A gap theorem for hypersurfaces of the sphere with constant scalar curvature one

Hilário Alencar*, Manfredo do Carmo* and Walcy Santos*

Abstract

We consider closed hypersurfaces of the sphere with scalar curvature one, prove a gap theorem for a modified second fundamental form and determine the hypersurfaces that are at the end points of the gap. As an application we characterize the closed, two-sided index one hypersurfaces with scalar curvature one in the real projective space.

Mathematics Subject Classification (2000). 53C42.

Keywords. Scalar curvature, sphere, Clifford torus, index one, projective space.

1. Introduction

To state our main result we need some notation.
$x: M^{n} \rightarrow S^{n+1}(1)$ will be a closed (compact without boundary) hypersurface of the unit sphere $S^{n+1}(1)$. We denote by A the linear map associated to the second fundamental form and by k_{1}, \ldots, k_{n} its eigenvalues (principal curvatures of M). We will use the first two elementary symmetric function of the principal curvatures:

$$
S_{1}=\sum_{i=1}^{n} k_{i}, S_{2}=\sum_{i<j=1}^{n} k_{i} k_{j} .
$$

We will also use the normalized means: the mean curvature $H=\frac{1}{n} S_{1}$ and the scalar curvature R, given by $n(n-1)(R-1)=S_{2}$. Finally, we introduce the first two Newton tensors by

$$
P_{0}=I d, P_{1}=S_{1} I d-A .
$$

Clearly P_{1} commutes with A and it is also a self-adjoint operator. We will show later (see Remark 2.1) that if $R=1$ and $S_{1} \geq 0$, then all eigenvalues of P_{1} are nonnegative, hence we can consider $\sqrt{P_{1}}$.

[^0]We can now state our gap theorem.
Theorem 1. Let $x: M^{n} \rightarrow S^{n+1}(1)$ be a closed orientable hypersurface with scalar curvature $R=1$ (equivalently, $S_{2}=0$). Assume that S_{1} does not change sign and choose the orientation such that $S_{1} \geq 0$. Assume further that

$$
\left\|\sqrt{P_{1}} A\right\|^{2} \leq \operatorname{trace} P_{1}
$$

Then:
(i) $\left\|\sqrt{P_{1}} A\right\|^{2}=\operatorname{trace} P_{1}$.
(ii) M^{n} is either a totally geodesic submanifold or $M^{n}=S^{n_{1}}\left(r_{1}\right) \times S^{n_{2}}\left(r_{2}\right) \subset$ $S^{n+1}(1)$, where $n_{1}+n_{2}=n, r_{1}^{2}+r_{2}^{2}=1$ and $\left(\frac{r_{2}}{r_{1}}\right)^{2}=\beta$ satisfies the quadratic equation:

$$
n_{1}\left(n_{1}-1\right) \beta^{2}-2 n_{1} n_{2} \beta+n_{2}\left(n_{2}-1\right)=0
$$

Our theorem was inspired by a similar theorem on minimal submanifolds of the sphere first proved by J. Simons [S] (part (i)) and latter completed (part (ii)) by S. S. Chern, M. do Carmo and Kobayashi $[\mathrm{CdCK}]$ and, independently, by H. B. Lawson [L].

Remark. The condition on the modified second fundamental form in above theorem can not be dropped, as can be seen by the following example: Let $M^{6} \rightarrow S^{7}(1)$ be an isoparametric hypersurface with principal curvatures given by

$$
\lambda_{1}=\lambda_{2}=\theta, \lambda_{3}=\frac{\theta+1}{1-\theta}, \lambda_{4}=\lambda_{5}=-\frac{1}{\theta} \text { and } \lambda_{6}=-\frac{1-\theta}{1+\theta}
$$

where θ is given by $\theta=\sqrt{\frac{13+\sqrt{165}}{2}}$ (see $[\mathrm{M}]$). It is easy to see that M^{6} has $R=1$ and $S_{1}>0$. We would like to thank Luiz Amancio de Sousa Junior for showing us this example.

As an application of Theorem 1, we will present a characterization of index one closed hypersurfaces with constant scalar curvature one of the real projective space $\mathbb{P}(\mathbb{R})^{n+1}$. For minimal submanifolds this result was obtained recently by M . do Carmo, M. Ritoré and A. Ros [dCRR].

Before giving a formal statement we need some considerations. Hypersurfaces of a curvature one space form with constant scalar curvature one are solutions to a variational problem (see [Re], [Ro], [BC]) whose Jacobi equation is

$$
T_{1} f=L_{1} f+\left\{\left\|\sqrt{P_{1}} A\right\|^{2}+\operatorname{trace} P_{1}\right\} f=0
$$

Here $f \in C^{\infty}(M)$ and L_{1} is a second order differential operator given by

$$
L_{1} f=\operatorname{div}\left(P_{1} \nabla f\right)
$$

where ∇f is the gradient of f. Notice that L_{1} generalizes the Laplacian. However, differently from the Laplacian, L_{1} is not always elliptic. J. Hounie and M. L. Leite [HL] have proved that if $S_{3} \neq 0$ everywhere, then L_{1} is elliptic. Of course, from the definition of L_{1}, it follows that L_{1} is elliptic if and only if P_{1} is positive definite (or negative definite). For the next theorem we will assume that L_{1} is elliptic and P_{1} is positive definite. Denote by $\operatorname{Ind}(M)$ the Morse index of M, i.e., the number of negative eigenvalues of T_{1}.

Theorem 2. Let $x: M^{n} \rightarrow \mathbb{P}(\mathbb{R})^{n+1}(1)$ be a closed two-sided hypersurface with scalar curvature one. Then $\operatorname{Ind}(M) \geq 1$ and if $\operatorname{Ind}(M)=1, M$ is the Clifford hypersurfaces obtained by the projection of the Clifford torus of Theorem 1.

2. Preliminaries

In this section we will present some properties of the $r^{t h}$ Newton tensors in M and describe the Clifford hypersurfaces of $\mathbb{P}(\mathbb{R})^{n+1}$.

2.1. The $r^{t h}$ Newton tensors

We introduce the $r^{t h}$ Newton tensors, $P_{r}: T_{p} M \rightarrow T_{p} M$, which are defined inductively by

$$
\begin{aligned}
& P_{0}=I \\
& P_{r}=S_{r} I-A P_{r-1}, r>1,
\end{aligned}
$$

where $S_{r}=\sum_{i_{1}<\cdots<i_{r}} k_{i_{1}} \ldots k_{i_{r}}$ is the $r^{t h}$ symmetric function of the principal curvatures k_{1}, \ldots, k_{n}.

It is easy to see that each P_{r} commutes with A and if e_{i} an eigenvector of A associated to principal curvature k_{i}, then

$$
P_{1}\left(e_{i}\right)=\mu_{i} e_{i}=\left(S_{1}-k_{i}\right) e_{i} .
$$

In [Re], Reilly showed that the P_{r} 's satisfy the following
Proposition 2.1 ([Re], see also [BC] - Lemma 2.1). Let $x: M^{n} \rightarrow N^{n+1}$ be an isometric immersion between two Riemannian manifolds and let A be its second fundamental form. The r 'th Newton tensor P_{r} associated to A satisfies:

1. $\operatorname{trace}\left(P_{r}\right)=(n-r) S_{r}$,
2. $\operatorname{trace}\left(A P_{r}\right)=(r+1) S_{r+1}$,
3. $\operatorname{trace}\left(A^{2} P_{r}\right)=S_{1} S_{r+1}-(r+2) S_{r+2}$.

It follows from (3) that if $S_{2}=0, \operatorname{trace}\left(A^{2} P_{1}\right)=-3 S_{3}$.

Remark 2.1. Observe that if $S_{2}=0$, we have that

$$
S_{1}^{2}=|A|^{2}+2 S_{2} \geq k_{i}^{2}, \text { for all } i
$$

Thus, $0 \leq\left(S_{1}^{2}-k_{i}^{2}\right)=\left(S_{1}-k_{i}\right)\left(S_{1}+k_{i}\right)$, what implies that all eigenvalues of P_{1} are nonnegative if $S_{1} \geq 0$, that is, P_{1} is a nonnegative operator. We also remark that if $S_{2}=0$ and P_{1} has one eigenvalue equal to zero, then

$$
\begin{equation*}
P_{1} A \equiv 0 \tag{1}
\end{equation*}
$$

In fact, if $\mu_{i_{0}}=0$, then $k_{i_{0}}=S_{1}$. As $S_{1}^{2}=|A|^{2}$, we get

$$
\sum_{i \neq i_{0}} k_{i_{0}}^{2}=0
$$

So $k_{i}=0$, for all $i \neq i_{0}$, hence $P_{1} A \equiv 0$.
Associated to each Newton tensor P_{r}, we define a second order differential operator

$$
L_{r}(f)=\operatorname{trace}\left(P_{r} \operatorname{Hess} f\right)
$$

If N^{n+1} has constant sectional curvature, it follows from Codazzi equation (see Rosenberg [Ro], p. 225) that L_{r} is

$$
L_{r}(f)=\operatorname{div}_{M}\left(P_{r} \nabla f\right)
$$

Hence L_{r} is a self-adjoint operator and for any differentiable functions f and g on M^{n},

$$
\begin{equation*}
\int_{M} f L_{r} g d M=\int_{M} g L_{r} f d M \tag{2}
\end{equation*}
$$

We observe that for $r=0, L_{0}$ is the Laplacian which is always an elliptic operator. For $r>0$ we have to add some extra condition in order to ensure that L_{r} is elliptic. For hypersurfaces of \mathbb{R}^{n+1} with $S_{r}=0$, Hounie and Leite, [HL], were able to give a geometric condition that is equivalent to L_{r} being elliptic. In fact their proof can be generalized to hypersurfaces of the sphere and we have that

Theorem 2.1 ([HL] - Proposition 1.5). Let M be a hypersurface in \mathbb{R}^{n+1} or S^{n+1} with $S_{r}=0,2 \leq r<n$. Then the operator $L_{r-1}(f)=\operatorname{div}\left(P_{r-1} \nabla f\right)$ is elliptic at $p \in M$ if and only if $S_{r+1}(p) \neq 0$.

Thus, for hypersurfaces with $S_{2}=0, L_{1}$ is an elliptic operator if and only if $S_{3} \neq 0$. Since $L_{1}(f)=\operatorname{div}_{M}\left(P_{1} \nabla f\right)$, it follows that the ellipticity of L_{1} implies that P_{1} is definite, hence then $S_{1} \neq 0$.

Let $a \in \mathbb{R}^{n+2}$ be a fixed vector. Let $x: M \rightarrow S^{n+1}(1) \subset \mathbb{R}^{n+2}$ be an isometric immersion with $S_{2}=0$ and let N be its unit normal vector. The functions $f=$ $\langle N, a\rangle$ and $g=\langle x, a\rangle$ satisfy (see [BC], lemma 5.2)

$$
\begin{equation*}
L_{1}(g)=-(n-1) S_{1} g \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{1}(f)=3 S_{3} f \tag{4}
\end{equation*}
$$

2.2. Clifford hypersurfaces of $\mathbb{P}(\mathbb{R})^{n+1}$

We are now going to describe some properties of the Clifford hypersurface in $\mathbb{P}(\mathbb{R})^{n+1}$. A Clifford torus in $S^{n+1}(1)$ is given by the product immersion of $M=S^{n_{1}}\left(r_{1}\right) \times S^{n_{2}}\left(r_{2}\right)$, with $n_{1}+n_{2}=n$ and $r_{1}^{2}+r_{2}^{2}=1$, which is a closed hypersurface of $S^{n+1}(1)$. It is easy to see that this immersion is invariant under the antipodal map, hence it induces an immersion of M into $\mathbb{P}(\mathbb{R})^{n+1}$. This hypersurface will be called Clifford hypersurface. If $x: S^{n_{1}}\left(r_{1}\right) \times S^{n_{2}}\left(r_{2}\right) \rightarrow S^{n+1}(1)$ is a Clifford torus, then the unit normal vector at a point $p=\left(p_{1}, p_{2}\right) \in S^{n_{1}}\left(r_{1}\right) \times S^{n_{2}}\left(r_{2}\right)$ is given by

$$
N=\left(-\frac{r_{2}}{r_{1}} p_{1}, \frac{r_{1}}{r_{2}} p_{2}\right) .
$$

Thus, the principal curvatures of M are $\frac{r_{2}}{r_{1}}$ with multiplicity n_{1} and $-\frac{r_{1}}{r_{2}}$ with multiplicity n_{2}. It is easily checked that the scalar curvature of M is equal to one $\left(S_{2}=0\right)$ if and only if $\left(\frac{r_{2}}{r_{1}}\right)^{2}=\beta$ satisfies the quadratic equation:

$$
\begin{equation*}
n_{1}\left(n_{1}-1\right) \beta^{2}-2 n_{1} n_{2} \beta+n_{2}\left(n_{2}-1\right)=0 \tag{5}
\end{equation*}
$$

We will show in a while that only one of the torus given by (5) yields $S_{1}>0$. Notice that L_{1} is an elliptic operator and in order to calculate the index of M, we first observe that in a principal basis, P_{1} is a diagonal matrix whose elements are

$$
\left\{\left(n_{1}-1\right) \frac{r_{2}}{r_{1}}-n_{2} \frac{r_{1}}{r_{2}}\right\} \text { with multiplicity } n_{1}
$$

and

$$
\left\{n_{1} \frac{r_{2}}{r_{1}}-\left(n_{2}-1\right) \frac{r_{1}}{r_{2}}\right\} \text { with multiplicity } n_{2}
$$

Thus,

$$
\operatorname{trace} P_{1}=(n-1) S_{1}=(n-1)\left(n_{1} \frac{r_{2}}{r_{1}}-n_{2} \frac{r_{1}}{r_{2}}\right)
$$

We will need the following relation:

$$
\left\|\sqrt{P_{1}} A\right\|^{2}=-3 S_{3}=(n-1) S_{1}
$$

The first equality is a general fact that follows from Proposition 2.1, part 3, by setting $r=1$ and $S_{2}=0$. The second equality is specific for Clifford tori with
$S_{2}=0$ and can be proved as follows. Write:

$$
\begin{aligned}
S_{1}= & n_{1} \frac{r_{2}}{r_{1}}-n_{2} \frac{r_{1}}{r_{2}} \\
S_{2}= & \frac{n_{1}\left(n_{1}-1\right)}{2}\left(\frac{r_{2}}{r_{1}}\right)^{2}+\frac{n_{2}\left(n_{2}-1\right)}{2}\left(\frac{r_{1}}{r_{2}}\right)^{2}-n_{1} n_{2} \\
S_{3}= & \frac{n_{1}\left(n_{1}-1\right)\left(n_{1}-2\right)}{6}\left(\frac{r_{2}}{r_{1}}\right)^{3}-\frac{n_{2}\left(n_{2}-1\right)\left(n_{2}-2\right)}{6}\left(\frac{r_{1}}{r_{2}}\right)^{3} \\
& +\frac{n_{1} n_{2}\left(n_{2}-1\right)}{2}\left(\frac{r_{1}}{r_{2}}\right)^{2} \frac{r_{2}}{r_{1}}-\frac{n_{1} n_{2}\left(n_{1}-1\right)}{2}\left(\frac{r_{2}}{r_{1}}\right)^{2} \frac{r_{1}}{r_{2}}
\end{aligned}
$$

By introducing the condition $S_{2}=0$ into S_{3}, we obtain, after a long but straightforward computation, that

$$
3 S_{3}=\frac{1}{2}\left[-2(n-1) n_{1} \frac{r_{2}}{r_{1}}+2(n-1) n_{2} \frac{r_{1}}{r_{2}}\right]=-(n-1) S_{1}
$$

and this proves our claim. Thus the Jacobi operator reduces to

$$
T_{1}(f)=L_{1}(f)+\left\{\left\|\sqrt{P_{1}} A\right\|^{2}+\operatorname{trace} P_{1}\right\} f=L_{1}(f)+2(n-1) S_{1} f
$$

If $\varphi=$ const., $L_{1}(\varphi)=0$ and

$$
T_{1}(\varphi)+2(n-1) S_{1} \varphi=0 .
$$

Thus the first eigenvalue of T_{1} is negative, hence $\operatorname{Ind}(M)$ is at least 1 . Now let us look at the second eigenvalue of T_{1}. By using the expression of the eigenvalues of P_{1} given above, we have that

$$
\begin{aligned}
L_{1}(f) & =\operatorname{div}\left(P_{1} \nabla f\right) \\
& =\left\{\left(n_{1}-1\right) \frac{r_{2}}{r_{1}}-n_{2} \frac{r_{1}}{r_{2}}\right\} \Delta^{n_{1}}(f)+\left\{n_{1} \frac{r_{2}}{r_{1}}-\left(n_{2}-1\right) \frac{r_{1}}{r_{2}}\right\} \Delta^{n_{2}}(f),
\end{aligned}
$$

where $\Delta^{n_{i}}$ is the Laplacian in $S^{n_{i}}\left(r_{i}\right), i=1,2$. Thus the second eigenvalue of L_{1} is given by

$$
\lambda_{2}=-\left\{\left(n_{1}-1\right) \frac{r_{2}}{r_{1}}-n_{2} \frac{r_{1}}{r_{2}}\right\} \nu_{2}^{\Delta^{n_{1}}}+\left\{n_{1} \frac{r_{2}}{r_{1}}-\left(n_{2}-1\right) \frac{r_{1}}{r_{2}}\right\} \nu_{2}^{\Delta^{n_{2}}}
$$

where $\nu_{2}^{\Delta^{n_{i}}}$ is the first nonzero eigenvalue of $\Delta^{n_{i}}$ that corresponds to an eigenfunction which is invariant by the antipodal map (see [BGM] chap III, CII). Thus

$$
\begin{align*}
\lambda_{2} & =-\left[\left\{\left(n_{1}-1\right) \frac{r_{2}}{r_{1}}-n_{2} \frac{r_{1}}{r_{2}}\right\} \frac{n_{1}}{r_{1}^{2}}+\left\{n_{1} \frac{r_{2}}{r_{1}}-\left(n_{2}-1\right) \frac{r_{1}}{r_{2}}\right\} \frac{n_{2}}{r_{2}^{2}}\right] \tag{6}\\
& =\frac{-1}{r_{1}^{3} r_{2}^{3}}\left\{\left[n_{1}\left(n_{1}-1\right)-n_{1}(n-1) r_{1}^{2}\right] r_{2}^{2}+\left[n_{2}(n-1) r_{2}^{2}-n_{2}\left(n_{2}-1\right)\right] r_{1}^{2}\right\} .
\end{align*}
$$

Observe that

$$
\begin{equation*}
S_{1}=n_{1} \frac{r_{2}}{r_{1}}-n_{2} \frac{r_{1}}{r_{2}}=\frac{n_{1} r_{2}^{2}-n_{2} r_{1}^{2}}{r_{1} r_{2}} \tag{7}
\end{equation*}
$$

The fact that $S_{2}=0$ is equivalent to

$$
\begin{equation*}
n(n-1) r_{1}^{4}-2 n_{1}(n-1) r_{1}^{2}+n_{1}\left(n_{1}-1\right)=n(n-1) r_{2}^{4}-2 n_{2}(n-1) r_{1} 2^{2}+n_{2}\left(n_{2}-1\right)=0 . \tag{8}
\end{equation*}
$$

By using (7) and (8), we have that

$$
\left[n_{1}\left(n_{1}-1\right)-n_{1}(n-1) r_{1}^{2}\right] r_{2}^{2}=(n-1) S_{1} r_{1}^{3} r_{2}^{3}
$$

and

$$
\left[n_{2}(n-1) r_{2}^{2}-n_{2}\left(n_{2}-1\right)\right] r_{1}^{2}=(n-1) S_{1} r_{1}^{3} r_{2}^{3}
$$

Thus,

$$
\lambda_{2}=-2(n-1) S_{1} .
$$

Since the second eigenvalue of T_{1} is given by $\lambda_{2}+2(n-1) S_{1}$, it is equal to zero. This shows then that the Clifford hypersurfaces of $\mathbb{P}(\mathbb{R})^{n+1}$ have index one.

Remark. Observe that, by equation (7), the condition $S_{1} \geq 0$ means that

$$
n_{1} r_{2}^{2}-n_{2} r_{1}^{2} \geq 0
$$

On the other hand, since $\beta=\left(\frac{r_{2}}{r_{1}}\right)^{2}$, the above inequality implies that

$$
\begin{equation*}
n_{1} \beta \geq n_{2} . \tag{9}
\end{equation*}
$$

The condition $S_{2}=0$ is equivalent to

$$
\begin{equation*}
n_{1}\left(n_{1}-1\right) \beta^{2}-2 n_{1} n_{2} \beta+n_{2}\left(n_{2}-1\right)=0 \tag{10}
\end{equation*}
$$

and one can easily see that only one solution of (10) is compatible with (9).

3. A gap theorem for hypersurfaces of the sphere with $R=1$

In this section we prove a gap theorem for hypersurfaces of the sphere with $R=1$.
Theorem 3.1 (Theorem 1 of the Introduction). Let $x: M^{n} \rightarrow S^{n+1}(1)$ be a closed orientable hypersurface with scalar curvature $R=1$ (equivalently, $S_{2}=0$). Assume that S_{1} does not change sign and choose the orientation such that $S_{1} \geq 0$. Assume further that

$$
\left\|\sqrt{P_{1}} A\right\|^{2} \leq \operatorname{trace} P_{1}
$$

Then:
(i) $\left\|\sqrt{P_{1}} A\right\|^{2}=\operatorname{trace} P_{1}$.
(ii) M^{n} is either a totally geodesic submanifold or $M^{n}=S^{n_{1}}\left(r_{1}\right) \times S^{n_{2}}\left(r_{2}\right) \subset$ $S^{n+1}(1)$, where $n_{1}+n_{2}=n, r_{1}^{2}+r_{2}^{2}=1$ and $\left(\frac{r_{2}}{r_{1}}\right)^{2}=\beta$ satisfies the quadratic equation:

$$
n_{1}\left(n_{1}-1\right) \beta^{2}-2 n_{1} n_{2} \beta+n_{2}\left(n_{2}-1\right)=0 .
$$

Proof. Let us calculate $\frac{1}{2} L_{1}\|A\|^{2}$. Since $R=1, S_{2}=n(n-1)(R-1)=0$, by the Gauss' formula. Thus $\|A\|^{2}=(n H)^{2}=S_{1}^{2}$. Hence,

$$
\frac{1}{2} L_{1}\|A\|^{2}=\frac{1}{2} L_{1} S_{1}^{2}=S_{1} L_{1} S_{1}+\left\langle P_{1} \nabla S_{1}, \nabla S_{1}\right\rangle .
$$

From $[\operatorname{AdCC}]\left(\right.$ Lemma 3.7), by using that $2 S_{2}=n(n-1)(R-1)=0$, we have

$$
L_{1} S_{1}=|\nabla A|^{2}-\left|\nabla S_{1}\right|^{2}+n\|A\|^{2}-S_{1}^{2}+3 S_{1} S_{3}
$$

Therefore,

$$
\begin{equation*}
L_{1} S_{1}=|\nabla A|^{2}-\left|\nabla S_{1}\right|^{2}+(n-1) S_{1}^{2}+3 S_{1} S_{3} \tag{11}
\end{equation*}
$$

Now, by using Proposition 2.1 (3), we obtain that

$$
\left\|\sqrt{P_{1}} A\right\|^{2}=\operatorname{trace} P_{1} A^{2}=-3 S_{3}
$$

Then, equation (11) becomes

$$
L_{1} S_{1}=|\nabla A|^{2}-\left|\nabla S_{1}\right|^{2}+(n-1) S_{1}^{2}-S_{1}\left\|\sqrt{P_{1}} A\right\|^{2}
$$

Thus,

$$
\begin{aligned}
\frac{1}{2} L_{1}\|A\|^{2} & =S_{1} L_{1} S_{1}+\left\langle P_{1} \nabla S_{1}, \nabla S_{1}\right\rangle \\
& =S_{1}\left(|\nabla A|^{2}-\left|\nabla S_{1}\right|^{2}+(n-1) S_{1}^{2}-3 S_{1}\left\|\sqrt{P_{1}} A\right\|^{2}\right)+\left\langle P_{1} \nabla S_{1}, \nabla S_{1}\right\rangle \\
& =S_{1}\left(|\nabla A|^{2}-\left|\nabla S_{1}\right|^{2}\right)+S_{1}^{2}\left((n-1) S_{1}-\left\|\sqrt{P_{1}} A\right\|^{2}\right)+\left\langle P_{1} \nabla S_{1}, \nabla S_{1}\right\rangle .
\end{aligned}
$$

Since M is compact, we obtain

$$
\begin{gather*}
0=\frac{1}{2} \int_{M} L_{1}\|A\|^{2} d M \\
=\int_{M}\left\{S_{1}\left(|\nabla A|^{2}-\left|\nabla S_{1}\right|^{2}\right)+S_{1}^{2}\left((n-1) S_{1}-\left\|\sqrt{P_{1}} A\right\|^{2}\right)+\left\langle P_{1} \nabla S_{1}, \nabla S_{1}\right\rangle\right\} d M \tag{12}
\end{gather*}
$$

We recall the following result (see $[\mathrm{AdCC}]$ - Lemma 4.1):
Lemma 3.1 ([AdCC]). Let M be an n-dimensional compact hypersurface in an $(n+1)$-dimensional unit sphere S^{n+1}. If the normalized scalar curvature R is constant and $R-1 \geq 0$, then

$$
\begin{equation*}
|\nabla A|^{2}-\left|\nabla S_{1}\right|^{2} \geq 0 \tag{13}
\end{equation*}
$$

Since $S_{1} \geq 0$ and P_{1} is positive, we have that

$$
\begin{equation*}
\left\langle P_{1} \nabla S_{1}, \nabla S_{1}\right\rangle=\left\|\sqrt{P_{1}} \nabla S_{1}\right\|^{2} \geq 0 \tag{14}
\end{equation*}
$$

Our hypothesis and inequalities (13) and (14) implies that the right-hand side of (12) is non-negative. Thus we conclude that

$$
\begin{equation*}
S_{1}\left(|\nabla A|^{2}-\left|\nabla S_{1}\right|^{2}\right)+S_{1}^{2}\left((n-1) S_{1}-\left\|\sqrt{P_{1}} A\right\|^{2}\right)+\left\langle P_{1} \nabla S_{1}, \nabla S_{1}\right\rangle=0 \tag{15}
\end{equation*}
$$

Since each term in above equation is non-negative, we have

$$
S_{1}\left((n-1) S_{1}-\left\|\sqrt{P_{1}} A\right\|^{2}\right)=0
$$

Observe that when $S_{1}=0,\|A\|^{2}=0$ and $\left\|\sqrt{P_{1}} A\right\|^{2}=0$. Since by Lemma 2.1, trace $P_{1}=(n-1) S_{1}$, the first part of the theorem is proved.

Now, let us assume that $\left\|\sqrt{P_{1}} A(p)\right\|^{2}=(n-1) S_{1}(p)$, for all $p \in M$. If $S_{1}(p)=0$ for all $p \in M$, since $S_{2}=0,\|A\|^{2}=0$ and M is totally geodesic. Let us suppose that there exists a point p_{0} in M such that $S_{1}\left(p_{0}\right)>0$. So the set $\mathcal{A} \subset M$ where $S_{1}(p)>0$ is an open and non-void set of M. We claim that P_{1} is positive definite in \mathcal{A}. In fact, if P_{1} has one eigenvalue equal to zero, then by Remark 2.1, $P_{1} A \equiv 0$ and since $\left\|\sqrt{P_{1}} A(p)\right\|^{2}=(n-1) S_{1}(p)$, we conclude that $S_{1}=0$, which is a contradiction. On each connected component of \mathcal{A}, we have that

$$
\left\langle P_{1} \nabla S_{1}, \nabla S_{1}\right\rangle=0
$$

and

$$
|\nabla A|^{2}-\left|\nabla S_{1}\right|^{2}=0
$$

Since P_{1} is positive definite, the first equation implies that $\nabla S_{1}=0$. This implies that $|\nabla A|^{2}=0$, by the second equation, i.e., the second fundamental form of M is covariant constant. It follows that the component \mathcal{A} is a piece of a Clifford torus, by using the following theorem of H. B. Lawson ([L] - Theorem 4, see also [CdCK] Lemma 3).

Theorem 3.2 [L]. Let M^{n} be an isometrically immersed hypersurface of S^{n+1}, over which the second fundamental form is covariant constant. Then, up to isometries of S^{n+1}, M^{n} is an open set of $S^{k}(r) \times S^{n-k}\left(\sqrt{1-r^{2}}\right)$.

Finally, since along the boundary of $\mathcal{A},\|A\|^{2}=S_{1}^{2}=0$, we conclude that $\partial \mathcal{A}=\emptyset$ and M is a Clifford torus.

4. Characterization of index one closed hypersurfaces with $R=1$ in the real projective space

In this section we will assume that the operator L_{1} is elliptic and will describe the index of closed hypersurfaces in the real projective space $\mathbb{P}(\mathbb{R})^{n+1}$. In order to do that we are going to use the covering map of S^{n+1} onto $\mathbb{P}(\mathbb{R})^{n+1}$. The following result will be needed.

Lemma 4.1. Let $M^{n} \rightarrow S^{n+1}$ is a closed orientable hypersurface with $R=1$. Then the index of the quadratic form

$$
\begin{aligned}
I(f, f) & =-\int_{M} f T_{1} f d M \\
& =-\int_{M} f L_{1} f+\left((n-1) S_{1}-3 S_{3}\right) f^{2} d M
\end{aligned}
$$

is greater than one.
Proof. First of all observe that for constant functions $f=$ const., we have that

$$
\begin{aligned}
I(f, f) & =-\int_{M} f L_{1} f+\left((n-1) S_{1}-3 S_{3}\right) f^{2} d M \\
& =-\int_{M}\left((n-1) S_{1}-3 S_{3}\right) f^{2} d M<0
\end{aligned}
$$

Thus $\operatorname{ind}(M) \geq 1$.
Suppose that this index is equal to one. Let $\left\{e_{1}, \ldots, e_{n+2}\right\}$ be an orthonormal basis of \mathbb{R}^{n+2}. If we write the normal vector field of the immersion as $N=\sum_{i=1}^{n+2} n_{i} e_{i}$, we obtain that

$$
L_{1}\left(n_{i}\right)=3 S_{3} n_{i}, \text { for all } i=1, \ldots, n+2
$$

Thus

$$
I\left(n_{i}, n_{i}\right)=-\int_{M}\left((n-1) S_{1}\right) n_{i}^{2} d M \leq 0
$$

Since the functions n_{i} are linearly independent, the index one hypothesis implies that $(n-1)$ of the $n_{i}^{\prime} s$ have to be null and since $|N|=1$, after reordering if necessary, we have $n_{1}=1$ and $n_{i}=0$ for $i=2, \ldots, n+2$. Thus the normal vector field $N=e_{1}$. This implies that M^{n} is totally geodesic. On the other hand, since L_{1} is elliptic, we have that $S_{1}>0$, and this contradicts the fact that M^{n} is totally geodesic. We conclude then that $\operatorname{ind}(M)>1$.

The main result of this section is the following characterization of index one closed hypersurfaces of $\mathbb{P}(\mathbb{R})^{n+1}$.

Theorem 4.1 (Theorem 2 of the introduction). Let $x: M^{n} \rightarrow \mathbb{P}(\mathbb{R})^{n+1}(1)$ be a closed two-sided hypersurface with scalar curvature one. Then $\operatorname{Ind}(M) \geq 1$ and if $\operatorname{Ind}(M)=1, M$ is the Clifford hypersurfaces obtained by the projection of the Clifford torus of Theorem 3.1.

Proof. The proof is inspired by the proof of the minimal case in [dCRR]. Observe that the index one hypothesis implies that M must be connected. Since, by lemma 4.1, S^{n+1} does not have an index one hypersurface with $R=1, x$ cannot lift to an
immersion of M into S^{n+1}. Thus we obtain that there exists a connected twofold covering $\widetilde{M} \rightarrow M$ and an isometric immersion $\widetilde{x}: \widetilde{M} \rightarrow S^{n+1}$ which is locally congruent to the immersion of M in $\mathbb{P}(\mathbb{R})^{n+1}$. An object in \widetilde{M} that corresponds to an object in M will be denoted by the same notation as in M. If we denote by $\pi: \widetilde{M} \rightarrow \widetilde{M}$ the isometric involution induced by the covering, then \widetilde{x} must satisfy

$$
\widetilde{x} \circ \pi=-\widetilde{x}
$$

and, since $\widetilde{x}(M)$ is two-sided, \widetilde{M} is orientable, and

$$
N \circ \pi=-N,
$$

where N is the unit normal vector field of the immersion. We have that the immersion \widetilde{x} is such that $R=1$ and $S_{3} \neq 0$. By ellipticity we can choose the orientation of \widetilde{M} in such way that $S_{1}>0$.

Let λ_{1} be the first eigenvalue of the operator

$$
T_{1}(\varphi)=L_{1}(\varphi)+\left((n-1) S_{1}+3 S_{3}\right) \varphi
$$

We know that its first eigenspace is one-dimensional and generated by a function φ that does not change sign on \widetilde{M}. Now, let $\varphi_{1}=\varphi \circ \pi$. Since π is an isometry, we obtain that $T_{1}\left(\varphi_{1}\right)=\lambda_{1} \varphi_{1}$. This implies that $\varphi= \pm \varphi \circ \pi$. Observe that if $\varphi=-\varphi \circ \pi, \varphi$ has to change sign on \widetilde{M}. Thus $\varphi=\varphi \circ \pi$.

From the fact that $\operatorname{Ind}(M)=1$, we obtain that any function $u: \widetilde{M} \rightarrow \mathbb{R}$ such that $u \circ \pi=u$ and $\int_{\widetilde{M}} u \varphi d \widetilde{M}=0$ satisfies

$$
I(u, u)=-\int_{\widetilde{M}}\left\{u L_{1} u+\left((n-1) S_{1}+3 S_{3}\right) u^{2}\right\} d \widetilde{M} \geq 0
$$

Moreover, if such a function u satisfies $I(u, u)=0$, then u is a Jacobi function, that is,

$$
L_{1} u+\left((n-1) S_{1}+3 S_{3}\right) u=0
$$

Given $a, b \in \mathbb{R}^{n+2}$, let $\phi_{a, b}: \widetilde{M} \rightarrow \mathbb{R}^{n+2}$ be defined by

$$
\phi_{a, b}=\langle\widetilde{x}, a\rangle \widetilde{x}+\langle N, a\rangle N+\langle\widetilde{x}, b\rangle N .
$$

By doing the calculation coordinatewise and using equations (3) and (4) we have that

$$
L_{1}(\widetilde{x})=-(n-1) S_{1} \widetilde{x}
$$

and

$$
L_{1}(N)=3 S_{3} N
$$

Thus,

$$
\begin{gathered}
L_{1}(\langle\widetilde{x}, a\rangle \widetilde{x})=-2(n-1) S_{1}\langle\widetilde{x}, a\rangle \widetilde{x}-P_{1} A\left(a^{t}\right), \\
L_{1}(\langle N, a\rangle N)=6 S_{3}\langle N, a\rangle N-P_{1} A^{2}\left(a^{t}\right)
\end{gathered}
$$

and

$$
L_{1}(\langle\widetilde{x}, b\rangle N)=\left[-(n-1) S_{1}+3 S_{3}\right]\langle\widetilde{x}, b\rangle N-P_{1} A\left(b^{t}\right)
$$

where a^{t}, b^{t} are the tangent projection of a and b. This implies that

$$
\begin{equation*}
T_{1}\left(\phi_{a, b}\right)=-\left[(n-1) S_{1}+3 S_{3}\right][\langle\widetilde{x}, a\rangle \widetilde{x}-\langle N, a\rangle N]+X_{a, b} \tag{16}
\end{equation*}
$$

where $X_{a, b}$ is a tangent vector field. Then,

$$
\begin{gathered}
-\int_{\widetilde{M}}\left\langle T_{1}\left(\phi_{a, b}\right), \phi_{a, b}\right\rangle d \widetilde{M} \\
=\int_{\widetilde{M}}\left[(n-1) S_{1}+3 S_{3}\right]\left[\langle\widetilde{x}, a\rangle^{2}-\langle N, a\rangle^{2}-\langle\widetilde{x}, b\rangle\langle N, a\rangle\right] d \widetilde{M}
\end{gathered}
$$

Now, by (2), we have

$$
\begin{gathered}
\int_{\widetilde{M}}\left[(n-1) S_{1}+3 S_{3}\right]\langle\widetilde{x}, b\rangle\langle N, a\rangle d \widetilde{M} \\
=-\int_{\widetilde{M}}\left\{\langle N, a\rangle L_{1}(\langle\widetilde{x}, b\rangle)-\langle\widetilde{x}, b\rangle L_{1}(\langle N, a\rangle)\right\} d \widetilde{M}=0 .
\end{gathered}
$$

Thus,

$$
\begin{equation*}
-\int_{\widetilde{M}}\left\langle T_{1}\left(\phi_{a, b}\right), \phi_{a, b}\right\rangle d \widetilde{M}=\int_{\widetilde{M}}\left[(n-1) S_{1}+3 S_{3}\right]\left[\langle\widetilde{x}, a\rangle^{2}-\langle N, a\rangle^{2}\right] d \widetilde{M} \tag{17}
\end{equation*}
$$

Observe that the above expression does not depend on b. We are going to show that for any $a \in \mathbb{R}^{n+2}$, it is possible to choose $b \in \mathbb{R}^{n+2}$ such that $\int_{\widetilde{M}} \varphi \phi_{a, b} d \widetilde{M}=0$. To do this, consider a linear map $F: \mathbb{R}^{n+2} \rightarrow \mathbb{R}^{n+2}$ given by

$$
F(b)=\int_{\widetilde{M}} \varphi\langle\widetilde{x}, b\rangle N d \widetilde{M}
$$

We claim that F is injective (thus a linear isomorphism). In fact, if $b \neq 0$ is such that $F(b)=0$, one has that (17), with $\phi=\phi_{0, b}=\langle\widetilde{x}, b\rangle N$, implies that

$$
I(\phi, \phi)=0
$$

Then, $T_{1}(\phi)=0$. On the other hand, for $a=0$,

$$
\begin{equation*}
T_{1}(\phi)=X_{0, b}=-P_{1} A\left(b^{t}\right)=0 \tag{18}
\end{equation*}
$$

where b^{t} is the tangent projection of b along \widetilde{M}. Since P_{1} is positive definite, (18) says that $A\left(b^{t}\right)=0$ on \widetilde{M}, which is the same that $\langle N, b\rangle$ is constant along \widetilde{M}. As we have that $N \circ \pi=-N$, we get that $\langle N, b\rangle=0$. This implies that the function $u=\langle\widetilde{x}, b\rangle$ satisfies that $\operatorname{Hess} u(X, Y)=\langle X, Y\rangle u$. We need the following result of M. Obata.

Theorem 4.2 ([O] - Theorem A). In order that a complete Riemannian manifold of dimension $n \geq 2$ admit a non-constant function ϕ with $\operatorname{Hess} \phi(X, Y)=$ $c^{2} \phi\langle X, Y\rangle$, it is necessary and sufficient that the manifold be isometric to a sphere $S^{n}(c)$ of radius $\frac{1}{c}$ in the $(n+1)$ Euclidean space.

Thus, if u is non-constant, then \widetilde{M} is isometric to a unit sphere and since \widetilde{M} is isometrically immersed in $S^{n+1}(1)$, this implies that \widetilde{M} is totally geodesic. On the other hand, if u is constant, \widetilde{M} is totally umbilic. Since $S_{2}=0, \widetilde{M}$ is again totally geodesic. In both cases, $S_{1}^{2}=|A|^{2}=0$, which is a contradiction to the fact that $S_{1}>0$. Thus the claim is proved.

Take an orthonormal basis $\left\{a_{1}, \ldots, a_{n+2}\right\}$ of \mathbb{R}^{n+2}. By using the isomorphism F, for any $i=1, \ldots, n+2$, it is possible to find $b_{i} \in \mathbb{R}^{n+2}$ such that $\int_{\widetilde{M}} \varphi \phi_{a_{i}, b_{i}} d \widetilde{M}=0$. Thus each coordinate $\phi_{i j}$ of $\phi_{a_{i}, b_{i}}$ is such that $\int_{\widetilde{M}} \varphi \phi_{i j} d \widetilde{M}=0$. Then, $I\left(\phi_{i j}, \phi_{i j}\right) \geq 0$. From equation (17), we have

$$
\begin{aligned}
0 & \leq \sum_{i=1}^{n+2} \int_{\widetilde{M}}\left[(n-1) S_{1}+3 S_{3}\right]\left[\left\langle\widetilde{x}, a_{i}\right\rangle^{2}-\left\langle N, a_{i}\right\rangle^{2}\right] d \widetilde{M} \\
& =\sum_{i=1}^{n+2} \int_{\widetilde{M}}\left[(n-1) S_{1}+3 S_{3}\right]\left(|\widetilde{x}|^{2}-|N|^{2}\right) d \widetilde{M}=0
\end{aligned}
$$

This implies that $T_{1}\left(\phi_{a_{i}, b_{i}}\right)=0, i=1, \ldots, n+2$. Hence, $\left\langle T_{1}\left(\phi_{a_{i}, b_{i}}\right), \widetilde{x}\right\rangle=0$ and, by equation (16), we obtain that

$$
\left[(n-1) S_{1}+3 S_{3}\right]\left\langle\widetilde{x}, a_{i}\right\rangle=0, i=1, \ldots, n+2
$$

But this is only possible if $(n-1) S_{1}+3 S_{3}=0$. Since $\left\|\sqrt{P_{1}} A\right\|^{2}=-3 S_{3}=(n-1) S_{1}$, theorem (3) implies that \widetilde{M} is a Clifford torus.

References

[AdCC] H. Alencar, M. do Carmo and A. Colares, Stable hypersurfaces with constant scalar curvature, Math. Z. 213 (1993), 117-131.
[BC] J. L. Barbosa and A. Colares, Stability of hypersurfaces with constant r-mean curvature, Annals of Global Analysis and Geometry 15 (1997), 277-297.
[BGM] M. Berger, P. Gauduchon et E. Mazet, Le spectre d'une variété Riemanniene, Lecture Notes in Math. 194, Springer-Verlag, Berlin-New York, 1971.
[CdCK] S. S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, edited by Felix E. Browder, 1970, 59-75.
[dCRR] M. do Carmo, M. Ritoré and A. Ros, Compact minimal hypersurfaces with index one in the real projective space, Comment. Math. Helv. 75, no. 2 (2000), 247-254.
[HL] J. Hounie and M. L. Leite, Two-ended hypersurfaces with zero scalar curvature, Indiana Univ. Math. J. 48 (1999), 867-882.
[L] H. B. Lawson, Local rigidity theorems for minimal hypersurfaces, Ann. of Math. (2) 89 (1969), 187-197.
[M] H. F. Münzner, Isoparametriche hyperflächen in sphären I, Math. Ann. 215, no. 1 (1980), 57-71.
[O] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14, no. 3 (1962), 333-340.
[Re] R. C. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Diff. Geom. 8 (1973), 465-477.
[Ro] H. Rosenberg, Hypersurfaces of constant curvature in space forms, Bull. Sc. Math., 2^{a} série 117 (1993), 211-239.
[S] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62-105.

Hilário Alencar

Universidade Federal de Alagoas
Departamento de Matemática
57072-900, Maceió - AL
Brazil
e-mail: hilario@mat.ufal.br
Walcy Santos
Universidade Federal do Rio de Janeiro
Departamento de Matemática
Caixa Postal 68530
21945-970 Rio de Janeiro - RJ
Brazil
e-mail: walcy@im.ufrj.br
(Received: October 12, 2001)

Manfredo do Carmo
Instituto de Matemática Pura e Aplicada (IMPA)
Estrada Dona Castorina 110
22460-320, Rio de Janeiro - RJ
Brazil
e-mail: manfredo@impa.br.

[^0]: *Partially supported by CNPq, Brazil.

