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Abstract. We establish a relationship between Strebel boundary dilatation of a quasisymmetric
function of the unit circle and indicated by the change in the module of the quadrilaterals with
vertices on the circle. By using general theory of universal Teichmüller space, we show that there
are many quasisymmetric functions of the circle have the property that the smallest dilatation
for a quasiconformal extension of a quasisymmetric function of the unit circle is larger than
indicated by the change in the module of quadrilaterals with vertices on the circle.
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§1. Introduction

In this paper, the following notation will be used. C = the finite complex plane;
∆ = {z ∈ C; |z| < 1}; Γ = ∂∆ (boundary of ∆); ∆̄ = ∆∪Γ; ∆r = {z; r < |z| < 1},
where 0 < r < 1; H = the upper half plane; R = the real line in C.

Let f : Γ → Γ be a sense-preserving homeomorphism. We say f is quasisym-
metric if there exists a quasiconformal mapping f̃ : ∆̄ → ∆̄ such that f̃ |Γ = f .
Let z1, z2, z3 and z4 be four points on Γ following each other in the positive (anti-
clockwise) direction. Then they determine an unique topological quadrilateral with
domain ∆ and vertices z1, z2, z3 and z4 which we denote by Q = Q(z1, z2, z3, z4).
We will denote the conformal module of Q by M(Q). The function f maps Q
to a quadrilateral f(Q) = Q(f(z1), f(z2), f(z3), f(z4)). Now assume f is qua-
sisymmetric.It follows from the theory of quasiconformal mappings that for any

∗This work was partially supported by grants from the NSF of China and Göran Gustafsson
Fundation.
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quasiconformal extension f̃ and any quadrilateral Q whose domain is ∆

1
K(f̃)

≤ M(f(Q))
M(Q)

≤ K(f̃).

Thus the following number

K0 = K0(f) = sup
Q
{M(f(Q))
M(Q)

;Q is a quadrilateral with domain ∆}

is finite.
We distinguish two cases for K0(f). If there exists a non-degenerated quadri-

lateral Q such that K0(f) = M(f(Q))
M(Q) , we will use Kq

0(f) instead of K0(f). We

will use Kd
0(f) instead of K0(f), if there is no non-degenerated quadrilateral such

that K0(f) = M(f(Q))
M(Q) .

We define

K1(f) = inf{K; f has a K-quasiconformal extension to a selfmap of ∆̄},

where the infinum is taken for all quasiconformal extensions f̃ of f to ∆.
The following notations of boundary dilatation and local dilatation were intro-

duced by Strebel (cf. [10] and [11]):

H(f) = inf{K; f has a K-quasiconformal extension f̃r to ∆r},

where the infimum is taken for all quasiconformal extensions f̃r of f to ∆r and for
all r(0 < r < 1).

For a point ξ on Γ

Hξ(f) = inf{K; f has a K-quasiconformal extension f̃ε to Uξ(ε)},

where the infimum is taken for all quasiconformal extensions f̃ε of f to a neigh-
borhood of Uξ(ε) and all neighborhoods Uξ(ε) of ξ.

Obviously we have
K0(f) ≤ K1(f)

and
H(f) ≤ K1(f).

Fehlmann proved the following important result (cf. [4]):

H(f) = max
ξ
Hξ(f).
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In this paper we shall first establish a relationship between K0(f) and H(f).
To be precise, we shall prove the following result.

Theorem 1. Let f : Γ→ Γ be a quasisymmetric function. Then either K0(f) =
Kq

0(f) or Kd
0(f) ≤ H(f).

We note that in [12] it was conjectured that K0(f) = K1(f) for all quasisym-
metric functions f . Anderson and Hinkkanen disproved this conjecture by giving
concrete examples of a family of affine stretch mappings of some parallelograms
(cf. [1]). We shall use the results in this paper to give a simpler proof of the result
in [1].

We shall use Theorem 1 and the theory of universal Teichmüller space to show
many quasisymmetric functions f have the property that K0(f) < K1(f).

Let us recall some notations in Teichmüller theory. Let QS(Γ) be the full
set of quasisymmetric functions of Γ and let Möb(Γ) be the group of Möbius
transformations mapping Γ to itself. Then the right coset space QS(Γ)/ Möb(Γ)
is the universal Teichmüller space T . For any f ∈ QS(Γ), let [f ] ∈ T be the
Teichmüller class containing f .

Note that if f ∈ QS(Γ) and g ∈ Möb(Γ), then the quantities of K0(g ◦ f),
K1(g ◦ f) and H(g ◦ f) are the same as K0(f),K1(f) and H(f), respectively. In
other words, they are determined by the Teichmüller class [f ]. Therefore we can
define K0([f ]) = K0(f). Similarly we can define K1([f ]) and H([f ]) (but not
Hξ([f ]).

In a recent paper, Earle and Li studied the geometry of infinite dimensional
Teichmüller spaces (cf.[3]). Following them we call a point [f ] ∈ T is a Strebel
point if H([f ]) < K1([f ]). Let TS be the set of all Strebel points in T and
TN = T \TS .

The case Kq
0(f) = K1(f) in Theorem 1 is easy to describe and there are not

”many” points in T such that the case holds.

Theorem 2. Let U = {[f ] ∈ T ;Kq
0(f) = K1(f)}. Then U depends on two real

parameters and U ⊂ TS .

If K0([f ]) = K1([f ]) and [f ] /∈ U , then K0([f ]) = H([f ]). Consequently
K1([f ]) = H([f ]), that is, [f ] is a non-Strebel point. Theorem 2 tells us that if
K0([f ]) = K1([f ]), then Kq

0([f ]) = K1([f ]) and Kd
0([f ]) = K1([f ]) cannot hold

simultaneously. Thus we have the following result.

Theorem 3. For every point [f ] ∈ TS\U , [f ] has the property that K0([f ]) <
K1([f ]).

Recall that for any two points [fj ] ∈ T , (j = 1, 2), the Teichmüller distance
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between them is defined by

d([f1], [f2]) =
1
2
logK1(f1 ◦ f−1

2 ).

From the definition of Strebel point, it is easy to see that, in the topology induced
by the Teichmüller metric, TS is an open set in T . Since U depends only on
two real parameters and T is infinite dimensional, Theorem 3 tells us that many
quasisymmetric functions f have the property that K0(f) < K1(f).

To give a concrete example, let us denote T0 ⊂ T to be the set of all [f ] ∈ T
such that H([f ]) = 1. Then T0 is also an infinite dimensional complex Banach
manifold (cf. [6] and [7]). We can prove the following result.

Theorem 4. Every [f ] ∈ T0\{[id]} has the property that K0([f ]) < K1([f ]).

Problem. Is it true that every non-Strebel point [f ] has the property that K0([f ])
= K1([f ])?

We shall prove the results above in the next subsections and in the final section
we will discuss affine stretch mappings and give a simpler proof of the main result
in [1].

This work was partially done when the author was visiting the Department
of Mathematics, Royal Institute of Technology at Stockholm. He wishes to thank
Prof. M. Benedicks for his invitation, Göran Gustafsson Fundation for the financial
support and the Department of Mathematics for its hospitality. He also wishes to
thank Prof. J. Anderson for drawing his attention to the paper [1] and Prof. L.
Carleson for useful discussions.

§2. Proof of Theorem 1

In this section, we will prove the main result Theorem 1. Let f ∈ QS(Γ) and
Kd

0(f) = K0(f). We shall prove that Kd
0(f) ≤ H(f).

Assume that {Qn} is a sequence of qudrilaterals with domain ∆ such that

lim
n→∞

M(f(Qn))
M(Qn)

= Kd
0(f) = K0(f).

By passing to subsequences, if necessary, we may assume that the vertices zj,n(1 ≤
j ≤ 4) of Qn tend to limit points zj ∈ Γ for 1 ≤ j ≤ 4 as n→∞ and that at least
two of the points zj coincide. Otherwise we will have Kq

0(f) = K0(f).
As in [1], there are the following four possibilities, up to permutations.

(1) z1 = z2 while z1, z3 and z4 are distinct;
(2) z1 = z2 6= z3 = z4;
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(3) z1 = z2 = z3 6= z4;
(4) z1 = z2 = z3 = z4.

In the proof it will be clear that if

lim
n→∞

M(f(Qn))
M(Q)

=
1

K0(f)
,

we also have Kd
0(f) ≤ H(f).

We shall treat each case seperately.

Case (1). Two points degeneracy

Set

φn(z) =
(z − z3,n)(z4,n − z2,n)
(z − z2,n)(z4,n − z3,n)

.

Then φn map ∆ conformally onto H taking z1,n, z2,n, z3,n, z4,n onto an,∞, 0, 1
respectively. We have 1 < an < ∞ and an → ∞ as n → ∞. Similarly we set
wj,n = f(zj,n) for 1 ≤ j ≤ 4 and

φ̃n(w) =
(w − w3,n)(w4,n − w2,n)
(w − w2,n)(w4,n − w3,n)

.

Then φ̃n map ∆ conformally onto H taking w1,n, w2,n, w3,n, w4,n onto bn,∞, 0, 1
respectively. We also have 1 < bn <∞ and bn →∞ as n→∞. Let H(a,∞, 0, 1)
be the quadrilateral with vertices a,∞, 0, 1 and domain H. If we set (m(a))−1 =
M(H(a,∞, 0, 1), then we have

M(f(Qn))
M(Qn)

=
m(an)
m(bn)

and

m(a) =
K(
√

1− 1
a )

K( 1√
a
)

,

where

K(t) =
∫ 1

0

dx√
(1− x2)(1− t2x2)

(cf. [8, pp. 59-60] and [1]).
As K(0) = π

2 and

K(t) ∼ 1
2
log

1
1− t as t→ 1−,
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we have
m(a) ∼ 1

π
loga, as a→∞.

Therefore, when n is sufficiently large, we have

an = |an| ∼
C1

|z1,n − z2,n|
,

and
bn = |bn| ∼

C2
|w1,n − w2,n|

,

where C1 and C2 are positive constants.
Recall that the local dilatation Hz1(f) (which can be defined similarily as the

unit circle case) of f is the infimum of the dilatations of possible extensions f̃ of
f to the neighborhoods of z1. We shall prove that Kd

0(f) ≤ Hz1(f).
Let ε > 0 be arbitrarily given. Then there is a quasiconformal extension f̃ε

of f in a neighborhood Uε = {z; |z − z1| < ε} of z1 with maximal dilatation
K(f̃ε) ≤ Hz1(f) + ε. From the basic properties of quasiconformal mappings, f̃ε is
Hölder continuous with Hölder index 1

K(f̃ε)
and a coefficient depending on Uε and

fε. We deduce that for all sufficiently large n

1
Hz1(f) + ε′

≤ log|wn,1 − wn,2|
log|zn,1 − zn,2|

≤ Hz1(f) + ε′,

where ε′ → 0 as ε→ 0. This implies

1
Hz1(f) + ε′′

≤ M(f(Qn))
M(Qn)

≤ Hz1(f) + ε′′,

for all sufficiently large n, where ε′′ → 0 as ε→ 0.
Letting n→∞ and ε→ 0 and noting that Hz1(f) ≤ H(f), we get the desired

result in case (1).

Case (2). A pair of two points degeneracy

In this case we use similar transformations to obtain

an =
(z1,n − z3,n)(z4,n − z2,n)
(z1,n − z2,n)(z4,n − z3,n)

∼ C1
(z1,n − z2,n)(z4,n − z3,n)

,

bn =
(w1,n − w3,n)(w4,n − w2,n)
(w1,n − w2,n)(w4,n − w3,n)

∼ C2
(w1,n − w2,n)(w4,n − w3,n)

,

where C1 and C2 are positive constants.
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Therefore we have
π

M(Qn)
∼ logan ∼ −log|z1,n − z2,n| − log|z4,n − z3,n|,

and
π

M(f(Qn)
∼ logbn ∼ −log|w1,n − w2,n| − log|w4,n − w3,n|.

Now we perform the same procedure as in Case (1) to the neighborhoods of
z1 = z2 and z3 = z4 respectively. We deduce that

Kd
0(f) ≤ max{Hz1(f),Hz3(f)} ≤ H(f)

as required.

Case (3). Three points degeneracy

In this case, we set

φn(z) = eiθn
z − z1,n
z − z4,n

,

where θn is chosen so that φn maps ∆ to H. Similarly let

φ̃n(w) = eiθ̃n
w − f(z1,n)
w − f(z4,n)

such that φ̃n maps ∆ to H. Thus, without loss of generality, We can use the
upper half plane H instead of ∆ and assume that lim

n→∞
zj,n = z1 ∈ R, (j = 1, 2, 3),

z4,n =∞ and that lim
n→∞

f(zj,n) = f(z1) ∈ R, (j = 1, 2, 3), f(z4,n) =∞.

For any given ε > 0 we choose a quasiconformal extension f̃ε in Uε = {z; |z −
z1| < ε} of f such that the maximal dilatation of f̃ε in Uε is at most Hz1(f) +
ε. From the theory of quasiconformal mappings it is possible to extend f̃ε to a
quasiconformal mapping of the whole plane, which is still denoted by f̃ε, with
bounded dilatation (e.g., using Beurling-Ahlfors extensions (cf., [2])).

Let Λn be the extremal length of the family of curves in H which join the
intervals [z1,n, z2,n] to [z3,n,∞]. Let Λ̃n be the extremal length of the family of
curves in H which join the interval [f(z1,n), f(z2,n)] to [f(z3,n),∞]. Then we have

M(f(Qn)
M(Qn)

=
Λ̃n
Λn
→ Kd

0(f) (or
1

Kd
0(f)

).

Grötzsch’s length-area argument (cf. [5]) shows that

Λ̃n
Λn
≤
∫∫
C

K(f̃ε(z))|φ(z)|dxdy,
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where

φ(z) =
C(z1,n, z2,n, z3,n)

(z − z1,n)(z − z2,n)(z − z3,n)

and where the constant C(z1,n, z2,n, z3,n) can be chosen to satisfy∫∫
C

|φ(z)|dxdy = 1.

Therefore C(z1,n, z2,n, z3,n)→ 0 as zj,n → z1 (n→∞, j = 1, 2, 3).
As C(z1,n, z2,n, z3,n) → 0, the complement of Uε has arbitrarily small mass

with respect to the measure of |φ(z)|dxdy. Note that K(f̃ε) is uniformly bounded,
we must have

Λ̃n
Λn
≤ Hz1(f) + 2ε

for all sufficiently large n.
Letting n → ∞ and ε → 0, the proof of Case (3) is completed provided that

Λ̃n
Λn = M(f(Qn)

M(Qn) . But the proof still works if Λn
Λ̃n

= M(f(Qn))
M(Qn) , we only need to

change the curve families. This completes the proof of Case (3).

Case (4). Four points degeneracy

We can treat this case similarly as we did in Case (3). We work on H and, without
loss of generality, assume that all points involved are finite.

Let Λn be the extremal length of the family of curves in D which join the
intervals [z1,n, z2,n] to [z3,n, z4,n]. Let Λ̃n be the extremal length of the family of
curves in H which join the interval [f(z1,n), f(z2,n)] to [f(z3,n), f(z4,n)]. Then we
have

M(f(Qn)
M(Qn)

=
Λ̃n
Λn
→ Kd

0(f) (or
1

Kd
0(f)

).

Use the same proof of Case (3) and note that the extremal holomorphic functions
will be changed to

φ(z) =
C(z1,n, z2,n, z3,n, z4,n)

(z − z1,n)(z − z2,n)(z − z3,n)(z − z4,n)
,

where, again, the constant C(z1,n, z2,n, z3,n, z4,n) → 0 as zj,n → z1 (n → ∞,
j = 1, 2, 3, 4). Thus we can prove this case similarly as we did in Case (3).

The proof of Theorem 1 is completed.
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§3. Proof of Theorem 2

Assume that f1, f2 ∈ QS(Γ) and there exist quadrilaterals Q1, Q2 with properties
that

M(Q1) = M(Q2)

and
Kq

0(f1) = K1(f1) = K1(f2) = Kq
0(f2),

where
K1(f1) =

M(f1(Q1))
M(Q1)

and

K1(f2) =
M(f2(Q2))
M(Q2)

.

We will show that f1 ◦ f−1
2 ∈ Möb(Γ), that is, [f1] = [f2].

To prove the fact above, we denote the rectangle with vertices 0,K,K+ i, i by
R(K), where K > 1.

Now let φ1 and φ2 be the conformal mappings from Q1 and Q2 to the rectangle
R(M(Q1)) = R(M(Q2)) respectively, and let φ̃1 and φ̃2 be the conformal map-
pings from f(Q1) and f(Q2) to the rectangle R(M(f1(Q1))) = R(M(f2(Q2)))
respectively.

The only quasiconformal mapping from R(M(Q1)) to R(M(f1(Q1))) with di-
latation K = K0(f1) = M(f1(Q1))

M(Q1) is fK(x+ iy) = Kx+ iy (cf. [8]). Therefore f1

and f2 have extremal quasiconformal extensions

f̃1 = φ̃−1
1 ◦ fK ◦ φ1 and f̃2 = φ̃−1

2 ◦ fK ◦ φ2

respectively. Thus we have

f̃1 ◦ f̃−1
2 = φ̃−1

1 ◦ fK ◦ φ1 ◦ φ−1
2 ◦ f−1

K ◦ φ̃2.

By computing the Beltrami coefficient of f̃1 ◦ f̃−1
2 , we see that ∂

∂z̄ (f̃1 ◦ f̃−1
2 ) = 0.

So f̃1 ◦ f̃−1
2 is a conformal mapping from ∆→ ∆, i.e., f1 ◦ f−1

2 ∈ Möb(Γ).
The argument above shows that every [f ] ∈ U can be determined by the module

of a quadrilateral and the dilatation of the extremal quasiconformal extension.
On the other hand, suppose that for j = 1, 2, fj ∈ QS(Γ) satisfy

Kq
0(fj) = K1(fj) =

M(fj(Qj))
M(Qj)

,

where Qj are quadrilaterals. If M(Q1) 6= M(Q2) or K1(f1) 6= K1(f2), then
f1 ◦ f−1

2 /∈ PSL(2, R). This implies the first part of the theorem.
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We next show that every [f ] ∈ U is a Strebel point (this might be a known
result, we include the simple proof here for the completeness of the paper).

From the argument above, for every [f ] there exist a quadrilateral Q with
domain ∆ and a constant K > 1 such that f has a quasiconformal extension
f̃ = (φ̃)−1 ◦ fK ◦ φ, where φ : Q → R(M(Q) and φ̃ : f(Q) → R(M(f(Q))) are
conformal mappings and fK = Kx + iy : R(M(Q)) → R(M(f(Q))) is the affine
stretch mapping. As the (local) dilatation of a quasiconformal mapping does not
change if it composes a conformal mapping. So we can estimate the local dilatation
(which can be defined similarly as the unit circle case ) of fK(z) : ∂R(M(Q)) →
∂R(M(f(Q))) .

Let ξ ∈ ∂R(M(Q)). Suppose first that ξ is not a vertex of ∂R(M(Q)). Since
the boundary correspondence in a neighborhood of ξ is smooth, Hξ(fK) = 1 (cf.
[11]). We next suppose that ξ is one of the four vertices of ∂R(M(Q)). Note
that the local dilatations of fK at the four vertices are the same (cf. [10]). Thus
we may suppose ξ = 0. Since in [10] it was proved that fK is not an extremal
quasiconformal mapping from {z; 0 < argz < π

2 } → {z; 0 < argz < π
2 }, this

implies Hξ(fK) < K = K1(f). The proof of the theorem is completed.

§4. Proof of Theorem 4

Since H(f) = 1 for every f ∈ [f̃ ] ∈ T0, we must have K0(f) = Kq
0(f) for f /∈

Möb(Γ). To prove the theorem, we only need to prove that every f ∈ [f̃ ] ∈ U\{[id]}
has the property that Kq

0(f) 6= K1(f).
Now assume, for the contrary, f ∈ [f̃ ] ∈ U\{id}. ThenKq

0(f) = K1(f). Denote
K = K1(f). We shall prove the following fact that there is a point z0 ∈ Γ at which
the local quasisymmetric constant of f is K2.

In the following we use the upper plane again. Suppose that z1, z2, z3, z4 ∈ R
follow each other in the positive (anticlockwise) direction on R. We still denote
the quadrilateral with domain H and vertices z1, z2, z3, z4 by Q = Q(z1, z2, z3, z4).
Now assume that f(Q) = Q(f(z1), f(z2), f(z3), f(z4)) such that Kq

0(f) = M(f(Q))
M(Q)

= K1(f).
Let φ and φ̃ be the conformal mappings such that φ(Q) = R(M(Q)) and

φ̃(f(Q)) = R(M(f(Q)). As before the unique extremal quasiconformal mapping
from R(M(Q)) to R(M(f(Q))) is fK(x + iy) = Kx + iy. Now suppose that
φ(z1) = 0 and φ̃(f(z1)) = 0. From the classical elliptic integral theory, we have

φ(z) = (z − z1)
1
2 {a0 + a1(z − z1) + a2(z − z1)2 + ...}

= a0(z − z1)
1
2 +O((z − z1)

3
2 ) (z ∈ R and z → z1),

and

φ̃(f(z1)) = ã0(w − f(z1))
1
2 +O((w − f(z1))

3
2 ) (w ∈ R and w → f(z1)).



Vol. 72 (1997) Moduli of extensions of quasisymmetric functions 603

Since f = φ̃−1 ◦ fK ◦ φ, we have locally

f(z) =
{
CK2(z − z1) + o(z − z1) z > z1,

C(z − z1) + o(z − z1) z ≤ z1,

where z ∈ R and C 6= 0 is a constant. This implies

lim
t→0+

f(z1 + t)− f(z1)
f(z1)− f(z1 − t)

= K2.

On the other hand it was proved in [6] (also cf. [11]) that if f ∈ [f̃ ] ∈ T0,
the local quasisymmetric constant above must be equal to 1. This contradiction
proves Theorem 4.

§5. Affine stretch mappings

In [1], the following result is proved.

Theorem A. For each K > 1, there exists a sense-preserving quasisymmetric
homeomorphism f of Γ such that

K0(f) < K1(f) = K.

To prove the theorem, the authors constructed concrete quasiconformal map-
pings as follows. Let V be the closed parallelogram with vertices ξ1 = 0, ξ2 = 1
ξ3 = α+ 1 + iβ, ξ4 = α+ iβ, where α > 0 and β > 0. Let fK(V ) be the image of
V under the horizontal affine stretch fK that takes x+ iy onto Kx+ iy so that the
vertices of fK(V ) are ξ̃1 = 0, ξ̃2 = K, ξ̃3 = K(α+1)+ iβ, ξ̃4 = Kα+ iβ. Let φ and
φ̃ be the conformal mappings from V and fK(V ) to ∆, respectively. Since fK is
uniquely extremal for its boundary values, the mapping f̃K = φ̃◦fk◦φ−1 of ∆ onto
∆ is uniquely extremal for its boundary values. Under this construction, we see
easily that any internal angle with vertex at one of ξj and ξ̃j (j=1,2,3,4) cannot be
equal to π

2 . It was proved in [1] that f̃K has the property that K0(f̃K) < K1(f̃K).
Now we, by using our results, give a simpler proof of Theorem A.

Proof of Theorem A

In fact we can prove that [f̃K ] /∈ U and [f̃K ] ∈ TS . Therefore Theorem A follows
from Theorem 3.

The proof of [f̃K ] /∈ U is simple and we omit it (cf. [1]).
Now we show H(f̃K) < K = K1([f̃K ]) (this is the main part of [1]). From

Fehlmann’s result (cf. [4] and [11]) and Hξ(fK) = 1 for all ξ ∈ ∂V and ξ 6= ξj(j =
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1, 2, 3, 4), we see that H(f̃K) = Hξj (fK) for some j = 1, 2, 3, 4. So we need to show
Hξj (fK) < K for j = 1, 2, 3, 4. Since at each vertex ξj , fK is the restriction of the
same affine stretch on an angular domain whose vertex is ξj and whose boundary
is the extension of two sides of the parallelogram, it is known that fK is not ex-
tremal for its boundary values (cf. [9] and [10]). (This is a known result if the
vertex of an angular domain is the origin. Note that for the case of affine stretch
mappings, the extremal problem for the boundary values of an angular domain
depends only on the the family of holomorphic functions defined on the domain
(cf. [9]), it is easy to see that the affine stretch mappings cannot be extremal for
the boundary values of an angular domain whether or not the vertex of it is the
origin.) Therefore there is a quasiconformal mapping F of dilatation < K with
the same boundary value of fK on the two sides of the parellelogram. This implies
Hξj (fK) < K (j = 1, 2, 3, 4.). This completes the proof of Theorem A.
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