 6.11. There are two types of maximal linear spaces passing through
a point of F4/P3; the P3’s corresponding to a P2 in some quadric in a fiber of
Base |FF2

G0(P1,OP2
0)
| considered as a fibration and the P2’s corresponding to the P1

in the base.

Proof of 6.10. We have F4/P3 ⊂ G(2, 26) so a line on F4/P3 must be a line of
the Grassmanian as well. Lines on G(2, 26) are determined by the choice of a flag
P0 ⊂ P2. Here we need [A] = P0 ∈ F4/P4 in both cases.

In the first case AB = AC = 0, B◦C = 0 are necessary and sufficient conditions
that the line be contained in F4/P3, as by 6.7, we need A(sB + tC) = 0 and
(sB + tC)2 = 0 for all [s, t] ∈ P1. Moreover, dim G(P1, F4/P3) = 24 because the
choice of [A] is 15 dimensions and then one needs an element of Go(2, 8), which is
of dimension 9. (Here C8 ' T1.)
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In the second case, considering F4/P2,4 as a P2-bundle over F4/P2, the con-
ditions AB = AC = BC = 0 follow from picking an element of F4/P2, and the
choice of [A] is a choice of an element in the fiber. ¤

Proof of 6.9. First, dimB = 5 because

dim (F4/P3) + dim Base |FF2
F4/P3

| − 1 = dim G(P1, F4/P3).

Moreover, we know that B contains Y1 and Y2 and is irreducible.
Consider now [y1 + y2] ∈ B, with yj ∈ Yj ⊂ PTj . Write y1 = e⊗u and

y2 = e∗⊗v2. Conditions for such a point to belong to B can only come from
components of

T ∗1 ⊗T ∗2 = (E⊗E∗)⊗(U∗⊗S2U∗) = (C⊕ sl(E))⊗(U∗⊕S3U∗).

Suppose that sl(E)⊗S3U∗ were contained in N∗
2 . Since e⊗e∗ is not a homothety,

this would force uv2 to be zero in S3U , hence u or v to be zero. If this component
were in N∗

2 , then B would be included in PT1tPT2, and would not be irreducible.
Suppose now that sl(E)⊗U∗ were contained in N∗

2 . This set of equations would
force u and v to be parallel because under the contraction U⊗S2U → U , u⊗v2

maps to ω(u, v)v, where ω ∈ Λ2U∗. Similarly, the component S3U∗ would force
〈e, e∗〉 = 0.

In conclusion, P{e⊗u⊕ e∗⊗u2 | 〈e, e∗〉 = 0} ⊆ B. Since both sets are irreducible
of dimension five, the second one must be the closure of the first one.

The quadric bundle structure is given by the application B → PU defined by
[e∗⊗u + e⊗u2] 7→ [u]. This is a nontrivial bundle structure. Finally, to see that B
cannot be homogeneous, note that there are no homogeneous nontrivial quadric
fibrations in dimension five. ¤

Further calculations along this line show that each variety of linear spaces is a
finite union of F4-orbits.
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[6] J. Dixmier, Algèbres enveloppantes, Gauthier-Villars, Paris, 1974.

[7] E. B. Dynkin, Maximal subgroups of the classical groups, Amer. Math. Soc. Trans. Series
6 (1957), 245–378.



100 J. M. Landsberg and L. Manivel CMH

[8] M. Green, Koszul cohomology and the geometry of projective varieties, J. Differ. Geom.
19 (1984), 125–167.

[9] P. A. Griffiths and J. Harris, Algebraic Geometry and Local Differential Geometry, Ann.
scient. Ec. Norm. Sup. 12 (1979), 355–432.

[10] F. R. Harvey, Spinors and calibrations, Perspectives in Math. Vol. 9, Academic Press, 1990.
[11] B. Kostant, Lie algebra cohomology and the generalized Borel–Weil theorem, Ann. Math.

74 (1961), 329–387.
[12] J. M. Landsberg, On second fundamental forms of projective varieties, Inventiones Math.

117 (1994), 303–315.
[13] J. M. Landsberg, On degenerate secant and tangential varieties and local differential ge-

ometry, Duke Math. J. 85 (1996), 605–634.
[14] J. M. Landsberg and L. Manivel, The projective geometry of Freudenthal’s magic chart, J.

Algebra 239 (2001), 477–512.
[15] J. M. Landsberg and L. Manivel, Construction and classification of complex simple Lie

algebras via projective geometry, Selecta Math. 8 (2002), 137–159.
[16] J. M. Landsberg and L. Manivel, Triality, exceptional Lie algebras, and Deligne dimension

formulas, Advances Math. 171 (2002), 59–85.
[17] J. M. Landsberg and L. Manivel, Series of Lie groups, preprint arXiv:math.AG/0203241.
[18] J. M. Landsberg and L. Manivel, Representation theory and projective geometry, preprint

arXiv:math.AG/0203260.
[19] W. Lichtenstein, A system of quadrics describing the orbit of the highest weight vector,

Proc. A.M.S. 84 (1982), 605–608.
[20] LiE, A computer algebra package for Lie group computations, http://young.sp2mi.univ-

poitiers.fr/˜marc/LiE/
[21] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford, Clarendon Press,

1979.
[22] G. C. M. Ruitenburg, Invariant ideals of polynomials algebras with multiplicity free group

action, Compositio Math. 71 (1989), 181–227.
[23] T. Springer and F. Veldkamp, Octonions, Jordan algebras and exceptional groups, viii+208

pp., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000.
[24] J. Tits, Groupes semi-simples complexes et géométrie projective, Séminaire Bourbaki 7
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