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Relations among the lowest degree of the Jones polynomial
and geometric invariants for a closed positive braid

Tomomi Kawamura

Abstract. By means of a result due to Fiedler, we obtain a relation between the lowest degree
of the Jones polynomial and the unknotting number for any link which has a closed positive
braid diagram. Furthermore, we obtain relations between the lowest degree and the slice euler
characteristic or the four-dimensional clasp number.
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1. Introduction and a main result

A link is a closed oriented 1-manifold smoothly embedded in the 3-sphere S3 and
a knot is a link with one component. Let L be a link with r components. The
Jones polynomial V (L; t) ∈ Z[t

1
2 , t−

1
2 ] is an ambient isotopy invariant of oriented

links L and is defined by the following relations [5]:

V (a trivial knot; t) = 1

t−1V ( Q
QQs
3́

´ ; t)− tV ( ´
´́3
Qs

Q ; t) = (t
1
2 − t−

1
2 )V (

H ©*
© Hj ; t).

We denote by min deg V (L; t) the lowest degree of V (L; t). In [4], Fiedler deter-
mined the lowest degree of the Jones polynomial for some links. In this paper, we
review his result in Section 3, and obtain some relations among the lowest degree
of the Jones polynomial and the following invariants for a closed positive braid by
his result.

The unknotting number u(L) of the link L is the minimal number of crossing
changes needed to create the trivial link with r components. Let L be a link
and F ⊂ D4 a smooth, oriented 2-manifold with ∂F = L, where D4 is the 4-
ball bounded by S3. We suppose that F has no closed components, but F is not
assumed to be connected. The slice euler characteristic χs(L) of the link L is
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the greatest value of the euler characteristic χ(F ) for such 2-manifolds F ⊂ D4.
We denote by cs(L) the minimum number of the double points for transversely
immersed disks in D4 with boundary L and with only finite double points as
singularities, and we shall call this invariant the 4-dimensional clasp number. In
[8], the author showed that the following inequality holds for any oriented link L
with r components:

u(L) ≥ cs(L) ≥ 1
2
(r − χs(L)). (1)

A closed positive braid diagram is a closed braid diagram with no negative
crossings. A closed positive braid or a closed positive braid link is an oriented link
which has a closed positive braid diagram. Let D be a link diagram. Let s(D) be
the number of the Seifert circles and x(D) be the number of the crossings of D.
Let L be an r-component link with a closed positive braid diagram DL. Boileau

and Weber [2], and Rudolph [14] showed that the inequality u(L) ≤ 1
2
(r−s(DL)+

x(DL)) holds for such a link L. It was conjectured that the equality

u(L) =
1
2
(r − s(DL) + x(DL)) (2)

holds for an r-component link L with a closed positive braid diagram DL. (cf.
[2], [11], [14]). In [8], the author proved that an inequality stronger than that
conjectured by Bennequin [1] holds for any link diagram, and showed that the

equality (2) and the equality u = cs =
1
2
(r−χs) hold for any closed positive braid

with r components. We review these results in Section 2.
By combining a result of Fiedler, that is Theorem 3.1, with a result including

the equality (2), that is Theorem 2.1, we have the following result.

Theorem 1.1. Let L be a closed positive braid link with r components. Then we
have

min deg V (L; t) = u(L)− 1
2
(r − 1).

Furthermore we have min deg V (L; t) = cs(L) − 1
2
(r − 1) and min deg V (L; t) =

1
2
(1− χs(L)) for such a link L.

In section 2, we survey the stronger Bennequin unknotting inequality and the
equality (2) before the proof of Theorem 1.1. In Section 3, we review a result of
Fiedler [4] and prove Theorem 1.1. In Section 4, we consider some relation between
the lowest degree of the Jones polynomial and the slice euler characteristic for
quasipositive links.
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2. The Bennequin unknotting inequality

In this section, we review results in [8], which we use in the proof of Theorem 1.1.
Let D be an oriented link diagram. The writhe w(D) is the value defined by

the number of positive crossings minus the number of negative crossings of D. We
give signs to Seifert circles of D as follows. A Seifert circle is a strongly negative
circle, if it is adjacent to at least two negative crossings but adjacent to no positive
crossings. A Seifert circle is a non-negative circle if it is not a strongly negative
circle.

Let L be an oriented link with r components, and DL any diagram for L. Let
s≥(DL) be the number of non-negative circles of DL and s<(DL) be the number of
strongly negative circles. In [16], Rudolph announced the stronger slice-Bennequin
inequality,

χs(L) ≤ (s≥(DL)− s<(DL))− w(DL),

and the author reproved it in [8]. By means of the above inequality and the
inequality (1), the author showed the following inequality in [8]:

u(L) ≥ cs(L) ≥ 1
2
{r − (s≥(DL)− s<(DL)) + w(DL)}. (3)

Let s(D) be the number of Seifert circles of a link diagram D. Let L be
an r-component link which has a closed braid diagram DL. In [1], Bennequin
conjectured the inequality,

u(L) ≥ 1
2
(r − s(DL) + |w(DL)|).

We shall call it the Bennequin unknotting inequality. In [15], by using a result of
Kronheimer and Mrowka [9], [10], Rudolph showed the slice-Bennequin inequality,

χs(L) ≤ s(DL)− w(DL).

It implies the Bennequin unknotting inequality by means of the inequality (1).
In [18], Stoimenow showed that if the Bennequin unknotting inequality holds for
any closed braid diagram, then it holds for any knot diagram. In fact, both
of the Bennequin unknotting inequality and the slice-Bennequin inequality can be
extended to any link diagram by the Vogel algorithm [20] or the Yamada algorithm
[21]. The inequality (3) shows that an inequality stronger than that conjectured
by Bennequin [1] actually holds.

A quasipositive link is an oriented link which has a closed quasipositive braid
diagram, and a quasipositive braid is the product of conjugate braids with positive
braids. In [15], Rudolph showed that the equality

χs(L) = s(DL)− w(DL) (4)

holds for any closed quasipositive braid diagram DL by a result of Kronheimer
and Mrowka [9], [10]. A positive link is an oriented link which has a diagram with
no negative crossings. In [12], [16], Nakamura and Rudolph showed that positive
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links are quasipositive, and that the above equality also holds for any positive link
diagram. In [8] and [16], the stronger slice-Bennequin inequality is proved by using
their result.

By means of the inequality (3), we determine not only the unknotting numbers
but also the 4-dimensional clasp numbers of closed positive braids.

Theorem 2.1 ([8]). Let L be an oriented link with r components. We suppose
that L has a closed positive braid diagram DL. Let s(DL) be the number of the
Seifert circles and x(DL) be the number of the crossings of DL. Then we have

u(L) = cs(L) =
1
2
(r − s(DL) + x(DL)).

¤

The argument due to Rudolph in [14] gives a minimum unknotting operations
for closed positive braid knots; if a positive braid representation has two consec-
utive letters equal, we change one of the crossings corresponding to them. This
rule can be extended to closed positive braid links.

Remark 2.2. In [14], Rudolph defined the slice überschneidungszahl üs(K) of a
knot K, and showed üs(K) ≥ g∗(K), where g∗(L) is the four-genus, the minimum
genus for an oriented connected surface smoothly embedded in D4 with boundary
L. The slice überschneidungszahl and the four-dimensional clasp number are the
same in the knot case. If r = 1, that is, L is an oriented knot, the equality
g∗(L) = (r − χs(L))/2 holds. We note that it may not hold if r ≥ 2. In fact, in
the case of the Hopf link, we have g∗(L) = 0 and χs(L) = 0.

In [17], Shibuya defined the link invariant c∗(L) as the minimum number of
the double points for a transversely immersed surface in D4 with genus 0 and
boundary L. He called c∗ the clasp number and proved g∗ ≤ c∗ ≤ u holds for any
link. From definitions, we have c∗ ≤ cs. If L is a knot, the equality c∗(L) = cs(L)
holds. But it does not hold in general, because if L is the Hopf link, c∗(L) = 0
and cs(L) = 1.

3. The lowest degree of the Jones polynomial

In order to prove Theorem 1.1, we review a result of Fiedler [4]. The n-string
braid group Bn is generated by n− 1 standard generators σ1, · · · , σn−1 subject to
the relations σiσi+1σi = σi+1σiσi+1 (1 ≤ i ≤ n − 2), σiσj = σjσi if |i − j| > 1.
For β ∈ Bn, let x+

i (β) and x−i (β) be the numbers of entries of σi and σ−1
i in β

respectively. The writhe w(β) is defined as
∑

i(x
+
i (β) − x−i (β)). Let x−(β) be

the number of negative crossings, that is x−(β) =
∑

i x−i (β). Let δ−(β) be the
number of different inverse generators σ−1

i which appear in the word β. Let b−(β)
be the number of different inverse generators σ−1

i so that x−i (β) > x+
i (β). In [4],
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Fiedler proved the following theorem by results due to Kauffman [7].

Theorem 3.1 (Fiedler [4]). Let β ∈ Bn be a braid and L(β) be its corresponding
oriented link. Then we have

min deg V (L(β); t) ≥ 1
2
(w(β) + 1− n)− x−(β) + δ−(β).

Moreover, we suppose that whenever an inverse generator σ−1
i appears in β then

there do not appear σi, σ
−1
i−1, σ

−1
i+1 in β. Then we have

min deg V (L(β); t) =
1
2
(w(β) + 1− n)− x−(β) + b−(β).

¤

Proof of Theorem 1.1. Let L be an oriented r-component link which has a closed
positive braid diagram DL. As Stoimenow commented in [18], the equality of
Theorem 3.1 implies that the following equality holds for such a link L:

min deg V (L; t) =
1
2
(x(DL) + 1− s(DL)).

Then by Theorem 2.1, the following equality holds for any closed positive braid
link L:

min deg V (L; t) = u(L)− 1
2
(r − 1).

Furthermore combining it with the equality (4) and the inequality (1), we have

min deg V (L; t) = cs(L)− 1
2
(r− 1) and min deg V (L; t) =

1
2
(1− χs(L)) for such a

link L. ¤

The Jones polynomial of a trivial link with r components is (−t1/2− t−1/2)r−1.
But it is false that the minimum unknotting operation gives the lowest degree of
the Jones polynomial for any closed positive braid link. The lowest degree term is
given by the splicing operation corresponding to the crossing changing which we
review on the paragraph after Theorem 2.1.

Remark 3.2. In general, the equality 2g∗ = 1− χs does not hold.

Example 3.3. Let T (p, q) be a (p, q)-torus link. We suppose that p and q are
positive integers. Then the torus link T (p, q) is a closed positive link. Let d be
the greatest common divisor of p and q. In [8], the author has shown that the

unknotting number of the (p, q)-torus link is
1
2
{(p− 1)(q− 1) + d− 1}. Hence, by

Theorem 1.1, we have

min deg V (T (p, q); t) =
1
2
(p− 1)(q − 1).
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In fact, the Jones polynomial of the (p, q)-torus knot was obtained in [6] as follows;

V (T (p, q); t) =
t

1
2 (p−1)(q−1)

1− t2
(1− tp+1 − tq+1 + tp+q).

We note that
V (T (p, q); t)
t(p−1)(q−1)/2

is a polynomial in Z[t] and does not vanish at t = 0.

The following examples imply that Theorem 1.1 distinguishes some links from
closed positive braids.

Example 3.4. It is well known that the knot which is denote by 62 in [13] cannot
be represented as a closed positive braid. We show this fact by Theorem 1.1. It
is easy to show that the unknotting number of 62 is 1. By definition of the Jones
polynomial or the table in [6], we have

V (62; t) = t−1 − 1 + 2t− 2t2 + 2t3 − 2t4 + t5.

Then the unknotting number of the knot 62 is not equal to min deg V (62; t). By
Theorem 1.1, the knot 62 cannot be represented as a closed positive braid.

Remark 3.5. The Conway polynomial ∇(L; z) ∈ Z[z] is an ambient isotopy in-
variant of oriented links L and is defined by the following relations:

V (a trivial knot; z) = 1

∇( Q
QQs
3́

´ ; z)−∇( ´
´́3
Qs

Q ; z) = z∇(
H ©*
© Hj ; z).

In [3], Cromwell showed that any positive link has a positive Conway polynomial.
In [19], Van Buskirk showed that, if K is a closed positive braid knot, then

∇(K; z) = z2m + a2m−2z
2m−2 + · · ·+ a4z

4 + a2z
2 + 1,

where
(

m
k

)
≤ a2(m−k) ≤

(
2m− k

k

)
. These facts imply that the knot 62 cannot

be represented as a closed positive braid, since we have ∇(62; z) = 1− z2 − z4.

Example 3.6. Let 820! be the mirror image of the knot denoted by 820 in [13].
The knot 820! is the closure of the quasipositive braid σ3

1σ2σ
−3
1 σ2 ∈ B3 as listed

in the table in [6]. The Conway polynomial of 820! is ∇(820!; z) = 1 + 2z2 + z4.
By definition of the Jones polynomial or the table in [6], we have

V (820!; t) = −t5 + t4 − t3 + 2t2 − t + 2− t−1.

Hence the knot 820! cannot be represented as a closed positive braid. In fact we
can show this fact by Theorem 2.1, since the knot 820! is a non-trivial slice knot.

Remark 3.7. Let 52! be the mirror image of the knot denoted by 52 in [13]. The
knot 52! is positive. The Conway polynomial of 52! is ∇(52!; z) = 1 + 2z2. Hence
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the knot 52! cannot be represented as a closed positive braid, though the Jones
polynomial of 52! is V (52!; z) = −t6 + t5− t4 +2t3 + t and min deg V (52!; z) = 1 =
u(52!).

4. Relations for a quasipositive link

Let β ∈ Bn be a braid and L(β) be its corresponding oriented link. We suppose
that whenever an inverse generator σ−1

i appears in β then there do not appear
σi, σ

−1
i−1, σ

−1
i+1 in β. By the equality of Theorem 3.1 and the slice-Bennequin in-

equality, we have

min deg V (L(β); t) ≤ 1
2
(1− χs(L))− x−(β) + b−(β).

By means of the stronger slice-Bennequin inequality and Theorem 3.1, if σ−1
1

appears in β at most once and σ−1
n−1 appears in β at least twice, then we have

min deg V (L(β); t) ≤ 1
2
(−1− χs(L))− x−(β) + b−(β),

and if both of σ−1
1 and σ−1

n−1 appear in β at least twice, then we have

min deg V (L(β); t) ≤ 1
2
(−3− χs(L))− x−(β) + b−(β).

In [4], Fiedler gave some conjectures. We consider one of them. Let β ∈ Bn

be a braid and L(β) be its corresponding oriented link. If β is of the form β =
w1σ

±1
i1

w−1
1 · · ·wkσ±1

ik
w−1

k , β is given in a band representation. A factor of the
form wjσij

w−1
j is called positive band and a factor of the form wjσ

−1
ij

w−1
j is called

negative band.

Conjecture 4.1 (Fiedler [4]). Let β ∈ Bn be a braid given in a band representa-
tion. Let d−(β) be the number of negative bands of a band representation β. Then
the following inequality holds:

min deg V (L(β); t) ≤ 1
2
(w(β) + 1− n) + d−(β).

By the slice-Bennequin inequality and the inequality (1), if the above conjecture
would be true, the following inequality would hold for any quasipositive link L with
r components:

min deg V (L(β); t) ≤ 1
2
(1− χs(L)) ≤ u(L)− 1

2
(r − 1).

Remark 4.2. Example 3.6 implies the equality min deg V (L(β); t) =
1
2
(1−χs(L))

does not hold for general quasipositive links.
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