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Abstract. We show that any closed incompressible surface in the complement of a positive knot
is algebraically non-split from the knot, positive knots cannot bound non-free incompressible
Seifert surfaces and that the splittability and the primeness of positive knots and links can be
seen from their positive diagrams.
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1. Introduction

A knot K in the 3-sphere S3 is called positive if it has an oriented diagram all
crossings of which are positive crossings. For a closed surface F in S3 − K, we
define the order o(F ;K) of F for K as follows ([5]). Let i : F → S3 −K be the
inclusion map and let i∗ : H1(F ) → H1(S3 −K) be the induced homomorphism.
Since Im(i∗) is a subgroup of H1(S3 − K) = Z〈meridian〉, there is an integer m
such that Im(i∗) = mZ. Then we define o(S;K) = m.

The positive knot complements have the following special properties.

Theorem 1.1. Any closed incompressible surface in a positive knot complement
has non-zero order.

A Seifert surface F for a knot is said to be free if π1(S3 − F ) is a free group.
In [5, Theorem 1.1], it is shown that a knot bounds a non-free incompressible
Seifert surface if and only if there exists a closed incompressible surface in the
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knot complement whose order is equal to zero. Therefore, Theorem 1.1 gives us
the next corollary.

Corollary 1.2. Positive knots cannot bound non-free incompressible Seifert sur-
faces.

Although positive links which have connected positive diagrams are non-split
because they have positive linking numbers, we can give another geometrical proof
of this fact.

Theorem 1.3. Positive links are non-split if their positive diagrams are con-
nected.

Positive diagrams of positive knots or links also tell us their primeness. We say
that a knot or link diagram K̃ on the 2-sphere S is prime if for any loop l in S
intersecting K̃ in 2 points, l bounds a disk intersecting K̃ in an arc.

Theorem 1.4. Non-trivial positive knots or links are prime if their positive dia-
grams are connected and prime.

Remark 1.5. The referee suggested that one can show that: A non-trivial positive
link is prime iff its positive diagram is connected and prime, with the addition of
the assumption that the positive link projections contain no nugatory crossings.
In fact, the converse of Theorem 1.3 and 1.4 is true, but it needs [2, Theorem 3].

There are other results about determining when a link projection represents a
non-split or prime link.

For the splittability,
• alternating links ([1, Theorem 10.2], [4, Theorem 1 (a)]);
• almost alternating links ([6]);
• homogeneous links ([2, Corollary 3.1]).
For the primeness,
• alternating links ([4, Theorem 1 (b)]);
• positive braids ([3, 1.2 Theorem]).

2. Proof of Theorem 1.1 and 1.3

Theorem 1.1 and 1.3 follow from the next Theorem.

Theorem 2.1. Let K be a positive knot or link in the 3-sphere S3 and F a closed
incompressible surface in the complement of K. Then one of the following conclu-
sions hold.
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(1) There exists a loop l in F such that lk(l,K) 6= 0.
(2) F is a splitting sphere for K, and any positive diagram of K is disconnected.

Henceforth, we shall prove Theorem 2.1.
Let S be a 2-sphere in S3 and p : S3 − {2 points} ∼= S × R → S a projection.

Put K so that p(K) is a positive diagram. As usual way, we express K in a bridge
presentation. Thus we have the following data (see Figure 1).

• S3 = B+ ∪S B− (S decomposes S3 into two 3-balls).
• K = K+ ∪S K−, where K± ⊂ B± (S cuts K into over bridges and under

bridges).
• K± = K±

1 ∪ K±
2 ∪ . . . K±

n (K is presented as n over bridges and n under
bridges).

• D± = D±
1 ∪D±

2 ∪ . . . D±
n (each K±

i ∪ p(K±
i ) bounds a disk D±

i such that
p(D±

i ) = p(K±
i )).

Figure 1. View from level surface

We take n minimal over all bridge presentations of p(K).

Lemma 2.2. We may assume that:
(a) F ∩D− = ∅,
(b) F ∩B− consists of disks,
(c) F ∩D+ consists of arcs, and
(d) any component of F ∩B+ −D+ is a disk.

Proof. (a): Simply push out F near D− into B+.
(b): If there exists a component of F ∩ B− which is not a disk, then F ∩ B−

has a compressing disk E in B − N(D−) since B − N(D−) is a 3-ball. By the
incompressibility of F in S3 − K, ∂E bounds a disk in F . Then by cutting and
pasting F along E, we have a new incompressible surface F ′ and a sphere F ′′.
Replace F with F ′ and continue this operation.

(c): Suppose there exists a loop component of F∩D+ and let E be an innermost
disk in D+. Then the similar argument to (b) passes by using E.
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(d): If there exists a component of F ∩ B+ − D+ which is not a disk, then
F ∩ B+ −D+ has a compressing disk E in B+ −D+. By using E, we can show
(d) similarly. ¤

We take a 2-tuple lexicographically ordered complexity measure (|F ∩ B−|,
|F ∩ D+|) minimal. Note that the complexity measure is not (0, ∗). For (0, ∗),
F fails to be incompressible in S3 −K since (B+,K+) is a trivial tangle. If the
complexity measure is (1, 0), then we have the conclusion (2).

Hereafter, we suppose that the complexity (|F ∩B−|, |F ∩D+|) ≥ (1, 1).
Then we obtain a connected graph G in F by regarding F ∩B− and F ∩D+ as

vertices and edges respectively. Note that every vertex has a positive even valency
by the construction.

An arc αj of F ∩D+
i divides D+

i into two disks δj and δ′j , where δ′j contains
K+

i . Put βj = δj ∩ S. We may assume that p(αj) = p(δj) = βj for all αj . We
assign an orientation endowed from Ki to αj and βj naturally (see Figure 2).

Figure 2. αj and βj have the orientation

Lemma 2.3. For any arc αj of F ∩D+
i , βj ∩ p(K−) 6= ∅.

Proof. Suppose that there exists an arc αj of F ∩D+
i such that βj ∩ p(K−) = ∅.

By exchanging αj if necessary, we may assume that αj is outermost in D+
i , that

is, int δj ∩ F = ∅. If αj connects different vertices, then a ∂-compression of F
along δj reduces the complexity. Otherwise, αj incidents a single vertex, say D−

k .
We perform a ∂-compression of F along δj , and obtain an annulus A consisting of
the disk D−

k and the resultant band b. Since we chose an outermost arc αj and
βj ∩ p(K−) = ∅, there exists a compressing disk for A in B− −K−. By retaking
F along the compressing disk, we can reduce the complexity. In both cases, there
is a contradiction in the assumption the complexity is minimal. ¤

Now we pay attention to a face f of G in F . A corner is a subarc of ∂(F ∩
B−)− (F ∩D+). The cycle ∂f for f is a loop consisting of edges and corners such
that it bounds f . The edges have orientations as previously mentioned.

Lemma 2.4 (The cycle lemma). For any face f , the cycle ∂f can not be oriented.
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Proof. Suppose that there is a face f such that ∂f can be oriented. Then, since no
corner of ∂f intersects p(K), and by Lemma 2.3, p(∂f) has non-zero intersection
number with p(K−) on S. Figure 3 illustrates the projection of f and K− on S.
This is a contradiction. ¤

Figure 3. p(∂f) has non-zero intersection number

For each face f of G and any point in the interior of any edge of ∂f , we can
find an arc γ on f satisfying the following property.

(*) γ connects two edges of ∂f whose orientations are different in ∂f .

Figure 4. γ with the property (*)

Lemma 2.4 assures the existence of such an arc γ.
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To find a loop l on F with lk(l,K) 6= 0, we depart a point in the interior of any
edge of G, trace arcs with the property (*), and will arrive at the face on which we
have walked. Connecting these arcs, we will obtain an oriented loop l in F ∩ B+

with a suitable orientation such that l has a positive intersection number with
edges of G on F . Thus we got an oriented loop l in F which has non-zero linking
number with K. Since any loop in a splitting sphere is contractible in S3−K, we
have the conclusion (1).

This completes the proof of Theorem 2.1.

3. Proof of Theorem 1.4

Let K be a positive knot or link in S3 and F be a decomposing sphere for K. We
put K and F as the proof of Theorem 2.1 except that two points p1 and p2 of
F ∩K are in intB+ or intB−. Note that p1 and p2 can not be the ends of a single
arc of F ∩ D± because the tangle (B±,K±) is trivial and F is a decomposing
sphere. Hence, there are two arcs e1 and e2 of F ∩D± whose ends contain p1 and
p2 respectively. We deform F by an isotopy relative to K so that p(ei) = p(pi)
(i = 1, 2). We take the number of bridges n minimal.

Thus we have the following data in addition to the data in the proof of Theorem
2.1.

• F ∩K = p1 ∪ p2 ⊂ intB±.
• F ∩D± ⊃ ei ⊃ pi (i = 1, 2).
• p(ei) = p(pi) (i = 1, 2).

Lemma 3.1. We may assume that:
(a) F ∩D− ⊂ e1 ∪ e2,
(b) F ∩B− consists of disks,
(c) F ∩D+ consists of arcs, and
(d) any component of F ∩B+ −D+ is a disk.

Proof. This can be done by an isotopy of F since Theorem 1.3 assures us that
S3 −K is irreducible. ¤

We take a 2-tuple lexicographically ordered complexity measure (|F∩B−|, |(F∩
D+)− (e1∪e2)|) minimal. Then we obtain a connected graph G in F by regarding
F ∩B− and (F ∩D+)−(e1∪e2) as vertices and edges respectively. Corners of each
face of G may contain two points ∂e1− p1 and ∂e2− p2. Note that the complexity
measure is not (0, ∗), otherwise F is not a decomposing sphere since (B±,K±) is
a trivial tangle. If the complexity measure is (1, 0), then F ∩S gives a desired loop
since p(ei) = p(pi) (i = 1, 2).

Lemma 3.2. For any arc αj of (F ∩D+)− (e1 ∪ e2), βj ∩ p(K−) 6= ∅.
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Proof. This can be done by the same argument to Lemma 2.3. ¤

Hereafter, we assume that K̃ is prime.

Lemma 3.3. There is no vertex of G with valency 1.

Proof. Suppose that there is a vertex V with valency 1. Then only one edge α
incident to V , and hence exactly one of e1 and e2 is attached to V or contained
in V . Thus ∂V intersects K̃ in two points. Since K̃ is prime, ∂V bounds a disk
E in S which intersects p(K) in an unknotted arc. In the former case, p(K) ∩ E
lies under a subarc of K+ by the minimality of the number of bridges n. Then by
an isotopy of F along the 3-ball which is bounded by V ∪ E, we can reduce the
complexity. See Figure 5. In the latter case, E intersects K in one point, and V ∪E
bounds a pair of a 3-ball and an unknotted subarc of K− by the minimality of n.
Then an isotopy of F along the pair can reduce the complexity. See Figure 6. In
both cases, there is a contradiction in the assumption the complexity is minimal.

¤

Figure 5. Isotopy of F along the 3-ball

Figure 6. Isotopy of F along the pair

Lemma 3.4. There is no face f of G in F such that ∂f is a loop of G.
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Proof. Suppose there exists a face f as Lemma 3.4. Then ∂f consists of an edge
α of G and a subarc γ of the boundary of a vertex V of G. By Lemma 3.2,
p(α) intersects p(K−). Moreover, since the loop γ ∪ p(α) bounds a disk E in S,
|p(α) ∩ p(K−)| = 1 and γ meets exactly one of e1 and e2, say e1. Thus a loop
l = ∂N(∂E;E)−∂E intersects K̃ in two points. Since K̃ is prime, intE intersects
p(K) in an embedded arc. Then, there are two possibilities for e1, e1 ⊂ f or
e1 ⊂ V . In the former case, f ∪E bounds a pair of a 3-ball and an unknotted arc,
and an isotopy of F along the pair eliminates α. In the latter case, f ∪E bounds
a 3-ball, and an isotopy of F along the 3-ball eliminates α. These contradict the
minimality of the complexity. ¤

Hence we have a condition that:

• G has at least two vertices,
• every vertex has valency at least two, and
• all faces of G in F are disks.

Next, we pay attention to a face of G in F .

Lemma 3.5. For any face f , the cycle ∂f can not be oriented.

Proof. If all corners of f do not meet e1 ∪ e2, then this is same to Lemma 2.4.
If exactly one corner of f meets e1 or e2 at one point, then f and some K+

i have
the intersection number ±1, or a vertex which meets f along the corner intersects
some K−

k in one point. Since p(∂f) and p(K−)∩p(K+
i ) must have the intersection

number zero, ∂f is bounded by a loop of G consisting of a vertex and an edge α,
and p(α) intersects p(K−) in one point. Then Lemma 3.4 gives the conclusion.

If some corners of f meet both e1 and e2, then the corners of f have the
intersection number zero with p(K) because F and K have the intersection number
zero. In such a situation, we have a contradiction same as the proof of Lemma
2.4. ¤

By Lemma 3.5, starting a face f of G in F whose closure is a disk, we can get
a loop l in F − K with |lk(l,K)| ≥ 2. But this is impossible because any loop
in F − K is null-homotopic in S3 − K or has linking number ±1 with K. This
finishes the proof of Theorem 1.4.
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