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A regularized heat trace for hyperbolic Riemann surfaces
of finite volume
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Abstract. Let M denote a hyperbolic Riemann surface of finite volume, and let KM (t, x, y)
be the heat kernel associated to the hyperbolic Laplacian which acts on the space of smooth
functions on M . If M is compact, then we have the equality

Z

M

KM (t, x, x)dµ(x) =
∞X
n=0

e−λnt,

where {λn} is the set of eigenvalues of the Laplacian. If M is not compact, then it is well known
that the heat kernel exists yet is not of trace class. In this paper we will define a regularized
heat trace associated to any hyperbolic Riemann surface of finite volume, compact or non-
compact. After we have defined the regularized heat trace, we study the asymptotic behavior
of the regularized heat trace on a family of degenerating hyperbolic Riemann surfaces. Our
results involve pointwise convergence and uniformity of asymptotic expansions in the pinching
parameters. In particular, we study uniformity of long time asymptotics of the regularized
heat trace minus the contribution from the small eigenvalues by analyzing the Poisson kernel
and Dirichlet heat kernel in a finite cylindrical neighborhood of the pinching geodesics. As
applications of our results, we are able to study asymptotic expansions of the Selberg zeta
function and spectral zeta function on degenerating families, both improving known results in
the compact setting and proving new results in the non-compact situation. Results from this
article have been extended to the setting of degenerating hyperbolic three manifolds of finite
volume in [DJ1] and [DJ2].
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§0. Notation and background material

This section contains a brief discussion of the geometry of degenerating families
of hyperbolic Riemann surfaces of finite volume. For further details, the reader
is referred to [A1], [A2], [B] and [R]. We will follow the notation and conventions
established in [JLu1] and [JLu2], which will be assumed throughout this paper.

Let h be the upper half plane model of the hyperbolic plane, equipped with
its standard metric of constant curvature equal to −1 and distance function dh.
Throughout this paper, all metrics dµ will be hyperbolic metrics.

For q > 0, let Cq denote the hyperbolic, infinite cylinder with simple, closed
geodesic of length q, which can be described explicitly by

Cq = {(τ, θ) : τ ∈ R and θ ∈ R/Z}

with length form
ds2 = dτ2 + q2 cosh2(τ)dθ2.

A convenient fundamental domain for Cq in h is

{ρ exp(iα) : 1 ≤ ρ < exp(q), 0 < α < π}, (0.1)

with hyperbolic metric induced from h and uniformizing group {exp(kq) : k ∈ Z}
which acts on h by multiplication. For any ε > 0, let Cq,ε denote the submanifold
of Cq obtained by restricting |τ | < sinh(ε/(2q)). A fundamental domain for Cq,ε
in (0.1) is obtained by adding the restriction

cot−1(ε/(2q)) < α < π − cot−1(ε/(2q)).

An easy calculation shows that the volume of Cq,ε is ε, and the length of each
boundary component of Cq,ε is (q2 + ε2/4)1/2. The measure on the boundary of
Cq,ε induced from the hyperbolic metric will be denoted by d%.

Let C0 denote an infinite cusp, which is the non-compact Riemann surface iso-
metric to the punctured unit disc with complete hyperbolic metric. A fundamental
domain for C0 in h is

{x+ iy : y > 0 and 0 ≤ x < 1} (0.2)

with group action which identifies the boundary points iy with 1+ iy. For any ε >
0, let C0,ε denote the submanifold of C0 obtained by restricting the y coordinate
of (0.2) to y > 2/ε. The volume of C0,ε is ε/2, and the length of the boundary of
C0,ε is ε/2. Again, the induced boundary measure will be denoted by d%.

Given a p-tuple ` = (`1, `2, · · · , `p) of positive real numbers, let |`| be the sup-
norm of `. Let C` be the disconnected surface C` = ∪C`k . Given ε > 0, let
C`,ε be the disconnected surface C`,ε = ∪C`k,ε. The family of surfaces {C`} with
|`| → 0 is called a degenerating family of hyperbolic cylinders of infinite volume.
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For notational convenience, we will write ` → 0 when |`| → 0 and ` > 0 to mean
all `k > 0.

In [JLu1] and [JLu2] we gave a construction of a degenerating family M` of
either compact or non-compact hyperbolic Riemann surfaces of finite volume. The
construction we follow allows one to define unambiguously various notions such as
the tracking of points through degeneration and the fixing of points not contained
on pinching geodesics. The reader is referred to these articles for complete details,
which will be assumed here. The description of the degeneration of M` to the limit
surface M0 also applies to the degeneration of C` and C`,ε to their limit surfaces,
2p × C0 and 2p × C0,ε, respectively. In particular, one has convergence of the
hyperbolic metric uniformly away from from the developing cusps.

Let M` be a degenerating family of connected, hyperbolic Riemann surfaces
with p pinching geodesics. Although each M` is connected when ` > 0, the limit
surface M0 need not be connected. In addition, the number of cusps on M0 is
equal to the number of cusps on M` plus 2p. For any 0 < ε < 1/2, the surface
C`,ε embeds isometrically into M` (see [R]). The surface M0 contains 2p embedded
copies of C0,ε which is the limit of C`,ε ⊂ M`. The family of hyperbolic metrics
converges uniformly on M` \ C`,ε (see [A2]). The heat kernel on M associated to
the hyperbolic metric will be written as KM (t, x, y), where t > 0 and x, y ∈M . If
M` is a degenerating family, we will denote the family of heat kernels byK`(t, x, y).
Similarly, the heat kernel on C` will be written as KC`(t, x, y). On a non-connected
surface M , if x and y lie on different components, KM (t, x, y) is defined to be zero
for all values of t. The reader is referred to [JLu1] and [JLu2] for various properties
of hyperbolic heat kernels, which will be assumed throughout this paper.

§1. Regularized heat traces

Let M be a connected hyperbolic Riemann surface of finite volume, either compact
or non-compact. For now, let us assume that M is connected, so then M can be
realized as the quotient manifold Γ\h, where h is the hyperbolic upper half space
and Γ is a discrete group of isometries of h. Let Kh(t, x̃, ỹ) be the heat kernel on
h. We shall assume known that the hyperbolic heat kernel on h is a function of
t > 0 and of the hyperbolic distance of x̃ to ỹ, so

Kh(t, x̃, ỹ) = Kh(t, dh(x̃, ỹ)).

Quoting from page 246 of [Ch], we have, for ρ > 0

Kh(t, ρ) =
√

2e−t/4

(4πt)3/2

∞∫
ρ

ue−u
2/4tdu

[coshu− coshρ]1/2

with

Kh(t, 0) =
1

2π

∞∫
0

e−(1/4+r2)t tanh(πr)rdr.
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The heat kernel KM(t, x, y) on M can be written as a periodization of the heat
kernel on the universal cover h, meaning

KM(t, x, y) =
∑
γ∈Γ

Kh(t, x̃, γỹ), (1.1)

where x̃ and ỹ are any points in h which are Γ lifts of the points x and y in M .
The convergence of (1.1) will be addressed in the proof of Theorem 1.1(a).

Let H(Γ) denote a set of representatives of inconjugate primitive hyperbolic
classes in Γ (meaning classes with |Tr(γ)| > 2 for any representative in the class),
and let P (Γ) denote a set of representatives of inconjugate, non-identity, primitive
parabolic classes in Γ (meaning classes with |Tr(γ)| = 2 for any representative in
the class). If M is compact, then P (Γ) is empty. Let Γγ denote the centralizer of
γ ∈ Γ. We can use elementary theory of Fuchsian groups, as in the derivation of
the Selberg trace formula, to write (1.1) as

KM(t, x, y) = Kh(t, x̃, ỹ) +
∞∑
n=1

∑
γ∈P (Γ)

∑
κ∈Γ/Γγ

Kh(t, x̃, κ−1γnκỹ)

+
∞∑
n=1

∑
γ∈H(Γ)

∑
κ∈Γ/Γγ

Kh(t, x̃, κ−1γnκỹ).

We now have the following theorem, which defines what we call the hyperbolic
heat trace associated to M .

Theorem 1.1. Let M be a connected, hyperbolic Riemann surface of finite volume
with p cusps, and assume notation as above.
a) For each t > 0, the sum

HKM (t, x) =
∞∑
n=1

∑
γ∈H(Γ)

∑
κ∈Γ/Γγ

Kh(t, x̃, κ−1γnκx̃)

is a well-defined function of x ∈M .
b) Let 〈γ〉 be the cyclic group generated by γ ∈ H(Γ), and let Cγ = 〈γ〉\h be an

infinite cylinder. Then we have the equality

HTrKM (t) =
∫
M

HKM(t, x)dµ(x)

=
1
2

∑
γ∈H(Γ)

∫
Cγ

[
KCγ (t, x, x) −Kh(t, 0)

]
dµ(x).
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c) Let ∪C0 be p copies of the punctured unit disk in C equipped with the complete
hyperbolic metric, and identify ∪Cj,ε with the isometric neighborhood of the
cusps of ∪C0. Given any 0 < ε < 1/2 and with j = 1, . . . , p, we have

HTrKM(t) =
∫

M\∪Cj,ε

[KM (t, x, x)−Kh(t, 0)]dµ(x)

+
∫
∪Cj,ε

[KM(t, x, x)−KC0(t, x, x)]dµ(x)

−
∫

∪C0\∪Cj,ε

[KC0(t, x, x) −Kh(t, 0)]dµ(x).

d) The function HTrKM(t) is finite for all t > 0 and has the asymptotic behavior

HTrKM(t) = O(e−c/t) as t→ 0, for some c > 0

and
HTrKM(t) = O(1) as t→∞.

Proof. For the part (a), first note that the sum is at least formally well-defined
since H(Γ) is fixed under conjugation. What remains is to argue that the sum
converges. Let NΓ(x; ρ) be the number of geodesic paths on M which connect
x to itself and which have length at most ρ. An elementary argument involving
hyperbolic geometry shows

NΓ(x; ρ) = O(eρ)

where the implied constant depends on the injectivity radius at x. With this
bound, together with the estimate

Kh(t, ρ) = O(e−cρ
2
),

with a constant c > 0 which depends on t, part (a) follows. Observe that the
above bounds also imply the convergence of (1.1).

Part (b) follows from formal unfolding of the integral over the fundamental
domain, as in the derivation of the trace formula. Note that for any x ∈ Cγ , we
have ∞∑

n=1

Kh(t, γnx̃, x̃) =
1
2
[
KCγ (t, x, x) −Kh(t, 0)

]
,

since the fundamental group of Cγ is isomorphic to Z. This accounts for the factor
of 1/2 in (b). The reader is referred to [He2], [M] or [Se] for further details.

Part (c) also is proved by formal unfolding of the integral, provided one can
show that the above integrals are finite for all t and their sum is independent of
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ε. For this, one applies a bound from [JLu3] and applications of the maximum
principle as [JLu2]. Details are as follows.

As stated, it suffices to show finiteness for all t, for then the fact that the
relative heat trace is independent of ε follows from formal adding and subtracting
of the integrals. The first integral is bounded since the integrand bounded over
the compact range of integration. Further, observe that from the realization of
the heat kernel on M as the periodization of the heat kernel on h, we have the
estimate ∫

M\∪Cj,ε

[KM (t, x, x)−Kh(t, 0)]dµ(x) = O(e−c/t)

for some c which depends on the injectivity radius of the range of integration.
The finiteness of the second integral follows from the bound

∫
∪C0\∪Cj,ε

[KM(t, x, x) −KC0(t, x, x)]dµ(x) ≤ p

2
· 2 exp(−t/4)

(πt)1/2

(
ε2

8

)−η
ζQ(1 + 2η),

(1.2)
where η = log(1+ε2/8)/4t. For a proof of (1.2), the reader is referred to Theorem
3.1 of [JLu3].

It now remains to show finiteness of the integral over the cusps. For this, the
key observation is to note that as a function of x with fixed y in ∪Cj,ε such that
x and y lie in the same cusp, the difference

D(t, x, y) = KM (t, x, y)−KC0(t, x, y)

satisfies, as a function of x and t, the heat equation. Fix an ε0 > ε so that all cusps
have hyperbolic neighborhoods of area ε0. By the maximum principle (see [Ch],
page 180), the maximum of D(t, x, y) will take place when x is on the boundary of
the cusp Cj,ε0 , keeping in mind that y remains in the interior of the smaller cusp
Cj,ε. Combining this application of the maximum principle with the positivity of
the heat kernels, we obtain the bounds

− sup
z∈∂Cj,ε0
0≤τ≤t

KC0(τ, z, y) ≤ D(t, x, y) ≤ sup
z∈∂Cj,ε0
0≤τ≤t

KM(τ, z, y). (1.3)

For each z, the terms in (1.3) satisfy the heat equation on Cj,ε0/2 with zero initial
data. Through a second application of the maximum principle, we obtain the
bounds

− sup
z∈∂Cj,ε0
w∈∂Cj,ε0/2

0≤τ≤t

KC0(τ, z, w) ≤ D(t, x, y) ≤ sup
z∈∂Cj,ε0
w∈∂Cj,ε0/2

0≤τ≤t

KM(τ, z, w). (1.4)
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Standard bounds for the heat kernel (see, for example, page 198 of [Ch]), (1.4)
provide upper and lower bounds for D(x, y, t) that are independent of ε. Therefore,
the integral over the cusps can be made arbitrarily small since the area of the cusp
Cj,ε can be made arbitrarily small, thus showing that the relative heat trace is
a well-defined function of t. We remark here that the lower bounds in (1.3) and
(1.4) can be improved trivially to zero combining (1.1) with the observation that
the fundamental group of C0 embeds into the fundamental group of M .

Finally, part (d) follows from the derived upper bounds (1.2) and (1.4) together
with the convergence of the heat kernel on the region M \ ∪Cj,ε, as given by
Theorem 1 of [JLu1] or Theorem 1.3 of [JLu3]. �

Definition 1.2. Let us define the regularized heat trace as

STrKM(t) = HTrKM(t) + vol(M)Kh(t, 0).

In the case M is a compact Riemann surface, the regularized heat trace is simply
the trace of the heat kernel. If M is a hyperbolic Riemann surface of finite volume
but not connected, let M1, · · · ,Mn be the connected components, and define

HTrKM(t) =
n∑
j=1

HTrKMj (t) and STrKM(t) =
n∑
j=1

STrKMj (t).

The following result due to Selberg [Se] evaluates the integral representation
stated in Theorem 1.1(b).

Theorem 1.3. Let M be a connected, hyperbolic Riemann surface of finite vol-
ume with p cusps. Let H(Γ) denote a set of representatives of inconjugate prim-
itive hyperbolic classes of a uniformizing group Γ of M . Let `(γ) be the length
of the geodesic in the homotopy class determined by γ ∈ Γ, so then Tr(`(γ)) =
2 sinh(`(γ)/2). Then

HTrKM(t) =
e−t/4

(16πt)1/2

∞∑
n=1

∑
H(Γ)

`(γ)
sinh(n`(γ)/2)

e−(n`(γ))2/4t.

The proof of Theorem 1.3 follows directly from Theorem 1.1(b) and the follow-
ing proposition, which is due to Selberg [Se] (see also [He2] and [M]). For the sake
of completeness, we repeat the proof from [M].

Proposition 1.4. For any q > 0, let γ be a hyperbolic element with

|Tr(γ)| = 2 sinh(q/2) > 0,
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and let Cq = 〈γ〉\h. Then for any t > 0, we have∫
Cq

(KCq −Kh)(t, x, x)dµ(x) =
q exp(−t/4)

(4πt)1/2

∞∑
n=1

exp(−(nq)2/4t)
sinh(nq/2)

.

Proof. We model the domain of integration by two copies of the region

{ρ exp(iα) : ρ ∈ (1, exp(q)], α ∈ (0, π/2).}.

With respect to these coordinates, the hyperbolic metric has volume element equal
to ρ−1 sin(α)−2dαdρ. Let

a(q, n) = dh(ρeiα, ρenqeiα),

where dh is hyperbolic distance. From page 130 of [Be] we have, for any fixed
ρ > 1 the formula

cosh(a(q, n)) = 1 +
2 sinh2(nq/2)

sin2 α
.

Notice that a(q, n) depends on α but is independent of ρ. Therefore, we can
integrate with respect to ρ, yielding the equality

∫
Cq

(KCq −Kh)(t, x, x)dµ(x) = 4
∞∑
n=1

π/2∫
0

exp(q)∫
1

Kh(t, a(q, n))
dρdα

ρ sin2 α

= 4q
∫ π/2

0

∞∑
n=1

Kh(t, a(q, n))
dα

sin2 α
. (1.5)

We shall evaluate each term in the sum over n in (1.5); specifically, we can use the
integral expression for the hyperbolic heat kernel to write

4q
∫ π/2

0
Kh(t, a(q, n))

dα

sin2 α

=
4q
√

2 exp(−t/4)
(4πt)3/2

∫ π/2

0

∫ ∞
a(q,n)

β exp(−β2/4t)dβdα
[coshβ − cosh(a(q, n))]1/2 sin2 α

.
(1.6)

Let sin2 α = u−1 so then

cosha(q, n) = 1 + 2u sinh2(nq/2),

and write (1.6) as

=
2q
√

2 exp(−t/4)
(4πt)3/2

∫ ∞
1

∫ ∞
a(q,n)

β exp(−β2/4t)dβdu

[coshβ − 1− 2u sinh2(nq/2)]1/2(u− 1)1/2
. (1.7)
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Define
d(q, n) =

coshβ − 1

2 sinh2(nq/2)
.

Notice that d(q, n) depends on the variable β. If we interchange the order of
integration in (1.7), we can write (1.7) as

=
2q
√

2 exp(−t/4)
(4πt)3/2

∫ ∞
nq

∫ d(q,n)

1

β exp(−β2/4t)dudβ

[coshβ − 1− 2u sinh2(nq/2)]1/2(u− 1)1/2
.

The inner integral now can be evaluated. Indeed, from the basic formula∫
dx√

a+ bx− x2
= cos−1

(
b− 2x√
b2 + 4a

)
+ C,

we obtain∫ d(q,n)

1

du

[coshβ − cosh(a(q, n))]1/2(u− 1)1/2 =
π√

2 sinh(nq/2)
.

Therefore, we have

4q
∫ π/2

0
Kh(t, a(q, n))

dα

sin2 α
=

2πq exp(−t/4)
(4πt)3/2 sinh(nq/2)

∫ ∞
nq

β exp(−β2/4t)

=
q exp(−t/4)

(4πt)1/2 sinh(nq/2)
exp(−(nq)2/4t),

which gives the result. �

Remark 1.5. If M is a compact surface, then the regularized trace of the heat
kernel is simply

STrKM(t) = TrKM(t) =
∞∑
n=0

e−λnt, (1.8)

where {λn} is the set of eigenvalues of the Laplacian which acts on the space of
smooth functions on M . Let {rn} be the set of numbers for which 1/4 + r2

n = λn.
The above calculation establishes then the formula

∞∑
n=0

e−r
2
nt =

1
2π

∞∫
0

e−r
2t tanh(πr)rdr

+
1

(16πt)1/2

∞∑
n=1

∑
H(Γ)

`(γ)
sinh(n`(γ)/2)

e−(n`(γ))2/4t.
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This formula agrees perfectly with that on page 42 of [He2]. In other words, we
have established the formula

∞∑
n=0

ft(rn) =
1

2π

∞∫
0

ft(r) tanh(πr)rdr

+
∞∑
n=1

∑
H(Γ)

2`(γ)
sinh(n`(γ)/2)

f̂t(n`), (1.9)

where ft(x) = e−tx
2

and f̂t denotes Fourier transform. By linearity and an ele-
mentary compuation, one shows that (1.9) then holds for any function f of the
form

f(x) =
N∑
n=1

pn(x2)e−x
2tn

where tn > 0 and pn is a polynomial. From this, and an application of the Stone-
Weierstrass theorem, one obtains the Selberg trace formula for compact hyperbolic
Riemann surfaces (see page 32 of [He2] and references therein). Further details
and discussion of this point of view is given in [HJL2].

Remark 1.6. If M is non-compact, then it is much harder to give a spectral
representation of the regularized heat trace (1.8). Various references exist for such
a calculation, and the end result is the formula

STrKM (t) =
∑
C(M)

e−λnt − 1
4π

∞∫
−∞

e−r
2tφ′/φ(1/2 + ir)dr

+
p

2π

∞∫
−∞

e−r
2tΓ′/Γ(1 + ir)dr − 1

4
(p− TrΦ(1/2)) +

p log 2√
4πt

,

where C(M) denotes the (possibly finite) set of eigenvalues corresponding to L2

eigenfunctions on M , and φ(s) is the determinant of the scattering matrix Φ(s).
For further discussion, the reader is referred to [Se], [He3], or [Mü].

§2. A degenerating heat trace

In this section, we will consider the behavior of regularized heat traces on a degen-
erating family of hyperbolic Riemann surfaces. Based on Proposition 1.4 above,
we have the following proposition.
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Proposition 2.1. Let M` denote a degenerating family of compact or non-compact
hyperbolic Riemann surfaces of finite volume which converges to the non-compact
hyperbolic surface M0. Define the degenerating heat trace as the integral

DTrKM`
(t) =

1
2

∫
∪C`

[KC`(x, x, t) −Kh(0, t)]dµ(x).

Then for any t > 0 we have the equality

DTrKM`
(t) =

e−t/4

(16πt)1/2

∞∑
n=1

∑
DH(Γ)

`(γ)
sinh(n`(γ)/2)

e−(n`(γ))2/4t.

Proof. This is a direct application of Proposition 1.4. �

The following theorem, which we quote from [JLu3], asserts that given a de-
generating family of hyperbolic Riemann surfaces of finite volume, the hyperbolic
heat trace minus the degenerating heat trace converges pointwise to the hyperbolic
heat trace on the limit surface.

Theorem 2.2. Let M` denote a degenerating family of compact or non-compact
hyperbolic Riemann surfaces of finite volume which converges to the non-compact
hyperbolic surface M0. Then for any fixed t > 0, we have the limit

lim
`→0

[HTrKM`
(t)−DTrKM`

(t)] = HTrKM0(t).

Outline of Proof. If M` is a degenerating family of compact surfaces, we can write

HTrKM`
(t)−DTrK`(t) =

∫
M`\C`,ε

[KM`
(t, x, x) −Kh(t, 0)]dµ(x) (I)

+
∫
C`,ε

[KM`
(t, x, x) −KC`(t, x, x)]dµ(x) (II)

−
∫
C`\C`,ε

[KC`(t, x, x) −Kh(t, 0)]dµ(x). (III)

Integral (I) converges to the corresponding integral over the limit surface M0 by
the heat kernel convergence theorem proved in [JLu1] (see also [JLu2] and [JLu3]).
As for integral (II), one applies the maximum priniciple as in the proof of Theorem
1.1. Finally, for integral (III), one uses the bound (1.2), which implies

lim
ε→∞

∫
∪Cj,ε

[KM (t, x, x)−KC0(t, x, x)]dµ(x) = 0,
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together with a heat kernel convergence theorem for the heat kernel on Cq over
the region Cq,δ \ Cq,ε for any 0 < ε < δ <∞.

If M` is a degenerating family of non-compact surfaces, then one needs to
regularize the heat traces near the existing cusps on each M`. Specifically, one has
the expression

HTrKM`
(t)−DTrK`(t) =

∫
M`\(C`,ε∪C0,ε)

[KM`
(t, x, x)−Kh(t, 0)]dµ(x) (I)

+
∫
C0,ε

[KM`
(t, x, x) −KC0(t, x, x)]dµ(x) (II)

−
∫
C0\C0,ε

[KC0(t, x, x) −Kh(t, 0)]dµ(x) (III)

+
∫
C`,ε

[KM`
(t, x, x)−KC`(t, x, x)]dµ(x) (II)

−
∫
C`\C`,ε

[KC`(t, x, x)−Kh(t, 0)]dµ(x). (III)

We have labeled two integrals by (II) and two integrals by (III) since these terms
are formally identical and will be handled by similarly methods in further argu-
ments. The reader is referred to [JLu3] for further details. �

Corollary 2.3. Let M` denote a degenerating family of compact or non-compact
hyperbolic Riemann surfaces of finite volume which converges to the non-compact
hyperbolic surface M0. Then for fixed δ > 0, there is a positive c such that for all
t < δ,

HTrKM`
(t)−DTrKM`

(t) = O(e−c/t)

uniformly in `.

Proof. The uniform convergence of heat kernels from [JLu1] and [JLu3] implies
that integral (I) has exponential decay as t→ 0, uniformly in `. By applying the
maximum principle, as in the proof of Theorem 1.1, one shows that the asymptotic
behavior of integral (II) as t→ 0 is that of exponential decay, uniformly in `. As in
the proof of Theorem 2.2, we can write integral (III) as a sum of two integrals, one
for which the bound (1.2) implies exponential decay and the other over a compact
region for which one has uniform convergence of heat kernels, we conclude that
integral (III) has exponential decay as t → 0, uniformly in `. Combining these
bounds, the stated result is proved. �

In summary, Theorem 2.2 proves that the hyperbolic heat trace minus the de-
generating heat trace converges pointwise to the hyperbolic heat trace. Since the
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volume of the hyperbolic Riemann surfaces remains constant through degenera-
tion, one immediately has that the regularized heat trace minus the degenerating
heat trace converges pointwise to the regularized heat trace on the limit sur-
face. Corollary 2.3 states that the proof of Theorem 2.2 provides uniformity of
the asymptotics near t = 0 of the hyperbolic heat trace minus the degenerating
heat trace. What remains to consider is the uniformity of the asymptotics for all
t ∈ R+.

§3. Uniform long time asymptotics

In this section we give a further analysis of the asymptotics of the uniformity of
the pointwise convergence in Theorem 2.1 for values of t near infinity. The main
result of this section is the following theorem.

Theorem 3.1. Let M` denote a degenerating family of compact or non-compact
hyperbolic Riemann surfaces of finite volume which converges to the non-compact
hyperbolic surface M0. Let 0 ≤ α < 1/4 be such that α is not an eigenvalue of
M0. Let

HTrK(α)
M`

(t) = HTrKM`
(t)−

∑
λn,`≤α

e−λn,`t.

Then for any c < α, there exists a constant C such that the bound

|HTrK(α)
M`

(t)−DTrK`(t)| ≤ C exp(−ct)

holds for all t ≥ 0 and uniformly in `.

Our proof of Theorem 3.1 comes from analyzing the three integrals in Theorem
2.2. For the integral over the portion the surfaces M` and C` away from the
developing cusps, we need the following lemma.

Lemma 3.2. Let R` denote either M` or C`, that is, either a degenerating hy-
perbolic surface of finite volume or a degenerating infinite hyperbolic cylinder. For
any α < 1/4 and c < α, the limit

lim
`→0

exp(ct)K(α)
R`

(t, x, x) = exp(ct)K(α)
R0

(t, x, x)

is uniform for x ∈ R` \ C`,ε and t > 0.

Proof. We shall argue as in the proof of Theorem 1(b) of [JLu1]. From the spectral
measure, we can express the heat kernel via the integral

K
(α)
R`

(t, x, y) =
∫ ∞
α

exp(−λt)dNR`(x, y;λ).
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Observe that dNR`(x, x;λ) is a positive measure. Let t = t0 + s and write

0 ≤ K(α)
R`

(t, x, x) =
∫ ∞
α

exp(−λt0) exp(−λs)dNR`(x, y;λ)

≤ exp(−αs)
∫ ∞
α

exp(−λt0)dNR`(x, y;λ)

≤ exp(−αs)K(α)
R`

(t0, x, x)

= exp(−αt) exp(αt0)K(α)
R`

(t0, x, x);

hence the quantity
0 ≤ exp(αt)K(α)

R`
(t, x, x)

is monotone decreasing in t. From Theorem 1.3 of [JLu3] and the convergence of
small eigenvalues and small eigenfunctions (see [CC], [He1] or [HJL1]), we know
that K(α)

` (t0, x, x) converges uniformly to K(α)
0 (t0, x, x) for x ∈ R` \ C`,ε. There-

fore, for t ≥ t0, there is a constant C = C(ε, t0) which is independent of ` such
that

exp(αt)K(α)
R`

(t, x, x) ≤ C.
If c < α, then

exp(ct)K(α)
R`

(t, x, x) ≤ C exp(t(c− α)).

We now can combine the monotonicity and pointwise convergence of the function
exp(αt)K(α)

R`
(t, x, x) to exp(αt)K(α)

R0
(t, x, x), as in the proof of Theorem 1(b) from

[JLu1], to finish the proof. �

Lemma 3.3. Let M` denote a degenerating family of compact or non-compact
hyperbolic Riemann surfaces of finite volume which converges to the non-compact
hyperbolic surface M0. Let α < 1/4, c < α, and δ < 1/2. Then there is a constant
C such that for all t > 0 we have

sup
`>0

ζ∈∂C`,δ
ξ∈∂C`,δ

|K(α)
M`

(t, ζ, ξ)−KC`(t, ζ, ξ)| ≤ C exp(−ct).

Proof. As stated in the introduction, results from [R] allow us to take any δ < 1/2.
With this, the claim follows directly from the bounds given in (1.3) and (1.4), to
which we can apply Lemma 3.2 to both the upper bound and the lower bound,
together with the observation that 1/4 is the bottom of the spectrum for C`. �

Lemma 3.4. Let f(t, x) be a solution to the Dirichlet heat problem on the finite
cylinder C`,δ, and, for fixed t > 0, let ‖f(t, ·)‖C`,δ,2 denote the L2 norm of f(t, ·)
as a function on C`,δ. Then for all t0, t > 0, we have

‖f(t0 + t, ·)‖C`,δ,2 ≤ ‖f(t0, ·)‖C`,δ,2 · exp(−t/4).
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Proof. Directly from definitions, we have

∂t‖f(t0 + t, ·)‖2C`,δ,2 =
∫
C`,δ

2fft =
∫
C`,δ

2f∆f = −2
∫
C`,δ

|∇f |2.

Therefore,

∂t‖f(t0 + t, ·)‖2C`,δ,2 =

(
−2
∫
C`,δ
|∇f |2

‖f(t0 + t, ·)‖2C`,δ,2

)
‖f(t0 + t, ·)‖2C`,δ,2

≤ −1
2
‖f(t0 + t, ·)‖2C`,δ,2.

The result follows from integration. �

To finish the background material necessary for our proof of Theorem 3.1, we
need a basic proposition from [JLu3] for the Poisson kernel on C`,ε. For complete-
ness, let us recall the definition of the Poisson kernel together with a result from
[JLu3]. After this, the proof of Theorem 3.1 will be given.

Definition 3.5. Let KD
Cq,δ

(t, x, y) be the Dirichlet heat kernel on the domain Cq,δ.
For any ζ ∈ ∂Cq,δ, let ∂n,ζ denote the inward normal derivative. The Poisson
kernel Pq,δ(t, x, ζ) of the domain Cq,δ is defined to be

Pq,δ(t, x, ζ) = ∂n,ζK
D
Cq,δ (t, x, ζ).

Remark 3.6. From Theorem 5 on page 168 of [Ch], we have the following char-
acterization of the Poisson kernel. The function Pq,δ(t, x, ζ) is an integral kernel
for t > 0 with x ∈ Cq,δ and ζ ∈ ∂Cq,δ, which solves the following boundary value
problem. Let u = u(t, x) satisfy

(∆− ∂t)u = 0, u(0, x) = 0, and u(t, ζ) = f(t, ζ) for ζ ∈ ∂Cq,δ.

Then

u(t, x) =
∫ t

0

∫
∂Cq,δ

Pq,δ(t− σ, x, ζ)f(σ, ζ)d%(ζ)dσ.

The following proposition, which we quote from [JLu3], establishes various
estimates for the Poisson kernel which are independent of q.

Proposition 3.7. Let Cq be a family of infinite volume hyperbolic cylinders. For
any δ > 0, any 0 < ε < δ, and any real numbers t0, t1 > 0, the following results
hold.
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a) For all 0 < t ≤ t1, x ∈ Cq,ε and ζ ∈ ∂Cq,δ, there is a constant C independent
of q such that

0 ≤ Pq,δ(t, x, ζ) ≤ C
b) For all 0 < t0 ≤ t ≤ t1, x ∈ Cq,δ and ζ ∈ ∂Cq,δ, there is a constant C

independent of q such that

0 ≤ Pq,δ(t, x, ζ) ≤ C

c) For fixed s, the L2 norm ‖Pq,δ(t+ is, ·, ζ)‖Cq,δ,2 is decreasing in t.

By combining Lemma 3.4 and Proposition 3.7, we obtain the following bound.

Lemma 3.8. For any ε < δ, there is a constant C such that

‖P`,δ(t, ζ, ·)‖C`,ε,2 ≤ C exp(−t/4).

Proof. Pick any t0. If t < t0, then Proposition 3.7 provides a supremum bound
which is uniform in `, hence we have a bound on the L2 norm, namely

sup
ζ∈∂C`,δ
x∈C`,ε

|P`,δ(t0, ζ, x)| ≤ c(t0).

In fact, since the variables ζ and x are bounded apart, one can take t0 = 0. For
t > t0, apply Lemma 3.4 to get

‖P`,δ(t, ζ, ·)‖C`,ε,2 ≤ ‖P`,δ(t, ζ, ·)‖C`,δ,2 ≤ ‖P`,δ(t0, ζ, ·)‖C`,δ,2 · c(t0)e−t/4,

which holds since λ1 ≥ 1/4. Combining the inequalities obtained in the two cases,
the asserted result is established. �

Proof of Theorem 3.1. The uniformity as asserted for integral (III) is given by
(1.2). Lemma 3.2 applies to integral (I), so it remains to consider integral (II). For
this, we need the above lemmas and argue as follows.

Let {λn,`} be the family of eigenvalues on M` which converge to the eigenvalues
on M0 which are less than 1/4, and let {φn,`(x)} be the associated family of
eigenfunctions. By results from [CC], [He1] or [HJLu1], the sum∑

λn,`<1/4

e−tλn,`φn,`(x)φn,`(y)

varies continuously in ` up to and including ` = 0. Let δ < 1/2 be fixed, and let
0 < ε < δ. For x, y ∈ C`,δ and t > 0, consider the decomposition

KM`
(t, x, y)−KC`(t, x, y) = u(t, x, y) + v(t, x, y) +

N∑
n=1

e−tλn,`φn,`(x)φn,`(y)
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where u and v are solutions to the homogeneous heat equation in both x and y
(and t) such that:
• u has values identically zero on ∂C`,δ and has appropriate initial values;
• v has identically zero initial values but has appropriate boundary values on
∂C`,δ.
Let α < 1/4 be such that M0 has no eigenvalues in the range (α, 1/4). With

the above decomposition, we have

K
(α)
M`

(t, x, y)−KC`(t, x, y) = u(t, x, y) + v(t, x, y).

We shall study the functions u(t, x, y) and v(t, x, y) separately.
From two applications of the Poisson kernel, we have the expression

v(t, x, y) =
∫ t

0

∫
∂C`,δ

∫ τ

0

∫
∂C`,δ

P`,δ(t−τ, x, ζ)P`,δ(τ−σ, y, ξ)D(α)
` (σ, ζ, ξ)dξdσdζdτ

where
D

(α)
` (σ, ζ, ξ) = K

(α)
M`

(σ, ζ, ξ) −KC`(σ, ζ, ξ).

We need to consider the integral∫
C`,ε

v(t, x, x)dµ(x).

If we use the sup-norm on difference of heat kernels, as given in Lemma 3.3, and
the L2 norm of the Poisson kernel, as given in Lemma 3.8, together with the
Cauchy-Schwarz inequality, we obtain the bound∫
C`,ε

v(t, x, x)dµ(x) ≤ C
t∫

0

τ∫
0

exp(−(t− τ)/4) exp(−(τ − σ)/4) exp(−cσ)dσdτ,

which is easily shown to satisfy the bound O(e−ct).
It remains to consider the L2-norm of u(t, x, x) over C`,ε. Let N be an integer

which bounds the number of eigenvalues on each M` less than 1/4; such a universal
choice of N is possible by Buser’s theorem (see page 251 of [Ch]). As a function
of x and t with y fixed, u(t, x, y) satisfies the heat equation with zero boundary
data and initial data given by

g(x, y) =
∑

λn,`<1/4

φn,`(x)φn,`(y). (3.1)

Therefore, we can write

u(t, x, y) =
∫
C`,δ

KD
`,δ(t, z, x)g(z, y)dµ(z). (3.2)
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Now view (3.2) as a solution to the heat equation on C`,δ in the variables y and t
with x fixed. This yields the expression

u(τ + t, x, y) =
∫
C`,δ

KD
`,δ(τ, w, y)u(t, x, w)dµ(w)

=
∫
C`,δ

KD
`,δ(τ, w, y)

 ∫
C`,δ

KD
`,δ(t, z, x)g(z, w)dµ(z)

 dµ(w).
(3.3)

Hence,

u(τ + t, x, y) =
∑

λn,`<1/4

∫
C`,δ

∫
C`,δ

KD
`,δ(τ, w, y)KD

`,δ(t, z, x)φn,`(z)φn,`(w)dµ(z)dµ(w)

=
∑

λn,`<1/4

 ∫
C`,δ

KD
`,δ(τ, w, y)φn,`(w)dµ(w)


 ∫
C`,δ

KD
`,δ(t, z, x)φn,`(z)dµ(z)

 .
(3.4)

If we set x = y and t = τ , and change the variable in the second integral in (3.4)
from w to z, we get

u(2t, x, x) =
∑

λn,`<1/4

 ∫
C`,δ

KD
`,δ(t, z, x)φn,`(z)dµ(z)


2

. (3.5)

Now write
∞∑
m=1

an,me
−λmtψm(x) =

∫
C`,δ

KD
C`,δ

(t, x, z)φn,`(z)dµ(z),

where {ψm(x)} is the orthonormal basis of eigenfunctions of the Dirichlet problem
on C`,δ. The positivity of the expression (3.5) immediately allows us to conclude
the inequality

0 ≤ Fε(t) =
∫
C`,ε

u(t, x, x)dµ(x) ≤
∫
C`,δ

u(t, x, x)dµ(x) = Fδ(t),

so it suffices to prove Fδ(t) ≤ C exp(−t/4) for some constant C which is indepen-
dent of `. Notice that we have the equality

Fδ(t) =
∫
C`,δ

u(t, x, x)dµ(x) =
∑

λn,`<1/4

∞∑
m=1

a2
n,me

−λmt. (3.6)
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From this formula, it is immediate that Fδ(t) is monotone decreasing in t. Further,
from (3.5), it follows that Fδ(0) ≤ N . Since λm ≥ 1/4 for all m, we have, from
(3.6), F ′δ(t) ≤ (−1/4)Fδ(t). If we integrate this inequality, we conclude

Fδ(t) ≤ Fδ(0)e−t/4,

from which we obtain

0 ≤ Fε(t) ≤ Fδ(t) ≤ Fδ(0)e−t/4 ≤ Ne−t/4.

With this, the proof of Theorem 3.1 is complete. �

§4. Applications to spectral functions

We shall now consider a few applications of our convergence theorem for the regu-
larized heat trace and the truncated regularized heat trace. The two applications
we consider involve the Mellin transform, which yields a generalization of the spec-
tral zeta function, and the Laplace transform with a quadratic change of variables,
which yields the Selberg zeta function.

For any α ∈ (0, 1/4), let us define the zeta function

ζ
(α)
M (s) =

1
Γ(s)

∞∫
0

STrK(α)
M (t)ts

dt

t
.

If M is compact and α < λ1, then

ζ
(α)
M (s) =

∑
0<λn

λ−sn =
1

Γ(s)

∞∫
0

[STrKM(t)−m0(M)]ts
dt

t
,

where m0(M) is equal to the number of connected components of M . Thus, our
spectral zeta function generalizes the usual definition which applies only in the
case M is compact.

Theorem 4.1. Let M` denote a degenerating family of compact or non-compact
hyperbolic Riemann surfaces of finite volume which converges to the non-compact
hyperbolic surface M0. Let α < 1/4 be any number that is not an eigenvalue of
M0. Then for any s ∈ C, we have

lim
`→0

ζ(α)
M`

(s)− 1
Γ(s)

∞∫
0

DTrKM`
(t)ts

dt

t
− ζ(α)

M0
(s)

 = 0.
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The convergence is uniform in any half-plane of the form Re(s) > C > −∞.

Proof. By definition, we are to prove

1
Γ(s)

lim
`→0

∞∫
0

[
STrK(α)

M`
(t)−DTrKM`

(t)− STrK(α)
M0

(t)
]
ts
dt

t
= 0.

Since vol(M0) = vol(M`), it is equivalent to prove

lim
`→0

∞∫
0

[
HTrK(α)

M`
(t)−DTrKM`

(t)−HTrK(α)
M0

(t)
]
ts
dt

t
= 0.

By the results established in Theorem 2.2, Corollary 2.3, and Theorem 3.1, we can
interchange the limit and integral, and the result follows. �

Remark 4.2. By direct calculation, we have

∞∫
0

DTrKM`
(t)ts

dt

t
=
∞∑
n=1

`

(16π)1/2 sinh(n`/2)
Ks−1/2(1/2, n`/2)

where Ks(a, b) is the K-Bessel function

Ks(a, b) =

∞∫
0

e−a
2t−b2/tts

dt

t
.

Since

K1/2(b, a) = K−1/2(a, b) =
√
π

b
e−2ab, (4.1)

we have, in the special case s = 0,

∞∑
n=1

`

(16π)1/2 sinh(n`/2)
K−1/2(1/2, n`/2) =

∞∑
n=1

e−n`

n(1− e−n`) (4.2)

(see [JLa2]). As a result, we have proved the following corollary.

Corollary 4.3. For any finite volume hyperbolic Riemann surface, define

log det(α)∆M = −∂sζ(α)
M (0).

Let M` denote a degenerating family of compact or non-compact hyperbolic Rie-
mann surfaces of finite volume which converges to the non-compact hyperbolic
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surface M0. Let α < 1/4 be a positive number such that α is not an eigenvalue of
M0. Then

lim
`→0

log det(α)∆` −
∑

DH(Γ)

∞∑
n=1

e−n`

n(1− e−n`) −
∑
λn≤α

logλn

 = log det(α)∆0.

Proof. Since the gamma function has a first order pole at s = 0, the degenerating
term is as in (4.2). �

Remark 4.4. The elementary lemma on page 112 of [He1] states, for Re(s) > 0,
the asymptotic formula∑

DH(Γ)

∞∑
n=1

e−ns`

n(1− e−n`) =
∑

DH(Γ)

(
−π

2

3`
− (2s− 1) log `

)
+O(1).

Therefore, Corollary 4.3 agrees with some of the main results from [He1] and [Wo]
in the case M` is a degenerating family of compact surfaces. However, as stated
above, the methods of proof in [He1] and [Wo] do not apply to the setting of a
degenerating family of non-compact surfaces, whereas Corollary 4.3 includes these
cases.

To continue, let us now apply the results from sections 2 and 3 to the Selberg
zeta function. Recall that the logarithmic derivative of the Selberg zeta function
is defined via the integral

Z ′M (s)
ZM (s)

= (2s− 1)

∞∫
0

HTrKM (t)e−s(s−1)tdt.

From the collapse of the K-Bessel function (4.1), we have, following [JLa2], the
evaluation

Z ′M(s)
ZM(s)

= (2s− 1)
∞∑
n=1

∑
γ∈H(Γ)

`(γ)
(16π)1/2 sinh(n`(γ)/2)

K1/2(s− 1/2, n`(γ)/2)

=
∞∑
n=1

∑
γ∈H(Γ)

`(γ)
2 sinh(n`(γ)/2)

e−(s−1/2)n`(γ), (4.3)

which agrees with Proposition 4.2 on page 67 of [He2]. The constant of integration
obtained by integrating (4.3) is determined by defining, as on page 66 of [He2],
the Selberg zeta function itself via the product

ZM (s) =
∏
H(Γ)

∞∏
n=0

(
1− e−(s+n)`(γ)

)
. (4.4)
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By an elementary argument involving hyperbolic geometry, one can estimate the
asymptotic behavior of the number of closed geodesics of bounded length (see, for
example, Lemma 4 of [JLu1] or Lemma 1.4 of [JLu3]). From this estimate, it is
easy to show that the Euler product in (4.4) converges for Re(s) > 1.

For α < 1/4, let

Z
(α)′
M (s)

Z
(α)
M (s)

= (2s− 1)

∞∫
0

HTrK(α)
M (t)e−s(s−1)tdt =

Z ′M (s)
ZM (s)

−
∑
λn≤α

2s− 1
s(s− 1)− λn

.

Theorem 4.5. Let M` denote a degenerating family of compact or non-compact
hyperbolic Riemann surfaces of finite volume which converges to the non-compact
hyperbolic surface M0. Let α be such that M has no eigenvalues in the range
[α, 1/4). Then for any s with Re(s) > 1 or in the region Re(s2 − s) > −1/4, we
have

lim
`→0

Z(α)′
` (s)

Z
(α)
` (s)

−
∞∑
n=1

∑
DH(Γ)

`(γ)
2 sinh(n`(γ)/2)

e−(s−1/2)n`(γ)

 =
Z

(α)′
0 (s)

Z
(α)
0 (s)

.

Proof. The proof of Theorem 4.5 for s in the region Re(s2 − s) > −1/4 follows
the pattern of the proof of Theorem 4.1, which is a direct application of Theorem
2.2, Corollary 2.3, and Theorem 3.1. From (4.3), we have that the logarithmic
derivative of the Selberg zeta function can be written as a Dirichlet series with
positive coefficients in the region Re(s) > 1. Therefore, the convergence result
extends from the region Re(s2 − s) > −1/4, which contains the line segment
R>1/2, to the Re(s2− s) > −1/4 together with the entire half plane Re(s) > 1. �

Remark 4.6. As in the case of Theorem 4.1, the convergence result stated in
Theorem 4.5 is related to results contained in [He1] and [Wo]. Our result applies
to a slightly larger region than considered in [He1] or [Wo]. Also, as above, our
work applies to degenerating non-compact surfaces as well as degenerating compact
surfaces, whereas the techniques used in [He1] and [Wo] apply only in the compact
setting. Also, note that if we restrict our attention to Re(s) > 1, then one can
take α = 0.

Remark 4.7. The connection between the Selberg zeta function and the spectral
zeta function is as follows. Let

ζM (w, z) =
1

Γ(s)

∞∫
0

[STrK(α)
M (t)−m0(M)]e−tztw

dt

t
,

which is defined for Re(z) sufficiently large. Following the proof of analytic contin-
uation of Laplace-Mellin transform of theta functions, we have, at least formally,
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the formula
exp(−∂wζM (0, s(s− 1))) = ZM (s)F (s)2g−2 (4.5)

where

F ′/F (s) = (2s− 1)

 ∞∫
0

[
4πKh(t, 0)− 1

t

]
e−s(s−1)dt− log(s(s− 1)


= (2s− 1)

∞∫
0

[
4πKh(t, 0)− e−t

t

]
dt (4.6)

(see page 184 of [JLa1]). In [Sa] it was shown that (4.6) is a meromorphic function
with simple poles and integer residues, hence the integral in (4.6) is indeed the
logarithmic derivative of a meromorphic function F . Upon setting s = 1 above,
we have

log det∗∆M = logZ ′M (1) +
1
2
χ(M)c0 where c0 = −4ζ′Q(−1) +

1
2
− log(2π).

(4.7)
The constant c0 was evaluated in [Sa], which proved (4.5) and (4.7) for compact
surfaces. The above analysis applies to establish (4.5) and (4.7) for all hyperbolic
Riemann surfaces of finite volume.
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