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The orbit space of the p-subgroup complex is contractible

Peter Symonds

Abstract. We show that the quotient space of the p-subgroup complex of a finite group by the
action of the group is contractible. This was conjectured by Webb.
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The p-subgroup complex (or Brown complex or Quillen complex) was intro-
duced by K.S. Brown [B]. It is defined for a group G and a prime p and will be
denoted by Sp. It is a simplicial complex in which the n-simplices are chains of
non-trivial finite p-groups (with strict inclusions):

Q0 < Q1 < Q2 < · · · < Qn,

with the face maps corresponding to inclusion of subchains. In other words, Sp is
the geometric realisation of the poset of non-trivial p-subgroups of G.

This complex has played a prominent role in finite group theory since its in-
troduction and the fundamental work of Quillen [Q]. For some more recent con-
tributions see [ASe, ASm, KR, TW, W1, W2]. This paper consists of a proof of
the following result.

Theorem. Let G be a finite group and p a prime which divides |G|. Let Sp denote
the p-subgroup complex for G (considered as a topological space). Then Sp/G is
contractible.

This was conjectured by Webb [W1, W2], who proved that Sp/G is mod-p
acyclic. When G is a group of Lie type in characteristic p, then Sp is equivariantly
homotopy equivalent to the Tits building of G, for which the orbit space consists of
just one simplex, so the conjecture was known to be true. Various cases were also
considered by Thévenaz [T], who showed that the conjecture held when G was p-
solvable, or when the Sylow p-subgroup was either abelian, generalized quaternion
or TI.

Instead of Sp we shall consider a subcomplex ∆, introduced by Robinson, in
which the n-simplices are chains of p-groups (with strict inclusions), each one
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normal in the others:

Q0 / Q1 / Q2 · · · / Qn, Qi / Qn, 0 ≤ i < n,

which we denote by (Q0, ..., Qn). This complex ∆ does not arise from a partially
ordered set, but it is equivariantly homotopy equivalent to Sp (and to various other
subgroup complexes too) [TW], and we actually prove that ∆/G is contractible.

Now ∆ is a simplicial complex, but ∆/G is naturally only a CW-complex.
Each simplex of ∆ is naturally oriented, because it is a chain. This orientation is
preserved by G, and so induces an orientation on ∆/G.

Proof. We show that
a) π1(∆/G) = 1
and
b) H̃∗(∆/G;Z) = 0,
and invoke Whitehead’s Theorem.

a) Let P be a Sylow p-subgroup ofG. Any class x ∈ π1(∆/G, P ) can be represented
by a cellular loop s, i.e. a loop in the 1-skeleton which traverses each 1-cell at
constant speed. This loop is determined by the sequence of directed 1-cells along
which it travels.

Lift s to a cellular path s̃ in ∆ starting at P and ending at some Sylow p-
subgroup P

′
. Since ∆ is a simplicial complex, s̃ is determined by the sequence of

its vertices:
P → Q1 → Q2 → · · · → Qn → P

′
.

There are two operations that we can perform on s̃ which do not change its
image in π1(∆/G, P ).

i) Homotopy. Change s̃ by a homotopy in ∆ that fixes its endpoints.
ii) Change of Lift. If g ∈ NG(Qj) then we can replace

P → Q1 → Q2 → · · · → Qj → · · · → Qn → P
′

by
P → Q1 → · · · → Qj−1 → Qj → Qgj+1 → · · · → Qgn → P

′g.

Define a height function h : ∆ → R by starting on the vertices with h(Q) =
logp|Q| and then extending linearly on each simplex. Define the depth of a path s̃
in ∆ to be d(s̃) = min {h(Q)|Q a vertex of s̃}.

Now, for a given class c ∈ π1(∆/G, P ), consider all the lifts starting at P of
all the cellular paths representing c. Amongst these, restrict attention to those of
maximal depth, and then choose one with the least possible number of vertices of
minimal height. Call it s̃.

s̃ : P → Q1 → · · · → Qn → P
′
.
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Assume that c 6= 1 so that there are at least three vertices. Let Qj be a vertex
of minimal height and let R be a Sylow p-subgroup of NG(Qj) containing Qj−1
(clearly Qj /Qj−1 since Qj is of minimal height). Then for some g ∈ NG(Qj), gR
contains Qj+1, and we can change the lift to obtain

s
′

: P → Q1 → · · · → Qj−1 → Qj → Qgj+1 → · · · → Qgn → P
′g.

We now have 1-simplices:

jQ

R

Q Qj+1

g

j-1

where Qj−1, Q
g
j+1 ≤ R but they need not be normal. However there are sequences

Qj−1 / S1 / · · · / Ss / R

and
Qgj+1 / T1 / · · · / Tt / R,

so we have 2-simplices:
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We can now change the path s
′

by a homotopy to s
′′
:

P → Q1 → · · · → Qj−1 → S1 → · · ·
→ Ss → R→ Tt → · · · → T1 → Qgj+1 → · · · → Qgn → P

′g.

But s
′′

has fewer vertices of minimal height, a contradiction.

b) The case of homology is similar but a little more complicated. Clearly
H̃0(∆/G;Z) = 0, i.e. ∆/G is connected, because for every p-subgroup Q there is
a sequence Q / Q1 / · · · / Qn, where Qn is a Sylow p-subgroup of G. This yields
a path from Q to Qn, and all Sylow p-subgroups are conjugate. From now on we
assume that n ≥ 1.

Each n-cycle in the CW-homology of ∆/G can be regarded as a linear combina-
tion s of oriented n-cells. This can be lifted to a linear combination s̃ of n-simplices
of ∆, s̃ =

∑
nσσ. We do not assume that this lifting is necessarily done in such

a way that only one σ appears from each G-orbit.
There are two operations that we can perform on s̃ which do not change its

image in Hn(∆/G,Z).

i) Homology. Add a boundary (i.e. something homologous to zero).
ii) Change of Lift. Any of the simplices can be replaced by another in the same

G-orbit.

Define the height h(σ) of a simplex to be the height of its barycentre (i.e. the av-
erage height of its vertices) and its depth to be the minimum height of its codimen-
sion 1 faces. The depth of a chain is defined by d(

∑
nσσ) = min {d(σ)|nσ 6= 0}.

Given a class c ∈ Hn(∆/G;Z) consider all the liftings s̃ to ∆ of all cycles s
representing c. Amongst these consider only those of maximal depth d, and write
s̃ =

∑
nσσ. Now pick an s̃ that minimizes the multiplicity,

m(s̃) =
∑

d(σ)=d

|nσ|.

Assume that c 6= 0, so there must be a simplex ρ1 with nρ1 6= 0 and d(ρ1) = d.
Now ρ1 has a face µ = (Q0 / · · ·/Qn−1) with h(µ) = d. Let R1 be the vertex of ρ1
not in µ. Then h(R1) > h(Qi) for any i, otherwise ρ1 would have a face of depth
less than d, so ρ1 = (µ,R1).

Since the image of s̃ in ∆/G is a cycle, there must be another simplex ρ
′

with
nρ′ 6= 0 such that some conjugate ρ2 = hρ

′
(h ∈ G) also has a face µ, and nρ1

and nρ′ have opposite signs (but not necessarily the same absolute value). Again,
ρ2 = (µ,R2) by minimality and, by changing our attention to −c if necessary, we
can assume that nρ1 > 0 and nρ′ < 0. Note that minimality under change of lift
implies that the coefficient function nσ can not take both positive and negative
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values on the same orbit, so ρ′ 6= ρ1 6= ρ2 and also nρ2 ≤ 0. A change of lift alters
s̃ to

s
′

= s̃+ ρ′ − ρ2 =
∑

nσσ + ρ
′ − ρ2 =

∑
n
′

σσ,

where it is easy to check that d(s
′
) = d(s̃), m(s

′
) = m(s̃), n′ρ1

> 0 and n′ρ2
< 0.

Now write
s
′

=
∑

mσσ + ρ1 − ρ2 = t+ ρ1 − ρ2,

so mσ = n′σ unless σ is ρ1 or ρ2, and mρ1 = n
′
ρ1
−1 ≥ 0, mρ2 = n

′
ρ2

+1 ≤ 0. Thus
m(t) = m(s̃)− 2. Let R be a Sylow p-subgroup of stabG(µ) containing R1. Then
R2 ≤ Rg for some g ∈ stabG(µ), so a change of lift alters s

′
to s

′′
= t+ ρ1 − gρ2,

where gρ2 = (µ, gR2).
Suppose, for the moment, that R1 6= R 6= Rg2. Then we can find sequences of

subgroups
R1 / S1 / · · · / Ss / R

and
gR2 / T1 / · · · / Tt / R.

Let
v1 = (µ,R1, S1) + (µ, S1, S2) + · · ·+ (µ, Ss, R),

and
v2 = (µ, gR2, T1) + (µ, T1, T2) + · · ·+ (µ, Tt, R).

Then for i = 1, 2,
(−1)n∂vi = gi−1ρi − (µ,R) +Xi,

where Xi is a sum of cells which do not contain µ, but their vertices which are not
in µ contain (as groups) all the vertices of µ. It follows that Xi involves only cells
of depth strictly greater than d, and therefore that

s
′′

= t+ ρ1 − gρ2 ≡ t+ (−1)n∂(v1 − v2), modulo cells of depth greater than d,

and a change by homology alters s′′′ to s′′′ = s′′ − (−1)n∂(v1 − v2) and yields

s
′′′ ≡ t, modulo cells of depth greater than d.

But m(s
′′′

) = m(t) = m(s̃)− 2, a contradiction.

As for the remaining cases, if R1 = R = gR2 then s
′

= t. If R1 6= R = gR2,
then (−1)n∂v1 ≡ ρ1 − gρ2, modulo cells of depth greater than d. The case R1 =
R 6= gR2 is similar.

Remark. A relative version of this theorem also holds. Let Y be a set of subgroups
of G that is closed under subgroups and conjugation. Let ∆Y be the subcomplex
of ∆ in which we only allow chains of p-subgroups not in Y . Then if ∆Y is not
empty, ∆Y /G is contractible.
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