Blow-up of Solutions for a Class of Nonlinear Parabolic Equations

Zhang Lingling

Abstract. In this paper, the blow up of solutions for a class of nonlinear parabolic equations

\[u_t(x,t) = \nabla_x (a(x,t)\nabla_x u(x,t)) + b(x)\nabla_x u(x,t) + g(x,|\nabla_x u(x,t)|^2, t)f(u(x,t)) \]

with mixed boundary conditions is studied. By constructing an auxiliary function and using Hopf’s maximum principles, an existence theorem of blow-up solutions, upper bound of “blow-up time” and upper estimates of “blow-up rate” are given under suitable assumptions on \(a, b, c, f, g\), initial data and suitable mixed boundary conditions. The obtained result is illustrated through an example in which \(a, b, c, f, g\) are power functions or exponential functions.

Keywords. Nonlinear parabolic equations, blow-up solutions, maximum principles

Mathematics Subject Classification (2000). Primary 35K57, secondary 35K20, 35K60

1. Introduction

It is well known that the blow-up of solutions is very important in nonlinear partial differential equations. In recent years, many authors have studied them (see, e.g., [1–4, 6]). In paper [4], the following problem was discussed:

\[
\begin{cases}
 u_t = \Delta u + f(u) & \text{in } D \times (0, T) \\
 u = 0 & \text{on } \partial D \times (0, T) \\
 u(x, 0) = u_0(x) & \text{in } \bar{D},
\end{cases}
\]

Zhang Lingling: Department of Mathematics, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China; zllww@126.com
This work was supported by Natural Sciences Fund of Shanxi (code:2006011006) and the Doctors Fund of TYUT.
where \bar{D} is the closure of D. In paper [3], the following problem was studied:

\[
\begin{cases}
 u_t = \Delta u + f(u) & \text{in } D \times (0,T) \\
 \frac{\partial u}{\partial n} + \sigma(x,t)u = 0 & \text{on } \partial D \times (0,T) \\
 u(x,0) = u_0(x) & \text{in } \bar{D}.
\end{cases}
\]

In paper [1], the following problem was investigated:

\[
\begin{cases}
 u_t = \Delta u + f(x,u,q) & \text{in } D \times (0,T) \\
 u = 0 & \text{on } \Gamma_1 \times (0,T) \\
 \frac{\partial u}{\partial n} = 0 & \text{on } \Gamma_2 \times (0,T) \\
 u(x,0) = u_0(x) \geq 0, \neq 0 & \text{in } \bar{D},
\end{cases}
\]

where $\Gamma_1 \cup \Gamma_2 = \partial D$, $q = |\nabla u|^2$.

In this paper, we shall study the following nonlinear parabolic equations:

\[
\begin{cases}
 (i) \quad u_t = \nabla(a(u)b(x)c(t)\nabla u) + g(x,q,t)f(u) & \text{in } D \times (0,T) \\
 u = 0 & \text{on } \Gamma_1 \times (0,T) \\
 \frac{\partial u}{\partial n} + \sigma(x,t)u = 0 & \text{on } \Gamma_2 \times (0,T) \\
 u(x,0) = u_0(x) \geq 0, \neq 0 & \text{in } \bar{D},
\end{cases}
\]

where $\Gamma_1 \cup \Gamma_2 = \partial D$, $q = |\nabla u|^2$. ∇ denotes the gradient operator, n is the outer normal vector, $\frac{\partial u}{\partial n}$ denotes the outward normal derivative, and D is a smooth bounded domain of \mathbb{R}^N, $N \geq 2$, $0 < T < +\infty$.

The function a is assumed to be a positive C^2-function, the functions b and c positive C^1-functions, the function g a nonnegative C^1-function, the function f a nonnegative C^2-function, and the function σ a nonnegative C^1-function. Throughout this paper, for simplicity we denote the derivatives of $f(s)$ with respect to s by $f'(s)$, the second derivatives by $f''(s)$, the partial derivatives of $g(x,d,t)$ with respect to d by $g_d(x,d,t)$. i.e.

\[
f'(s) = \frac{df(s)}{ds}, \quad f''(s) = \frac{d^2f(s)}{ds^2}, \quad g_d(x,d,t) = \frac{\partial g(x,d,t)}{\partial d}.
\]

In this paper, an existence theorem of blow-up solutions is obtained. Upper bounds of “blow-up time” and upper estimates of “blow-up rate” are given. The result extends and supplements those obtained in [1 – 4, 6]. Our approach depends heavily upon Hopf’s maximum principles.

This paper is organized as follows. In Section 2 the main result and its proof are presented. In Section 3 we shall give an example to illustrate our result in this paper may be applied.
2. The main result and its proof

The main result is stated in the following theorem:

Theorem 2.1. Let \(u \) be a \(C^3(D \times (0, T)) \cap C^2(\bar{D} \times [0, T]) \) solution of (a) – (c). Suppose that the following conditions \((H_1) - (H_5) \) hold:

(H_1) For \(s \in R, \ a(s) > 0, f(s) \geq 0, f(0) = 0, \) and for \(s \in R^+, \ a'(s) \geq 0, f(s) > 0, \left(\frac{f'(s)}{a(s)} \right) \geq 0, \left(\frac{f(s)}{a(s)} \right)' \geq 0, \left(\frac{sa(s)}{f(s)} \right)' \leq 0; \)

(H_2) for \((x, d, t) \in D \times R^+ \times R^+, \)

\[
\begin{align*}
&b(x) > 0, c(t) > 0, c'(t) > 0 \\
g(x, d, t) \geq 0, g_d(x, d, t) \geq 0, g_t(x, d, t) \geq 0, \left(\frac{g}{c} \right)_t (x, d, t) \geq 0,
\end{align*}
\]

and for \((x, t) \in \Gamma_2 \times R^+, \sigma(x, t) \geq 0, \sigma_t(x, t) \leq 0; \)

(H_3) at \(x \in \bar{D} \) where \(f(u_0(x)) = 0, \nabla (a(u_0)b(x)c(0)\nabla u_0) \geq 0; \)

(H_4) \(\beta := \min_{D_1} \left\{ \frac{a(u_0)}{f(u_0)} \left[\nabla (a(u_0)b(x)c(0)\nabla u_0) \right] + g(x, q_0, 0) f(u_0) \right\} > 0, \)

where \(D_1 = \{ x \mid x \in \bar{D}, f(u_0(x) \neq 0 \} \neq \emptyset, \ q_0 = |\nabla u_0|^2; \)

(H_5) \(\int_{M_0}^{+\infty} \frac{a(s)}{f(s)} ds < +\infty, \) where \(M_0 := \max_D u_0(x). \)

Then \(u(x, t) \) must blow-up in finite time \(T \) satisfying

\[
T \leq \frac{1}{\beta} \int_{M_0}^{+\infty} \frac{a(s)}{f(s)} ds
\]

and

\[
u(x, t) \leq H^{-1}(\beta (T - t)),
\]

where \(H^{-1} \) is the inverse function of \(H(z) := \int_z^{+\infty} \frac{a(s)}{f(s)} ds, \) \(z > 0. \)

Proof. By (i) we know that

\[
abc \Delta u + (a'c + b \nabla u + ac \nabla b) \cdot \nabla u - u_t = -fg \leq 0.
\]

From (1), (ii), (iii) and (H_2), it is easy to check that the solution \(u(x, t) \) is nonnegative. Construct an auxiliary function as follows:

\[
P(x, t) = -a(u)u_t + \beta f(u).
\]

Then

\[
\nabla P = -a' u_t \nabla u - a \nabla u_t + \beta f' \nabla u \\
\Delta P = -a' u_t \Delta u - a'' u_t q - 2a \nabla u \cdot \nabla u_t - a \Delta u_t + \beta f' \Delta u + \beta f'' q
\]
and

\[P_t = -a'(u_t)^2 - a(u_t)_t + \beta f'u_t \]
\[= -a'(u_t)^2 - a(abc\Delta u + a'bcq + ac\nabla b \cdot \nabla u + gf)_t + \beta f'u_t \]
\[= -a'(u_t)^2 - a^2bc\Delta u_t - aa'bcu_t\Delta u - aa''bcu_tq \]
\[- 2aa'bc\nabla u \cdot \nabla u_t - aa'cu_t\nabla b \cdot \nabla u - a^2bc'\Delta u \]
\[- aa'bc'q - a^2c'\nabla b \cdot \nabla u - a^2c\nabla b \cdot \nabla u_t - ag_t f \]
\[- 2ag_q f \nabla u \cdot \nabla u_t - agf' u_t + \beta f'u_t. \]

(5)

In order to prove the theorem by using Hopf’s maximum principles, firstly we prove that

\[abc\Delta P + (ac\nabla b + 2g_q f \nabla u) \cdot \nabla P + (gf' - \frac{a'}{a} 2g_q f q + \frac{f'}{c}) P - P_t \geq 0. \]

So we do some relevant calculation. From (4) and (5), it follows that

\[abc\Delta P - P_t = \beta abc f' \Delta u + \beta abc f'' q + a'(u_t)^2 + aa'cu_t\nabla b \cdot \nabla u \]
\[+ a^2c\nabla b \cdot \nabla u_t + ag_t f + 2ag_q f \nabla u \cdot \nabla u_t \]
\[+ a^2bc'\Delta u + aa'bc'q + a^2c'\nabla b \cdot \nabla u + agf' u_t - \beta f'u_t. \]

(6)

By (3), we have

\[a^2c\nabla b \cdot \nabla u_t = ac\nabla b \cdot (-\nabla P - a'u_t \nabla u + \beta f' \nabla u) \]
\[= -ac\nabla b \cdot \nabla P - aa'cu_t\nabla b \cdot \nabla u + \beta ac f' \nabla b \cdot \nabla u \]

(7)

and

\[2ag_q f \nabla u \cdot \nabla u_t = 2g_q f \nabla u \cdot (-\nabla P - a'u_t \nabla u + \beta f' \nabla u) \]
\[= -2g_q f \nabla u \cdot \nabla P - 2a'g_q f u_t q + 2\beta g_q f f' q. \]

(8)

It follows from (3), (6) – (8) that

\[abc\Delta P + (ac\nabla b + 2g_q f \nabla u) \cdot \nabla P - P_t \]
\[= \beta abc f' \Delta u + \beta abc f'' q + a'(u_t)^2 + \beta ac f' \nabla b \cdot \nabla u \]
\[+ a^2bc'\Delta u + aa'bc'q + a^2c'\nabla b \cdot \nabla u + ag_t f - 2a'g_q f u_t q \]
\[+ 2\beta g_q f f' q + agf' u_t - \beta f'u_t. \]

(9)

By (1), we have

\[\beta abc f' \Delta u = \beta f'(u_t - g - a'bcq - ac\nabla b \cdot \nabla u) \]
\[= \beta f' u_t - \beta a'bcf' q - \beta ac f' \nabla b \cdot \nabla u - \beta gf f' \]

(10)

\[a^2bc'\Delta u = a^2c' (u_t - g - a'bcq - ac\nabla b \cdot \nabla u) \]
\[= a^2c' u_t - aa'bc'q - a^2c' \nabla b \cdot \nabla u - a^2c' g f. \]

(11)
From (9) – (11) it follows that
\[abc\Delta P + (ac\nabla b + 2g_qf\nabla u) \cdot \nabla P - P_t \]
\[= \beta abc f''q - \beta a'bcf'q + a\frac{\zeta}{c}u_t - a\frac{\zeta}{c}gf - \beta gff' + a'(u_t)^2 + ag_if - 2a'g_qf u_t q + 2\beta g_qf f'q + agf'u_t \]
\[= \beta a^2bc \left(\frac{L}{a} \right)' q - \beta gff' + a'(u_t)^2 + ag_if \]
\[+ a\frac{\zeta}{c}u_t - a\frac{\zeta}{c}gf - 2a'g_qf u_t q + 2\beta g_qf f'q + agf'u_t. \]
\[\text{(12)} \]

From (2), it is easy to get that
\[agf'u_t = agf'1\frac{1}{a}(\beta f - P) = -gf'P + \beta gff' \]
\[\text{(13)} \]
\[a\frac{\zeta}{c}u_t = a\frac{\zeta}{c} \frac{1}{a}(\beta f - P) = -\frac{\zeta}{c}P + \frac{\zeta}{c}\beta f \]
\[\text{(14)} \]
\[-2a'g_qf u_t q = \frac{a'}{a}2g_qfP - \frac{a'}{a}2\beta g_qf^2q. \]
\[\text{(15)} \]

It follows from (12) – (15) that
\[abc\Delta P + (ac\nabla b + 2g_qf\nabla u) \cdot \nabla P - P_t \]
\[= \beta a^2bc \left(\frac{L}{a} \right)' q + a'(u_t)^2 + ag_if + \frac{\zeta}{c}\beta f - a\frac{\zeta}{c}gf \]
\[+ 2\beta ag_if \left(\frac{L}{a} \right)' q + (-gf' + \frac{a'}{a}2g_qf - \frac{a'}{a})P, \]
i.e.,
\[abc\Delta P + (ac\nabla b + 2g_qf\nabla u) \cdot \nabla P + \left(gf' - \frac{a'}{a}2g_qf + \frac{\zeta}{c} \right)P - P_t \]
\[= \beta a^2bc \left(\frac{L}{a} \right)' q + a'(u_t)^2 + ag_if + 2\beta ag_if \left(\frac{L}{a} \right)' q + \frac{\zeta}{c}\beta f - a\frac{\zeta}{c}gf \]
\[\text{(16)} \]

The conditions (H1), (H2) and (1) – (3) guarantee that the right side in the equality (16) is nonnegative, i.e.,
\[abc\Delta P + (ac\nabla b + 2g_qf\nabla u) \cdot \nabla P + \left(gf' - \frac{a'}{a}2g_qf + \frac{\zeta}{c} \right)P - P_t \geq 0. \]
\[\text{(17)} \]

From (H3) and (H4), it is easy to see that
\[\max_{\bar{D}} P(x,0) \]
\[= \max_{\bar{D}} \{-a(u_0) [\nabla (a(u_0)b(x)c(0)\nabla u_0) + g(x, q_0, 0)f(u_0)] + \beta f(u_0)\} = 0. \]
\[\text{(18)} \]

On \(\Gamma_1 \times (0,T) \) we have \(u_t = 0 \) and thus
\[P(x,t) = a(0)u_t + \beta f(0) = 0. \]
\[\text{(19)} \]
On $\Gamma_2 \times (0, T)$ we have
\[
\frac{\partial P}{\partial n} = -a'u_t \frac{\partial u}{\partial n} - a \frac{\partial u}{\partial n} + \beta f' \frac{\partial u}{\partial n} = a'\sigma uu_t - a \left(\frac{\partial u}{\partial n} \right)_t - \beta f'\sigma u
\]
\[
= a'\sigma uu_t + a \left(\sigma u \right)_t - \beta f'\sigma u
\]
\[
= \sigma(a'u + a)u_t + a\sigma_t u - \beta f'\sigma u
\]
\[
= \sigma(a'u + a) \left(-\frac{f}{a} + \frac{\partial f}{\partial a} \right) + a\sigma_t u - \beta f'\sigma u
\]
\[
= -\frac{\sigma}{a} (a'u + a)P + a\sigma_t u + \frac{\beta f'u}{a} \left(\frac{\partial u}{\partial n} \right)'.
\] (20)

Combining (17) – (20) and Hopf’s Maximum Principle [5, 7], it follows that P cannot assume its maximum on $\Gamma_2 \times (0, T)$, and in $\bar{D} \times [0, T)$ the maximum of P is 0. Hence we have in $\bar{D} \times [0, T)$, $P \leq 0$ and
\[
\frac{a(u)}{f(u)} u_t \geq \beta.
\] (21)

At the point $x_0 \in \bar{D}$ where $u_0(x_0) = M_0$, we get by integration
\[
\frac{1}{\beta} \int_{M_0}^{u(x,t)} \frac{a(s)}{f(s)} ds \geq t.
\]

By using condition (H$_3$), it follows that $u(x,t)$ must blow-up for a finite time $t = T$. Further the following inequality must hold $T \leq \frac{1}{\beta} \int_{M_0}^{\infty} \frac{a(s)}{f(s)} ds$. By integrating the inequality (21) over $[t,s]$ ($0 < t < s < T$), for each fixed x, one gets
\[
H(u(x,t)) \geq H(u(x,t)) - H(u(x,s)) = \int_{u(x,t)}^{u(x,s)} \frac{a(s)}{f(s)} ds = \int_t^s \frac{a(u)}{f(u)} u_t dt \geq \beta(s-t),
\]
so that $u(x,t) \leq H^{-1}(\beta(s-t))$. Hence, by letting $s \to T$, we have $u(x,t) \leq H^{-1}(\beta(T-t))$. The proof of the theorem is completed. \hfill \Box

3. An example

Let u be a $C^3(D \times (0, T)) \cap C^2(\bar{D} \times [0, T))$-solution of the following problem:
\[
\left\{ \begin{array}{ll}
\frac{\partial u}{\partial n} = -ue^{-t} \sum_{i=1}^{3} x_i^4 & \text{on } \Gamma_1 \times (0, T) \\
u = 0 & \text{on } \Gamma_1 \times (0, T) \\
\frac{\partial u}{\partial n} = -ue^{-t} \sum_{i=1}^{3} x_i^4 & \text{on } \Gamma_2 \times (0, T) \\
u(x,0) = u_0(x) = \left(1 - \sum_{i=1}^{3} x_i^2 \right)^2 & \text{in } \bar{D},
\end{array} \right.
\]
where $\Gamma_1 \cup \Gamma_2 = \partial D$, $D = \{ x = (x_1, x_2, x_3) \mid \sum_{i=1}^{3} x_i^2 < 1 \}$, $0 < T < +\infty$. In this example,

\begin{align*}
 a(u) &= e^u, \quad b(x) = 1 + \sum_{i=1}^{3} x_i^2, \quad c(t) = e^t \\
 g(x, q, t) &= e^t (24 + q \sum_{i=1}^{3} x_i^2), \quad f(u) = u^2 e^u, \quad \sigma(x, t) = e^{-t} \sum_{i=1}^{3} x_i^4.
\end{align*}

It is easy to check that $(H_1) - (H_5)$ hold. In addition,

\begin{align*}
 \nabla (a(u_0) b(x) c(0) \nabla u_0) &= \nabla \left(e^{u_0} \left(1 + \sum_{i=1}^{3} x_i^2 \right) \nabla u_0 \right) \\
 &= e^{u_0} \nabla u_0 \cdot \nabla u_0 \left(1 + \sum_{i=1}^{3} x_i^2 \right) + e^{u_0} \nabla \left(1 + \sum_{i=1}^{3} x_i^2 \right) \cdot \nabla u_0 \\
 &\quad+ e^{u_0} \left(1 + \sum_{i=1}^{3} x_i^2 \right) \Delta u_0 \\
 &= e^{u_0} \left[q_0 \left(1 + \sum_{i=1}^{3} x_i^2 \right) + \nabla \left(1 + \sum_{i=1}^{3} x_i^2 \right) \cdot \nabla u_0 + \left(1 + \sum_{i=1}^{3} x_i^2 \right) \Delta u_0 \right] \\
 &= e^{u_0} \left[16 \sum_{i=1}^{3} x_i^2 \left(1 - \sum_{i=1}^{3} x_i^2 \right)^2 \left(1 + \sum_{i=1}^{3} x_i^2 \right) - 8 \sum_{i=1}^{3} x_i^2 \left(1 - \sum_{i=1}^{3} x_i^2 \right) \right] \\
 &\quad+ e^{u_0} \left[8 \sum_{i=1}^{3} x_i^2 \left(1 + \sum_{i=1}^{3} x_i^2 \right) - 12 \left(1 + \sum_{i=1}^{3} x_i^2 \right) \left(1 - \sum_{i=1}^{3} x_i^2 \right) \right]
\end{align*}

From (22), it follows that

\begin{align*}
 \beta &= \min_{D_1} \left\{ \frac{a(u_0)}{f(u_0)} \left[\nabla (a(u_0) b(x) c(0) \nabla u_0) + g(x, q_0, 0) f(u_0) \right] \right\} \\
 &= \min_{D_1} \left\{ \frac{e^{u_0}}{e^{u_0} u_0^2} \left[\nabla \left(e^{u_0} \left(1 + \sum_{i=1}^{3} x_i^2 \right) \nabla u_0 \right) + \left(24 + q_0 \sum_{i=1}^{3} x_i^2 \right) e^{u_0} u_0^2 \right] \right\} \\
 &= \min_{0 \leq y < 1} \left\{ \frac{4e^{(1-y)^2}}{(1-y)^3} \left[4y^8 - 24y^7 + 60y^6 - 80y^5 + 70y^4 - 52y^3 + 43y^2 - 20y + 3 \right] \right\} \\
 &= 3.1302
\end{align*}

According to Theorem 2.1 $u(x, t)$ must blow-up in finite time T, and

\begin{align*}
 T &\leq \frac{1}{\beta} \int_{M_0}^{+\infty} \frac{a(s)}{f(s)} \, ds = \frac{1}{3.1302} \int_{1}^{+\infty} \frac{1}{s^2} \, ds = 0.3195
\end{align*}

as well as

\begin{align*}
 u(x, t) &\leq H^{-1}(\beta(T - t)) = \frac{1}{3.1302(T - t)}.
\end{align*}
Acknowledgement. The author would like to thank the referees for their useful comments and suggestions.

References

Received April 2, 2005; revised August 1, 2005