Centers of algebras associated to higher-rank graphs

Jonathan H. Brown and Astrid an Huef

Abstract. The Kumjian–Pask algebras are path algebras associated to higher-rank graphs, and generalize the Leavitt path algebras. We study the center of a simple Kumjian–Pask algebra and characterize commutative Kumjian–Pask algebras.

1. Introduction

Let $E$ be a directed graph and let $F$ be a field. The Leavitt path algebras $L_F(E)$ of $E$ over $F$ were first introduced in [1] and [2], and have been widely studied since then. Many of the properties of a Leavitt path algebra can be inferred from properties of the graph, and for this reason provide a convenient way to construct examples of algebras with a particular set of attributes. The Leavitt path algebras are the algebraic analogues of the graph $C^*$-algebras associated to $E$. In [11], Tomforde constructed an analogous Leavitt path algebra $L_R(E)$ over a commutative ring $R$ with 1, and introduced more techniques from the graph $C^*$-algebra setting to study it.

In [3], Aranda Pino, Clark, an Huef, and Raeburn generalized Tomforde's construction and associated to a higher-rank graph $\Lambda$ a graded algebra $KP_R(\Lambda)$ called the Kumjian–Pask algebra. Example 7.1 of [3] shows that the class of Kumjian–Pask algebras over a field is strictly larger than the class of Leavitt path algebras over that field.

The center of a simple Leavitt path algebra has been studied in [4] and, for a nonsimple algebra, in [6]. In this paper we initiate the study of the center of a Kumjian–Pask algebra. In the motivational section (§3) we work over $\mathbb{C}$ and show how the embedding of $KP_{\mathbb{C}}(\Lambda)$ in the $C^*$-algebra of $\Lambda$ can be used together with the Dauns–Hofmann theorem to deduce that the center of a simple Kumjian–Pask algebra is either $\{0\}$ or isomorphic to $\mathbb{C}$. More generally, it follows from Theorem 4.7, that the center of a “basically simple” (see page 1394) Kumjian–Pask algebra $KP_R(\Lambda)$ is either zero or is isomorphic to the underlying ring $R$.

Mathematics Subject Classification (2010): 16D70.
Keywords: Kumjian–Pask algebra, Leavitt path algebra, higher-rank graph, $k$-graph, center.
Thus our Theorem 4.7 generalizes the analogous theorem for Leavitt path algebras over a field (Theorem 4.2 in [4]), but our proof techniques are very different and more informative. Indeed, the Kumjian–Pask algebra is basically simple if and only if the graph Λ is cofinal and aperiodic, and our proofs show explicitly which of these properties of the graph are needed to infer various properties of elements in the center.

In Proposition 5.3 we show that a Kumjian–Pask algebra of a k-graph Λ is commutative if and only it is a direct sum of rings of Laurent polynomials in k-indeterminates, and this holds if and only if Λ is a disjoint union of copies of the category \( \mathbb{N}^k \). This generalizes Proposition 2.7 of [4].

2. Preliminaries

We view \( \mathbb{N}^k \) as a category with one object and the composition given by addition. We call a countable category \( \Lambda = (\Lambda^0, \Lambda, r, s) \) a k-graph if there exists a functor \( d : \Lambda \to \mathbb{N}^k \), with the unique factorization property: given \( m, n \in \mathbb{N}^k \) and \( \lambda \in \Lambda \), if \( d(\lambda) = m + n \) then there exist unique \( \mu, \nu \in \Lambda \) such that \( d(\mu) = m, d(\nu) = n \) and \( \lambda = \mu \nu \). The functor \( d \) is called the degree functor and \( d(\lambda) \) is called the degree of \( \lambda \). Using the unique factorization property, we identify the set of objects \( \Lambda^0 \) with the set of morphisms of degree 0, that is, \( \Lambda^0 = \{ \lambda \in \Lambda : d(\lambda) = 0 \} \). Then, for \( n \in \mathbb{N}^k \), we set \( \Lambda^n := d^{-1}(n) \), and call \( \Lambda^n \) the paths of shape \( n \) in \( \Lambda \) and \( \Lambda^0 \) the vertices of \( \Lambda \). A path \( \lambda \in \Lambda \) is closed if \( r(\lambda) = s(\lambda) \).

For \( V, W \subseteq \Lambda^0 \), we set \( VA := \{ \lambda \in \Lambda : r(\lambda) \in V \} \), \( AW := \{ \lambda \in \Lambda : s(\lambda) \in W \} \) and \( VAW := VA \cap AW \); the sets \( VA^0, \Lambda^0 W \) and \( VA^0 W \) are defined similarly. For simplicity we write \( v\Lambda \) for \( \{ v \} \Lambda \).

A k-graph \( \Lambda \) is row-finite if \( |v\Lambda^n| < \infty \) for all \( v \in \Lambda^0 \) and \( n \in \mathbb{N}^k \) and has no sources if \( v\Lambda^n \neq \emptyset \) for all \( v \in \Lambda^0 \) and \( n \in \mathbb{N}^k \). We assume throughout that \( \Lambda \) is a row-finite k-graph with no sources.

Let \( m, n \in \mathbb{N}^k \). We write \( m \leq n \) if \( m_i \leq n_i \) for all \( 1 \leq i \leq k \) and write \( m \cap n \) for the \( k \)-tuple with \( i \)-th entry \( \max\{m_i, n_i\} \). Following Lemma 3.2 (iv) in [10], we say that a k-graph \( \Lambda \) is aperiodic if for every \( v \in \Lambda^0 \) and \( m \neq n \in \mathbb{N}^k \) there exists \( \lambda \in v\Lambda \) such that \( d(\lambda) \geq m \cap n \) and

\[
\lambda(m, m + d(\lambda) - (m \cap n)) \neq \lambda(n, n + d(\lambda) - (m \cap n)).
\]

This formulation of aperiodicity is equivalent to the original one from Definition 4.3 in [8] when \( \Lambda \) is a row-finite graph with no sources, but is often more convenient since it only involves finite paths.

Let \( \Omega_k := \{(m, n) \in \mathbb{N}^k : m \leq n \} \). As in Definition 2.1 of [8], we define an infinite path in \( \Lambda \) to be a degree-preserving functor \( x : \Omega_k \to \Lambda \), and denote the set of infinite paths by \( \Lambda^\infty \). As in Definition 4.1 of [8], we say \( \Lambda \) is cofinal if for every infinite path \( x \) and every vertex \( v \) there exists \( m \in \mathbb{N}^k \) such that \( v\Lambda x(m) \neq \emptyset \).

For each \( \lambda \in \Lambda \) we introduce a ghost path \( \lambda^* \); for \( v \in \Lambda^0 \) we take \( v^* = v \). We write \( G(\Lambda) \) for the set of ghost paths and \( G(\Lambda^\infty) \) if we exclude the vertices.
Let $R$ be a commutative ring with 1. Following Definition 3.1 of [3], a **Kumjian–Pask $\Lambda$-family** $(P, S)$ in an $R$-algebra $A$ consists of functions $P : \Lambda^0 \to A$ and $S : \Lambda^{\#_0} \cup G(\Lambda^{\#_0}) \to A$ such that

(KP1) $\{P_v : v \in \Lambda^0\}$ is a set of mutually orthogonal idempotents;

(KP2) for $\lambda, \mu \in \Lambda^{\#_0}$ with $r(\mu) = s(\lambda)$,

$$S_\lambda S_\mu = S_{\lambda\mu}, \quad P_{r(\lambda)} S_\lambda = S_\lambda P_s(\lambda),$$

$$P_{s(\lambda)} S_\lambda = S_{\lambda^*} = S_{\lambda^*} P_s(\lambda);$$

(KP3) for all $\lambda, \mu \in \Lambda^{\#_0}$ with $d(\lambda) = d(\mu)$, we have $S_{\lambda^*} S_\mu = \delta_{\lambda, \mu} P_s(\mu)$;

(KP4) for all $v \in \Lambda^0$ and $n \in \mathbb{N}^k \setminus \{0\}$, we have $P_v = \sum_{\lambda \in \Lambda^*} S_{\lambda^*} S_\lambda$.

By Theorem 3.4 of [3] there exists an $R$-algebra $KP_R(\Lambda)$, generated by a nonzero Kumjian–Pask $\Lambda$-family $(p, s)$, with the following universal property: whenever $(Q, T)$ is a Kumjian–Pask $\Lambda$-family in another $R$-algebra $A$, then there is a unique $R$-algebra homomorphism $\pi_{Q, T} : KP_R(\Lambda) \to A$ such that

$$\pi_{Q, T}(p_v) = Q_v, \quad \pi_{Q, T}(s_\lambda) = T_\lambda \text{ and } \pi_{Q, T}(s_{\lambda^*}) = T_{\lambda^*} \text{ for } v \in \Lambda^0 \text{ and } \lambda, \mu \in \Lambda^{\#_0}.$$ 

Also by Theorem 3.4 of [3], the subgroups

$$KP_R(\Lambda)_n := \text{span}_R \{ s_{\lambda^*} s_\mu : \lambda, \mu \in \Lambda \text{ and } d(\lambda) - d(\mu) = n \} \quad (n \in \mathbb{Z}^k)$$

give a $\mathbb{Z}^k$-grading of $KP_R(\Lambda)$. Let $S$ be a $\mathbb{Z}^k$-graded ring; then by the graded-uniqueness theorem ([3], Theorem 4.1), a graded homomorphism $\pi : KP_R(\Lambda) \to S$ such that $\pi(r_p) \neq 0$ for nonzero $r \in R$ is injective.

We will often write elements $a \in KP_R(\Lambda) \setminus \{0\}$ in the *normal form* of Lemma 4.2 in [3]: there exists $m \in \mathbb{N}^k$ and a finite $F \subseteq \Lambda \times \Lambda^m$ such that $a = \sum_{(\alpha, \beta) \in F} r_{\alpha, \beta} s_{\alpha} s_{\beta^*}$ for $r_{\alpha, \beta} \in R \setminus \{0\}$ and $s(\alpha) = s(\beta)$.

### 3. Motivation

When $A$ is a simple $C^*$-algebra (over $\mathbb{C}$, of course), it follows from the Dauns–Hofmann theorem (see, for example, Theorem A.34 in [9]) that the center $Z(A)$ of $A$ is isomorphic to $\mathbb{C}$ if $A$ has an identity and is $\{0\}$ otherwise. Let $\Lambda$ be a row-finite $k$-graph without sources. In this short section we deduce that the center of a simple Kumjian–Pask algebra $KP_\mathbb{C}(\Lambda)$ is either isomorphic to $\mathbb{C}$ or is $\{0\}$.

**Lemma 3.1.** Suppose $A$ is a simple $C^*$-algebra. If $A$ has an identity, then $z \mapsto z1_A$ is an isomorphism of $\mathbb{C}$ onto the center $Z(A)$ of $A$. If $A$ has no identity, then $Z(A) = \{0\}$.

**Proof.** Since $A$ is simple, the primitive ideal space $\text{Prim} A$ of $A$ is a singleton $\{\ast\}$, and $f \mapsto f(\ast)$ is an isomorphism of the algebra $C_0(\text{Prim} A)$ of continuous bounded functions from $\text{Prim} A$ onto $\mathbb{C}$. By the Dauns–Hofmann theorem, $C_0(\text{Prim} A)$ is isomorphic to the center $Z(M(A))$ of the multiplier algebra $M(A)$ of $A$. Putting the two isomorphisms together gives an isomorphism $z \mapsto z1_{M(A)}$ of $\mathbb{C}$ onto $Z(M(A))$. 

Now suppose that $A$ has an identity. Then $M(A) = A$, and it follows from the first paragraph that $Z(A)$ is isomorphic to $\mathbb{C}$.

Next suppose that $A$ does not have an identity. Let $a \in Z(A)$, and let $\{u_\lambda\}$ be an approximate identity in $A$ and let $m \in M(A)$. Then $ma = \lim(mu_\lambda)a = a\lim(mu_\lambda) = am$. Thus $Z(A) \subset Z(M(A))$. Now $Z(A) \subset Z(M(A)) \cap A = \{z1_{M(A)} : z \in \mathbb{C}\} \cap A = \{0\}.$ \hfill \Box

**Lemma 3.2.** Let $D$ be a dense subalgebra of a $C^*$-algebra $A$. Then $Z(A) \cap D = Z(D)$.

**Proof.** Trivially, $Z(A) \cap D \subset Z(D)$. To see the reverse inclusion, let $a \in Z(D)$. Let $b \in A$ and choose $\{d_\lambda\} \subset D$ such that $d_\lambda \rightarrow b$. Then $ba = \lim d_\lambda a = \lim a d_\lambda = ab$. Now $a \in Z(A) \cap Z(D) \subset Z(A) \cap D$, and hence $Z(A) \cap D = Z(D)$. \hfill \Box

By Theorem 6.1 of [3], $KP_\mathbb{C}(\Lambda)$ is simple if and only if $\Lambda$ is cofinal and aperiodic, so in the next corollary $KP_\mathbb{C}(\Lambda)$ is simple. Also, $KP_\mathbb{C}(\Lambda)$ has an identity if and only if $\Lambda^0$ is finite (see Lemma 4.6 below).

**Corollary 3.3.** Suppose that $\Lambda$ is a row-finite, cofinal, aperiodic $k$-graph with no sources. If $\Lambda^0$ is finite, then $z \mapsto z1_{KP_\mathbb{C}(\Lambda)}$ is an isomorphism of $\mathbb{C}$ onto the center $Z(KP_\mathbb{C}(\Lambda))$ of $KP_\mathbb{C}(\Lambda)$. If $\Lambda^0$ is infinite, then $KP_\mathbb{C}(\Lambda) = \{0\}$.

**Proof.** Let $(p, s)$ be a generating Kumjian–Pask $\Lambda$-family for $KP_\mathbb{C}(\Lambda)$ and $(q, t)$ a generating Cuntz–Krieger $\Lambda$-family for $C^*(\Lambda)$. Then $(q, t)$ is a Kumjian–Pask $\Lambda$-family in $C^*(\Lambda)$, and the universal property of $KP_\mathbb{C}(\Lambda)$ gives a $*$-homomorphism $\pi_{q,t} : KP_\mathbb{C}(\Lambda) \rightarrow C^*(\Lambda)$ which takes $s_\mu s_\nu^*$ to $t_\mu t_\nu^*$. It follows from the graded-uniqueness theorem that $\pi_{q,t}$ is a $*$-isomorphism onto a dense $*$-subalgebra of $C^*(\Lambda)$ (see Proposition 7.3 of [3]). Since $\Lambda$ is aperiodic and cofinal, $C^*(\Lambda)$ is simple by Theorem 3.1 of [10].

Now suppose that $\Lambda^0$ is finite. Then $KP_\mathbb{C}(\Lambda)$ has identity $1_{KP_\mathbb{C}(\Lambda)} = \sum_{v \in \Lambda^0} p_v$ and $C^*(\Lambda)$ has identity $1_{C^*(\Lambda)} = \sum_{v \in \Lambda^0} q_v$, and $\pi_{q,t}$ is unital. By Lemma 3.1, $Z(C^*(\Lambda)) = \{z1_{C^*(\Lambda)} : z \in \mathbb{C}\}$. By Lemma 3.2,

$$Z(\pi_{q,t}(KP_\mathbb{C}(\Lambda))) = Z(C^*(\Lambda)) \cap \pi_{q,t}(KP_\mathbb{C}(\Lambda)) = \{z1_{C^*(\Lambda)} : z \in \mathbb{C}\}. $$

Since $\pi_{q,t}$ is unital, $Z(KP_\mathbb{C}(\Lambda))$ is isomorphic to $\mathbb{C}$ as claimed.

Next suppose that $\Lambda^0$ is infinite. Then $Z(C^*(\Lambda)) = \{0\}$ and $Z(\pi_{q,t}(KP_\mathbb{C}(\Lambda))) = Z(C^*(\Lambda)) \cap \pi_{q,t}(KP_\mathbb{C}(\Lambda)) = \{0\}$, giving $KP_\mathbb{C}(\Lambda) = \{0\}$. \hfill \Box

### 4. The center of a Kumjian–Pask algebra

Our goal is to extend Corollary 3.3 to Kumjian–Pask algebras over arbitrary commutative rings. Throughout $R$ is a commutative ring with 1 and $\Lambda$ is a row-finite $k$-graph with no sources.

We will need Lemma 4.1 several times. For notational convenience, for $v \in \Lambda^0$, $s_v$ or $s_{v*}$ means $p_v$. In particular, taking $m = 0$ in Lemma 4.1 below shows the set $\{s_\alpha : \alpha \in \Lambda\}$ is linearly independent.
Lemma 4.1. Let \( m \in \mathbb{N}^k \). Then \( \{ s_\alpha s_\beta \cdot : s(\alpha) = s(\beta) \) and \( d(\beta) = m \} \) is a linearly independent subset of \( \text{KP}_R(\Lambda) \).

Proof. Let \( F \) be a finite subset of \( \{(\alpha, \beta) \in \Lambda \times \Lambda^m : s(\alpha) = s(\beta)\} \), and suppose that \( \sum_{(\alpha, \beta) \in F} r_{\alpha, \beta} s_\alpha s_\beta = 0 \). Fix \( (\sigma, \tau) \in F \). Since all the \( \beta \) have degree \( m \), using (KP3) twice we obtain

\[
0 = s_\sigma \left( \sum_{(\alpha, \beta) \in F} r_{\alpha, \beta} s_\alpha s_\beta \right) s_\tau = r_{\sigma, \tau} p_{s(\sigma)} + \sum_{(\alpha, \beta) \in F \setminus \{\sigma, \tau\}} r_{\alpha, \beta} s_\sigma s_\alpha s_\beta s_\tau
\]

(4.1) \( = r_{\sigma, \tau} p_{s(\sigma)} + \sum_{\alpha \neq \sigma} r_{\alpha, \tau} s_\sigma s_\alpha \).

If \( d(\sigma) = d(\alpha) \) and \( \sigma \neq \alpha \), then \( s_\sigma s_\alpha = 0 \) by (KP3). If \( d(\sigma) \neq d(\alpha) \) then, by Lemma 3.1 of [3], \( s_\sigma s_\alpha \) is a linear combination of \( s_\mu s_\nu \cdot \), where \( d(\mu) = d(\nu) = d(\alpha) - d(\sigma) \). It follows that the 0-graded component of (4.1) is \( r_{\sigma, \tau} p_{s(\sigma)} \). Thus \( 0 = r_{\sigma, \tau} p_{s(\sigma)} \). But \( p_{s(\sigma)} \neq 0 \), by Theorem 3.4 of [3]. Hence \( r_{\sigma, \tau} = 0 \). Since \( (\sigma, \tau) \in F \) was arbitrary, it follows that \( \{ s_\alpha s_\beta \cdot : s(\alpha) = s(\beta) \) and \( d(\beta) = m \} \) is linearly independent. \( \square \)

The next lemma describes properties of elements in the center of \( \text{KP}_R(\Lambda) \).

Lemma 4.2. Let \( a \in Z(\text{KP}_R(\Lambda)) \setminus \{0\} \) be in normal form \( \sum_{(\alpha, \beta) \in F} r_{\alpha, \beta} s_\alpha s_\beta \cdot \).

1. If \( (\sigma, \tau) \in F \), then \( r(\sigma) = r(\tau) \).
2. Let \( W = \{ v \in \Lambda^0 : \exists (\alpha, \beta) \in F \text{ with } v = r(\beta) \} \). If \( \mu \in AW \), then \( r(\mu) \in W \).
3. If \( (\sigma, \tau) \in F \), then there exists \( (\alpha, \beta) \in F \) such that \( r(\alpha) = r(\beta) = s(\sigma) = s(\tau) \).
4. There exists \( l \in \mathbb{N} \setminus \{0\} \) and \( \{(\alpha_i, \beta_i)\}_{i=1}^l \subset F \) such that \( \beta_1 \cdots \beta_l \) is a closed path in \( \Lambda \).

Proof. 1) Let \( (\sigma, \tau) \in F \). By Lemma 2.3 of [5], we have \( 0 \neq s_\sigma a s_\tau \). Since \( a \in Z(\text{KP}_R(\Lambda)) \),

\[
0 \neq s_\sigma p_{r(\sigma)} a p_{r(\sigma)} s_\tau = s_\sigma a p_{r(\sigma)} p_{r(\tau)} s_\tau = \delta_{r(\sigma), r(\tau)} s_\sigma a s_\tau.
\]

Hence \( r(\sigma) = r(\tau) \).

2) Aiming at a contradiction, assume there exists \( \mu \in AW \) such that \( r(\mu) \notin W \). Then \( p_{r(\mu)} = 0 \) for all \( v \in W \). Thus

\[
ap_{r(\mu)} = \sum_{(\alpha, \beta) \in F} r_{\alpha, \beta} s_\alpha s_\beta \cdot p_{r(\beta)} p_{r(\mu)} = 0.
\]

Since \( a \in Z(\text{KP}_R(\Lambda)) \) we get \( s_\mu a = a s_\mu = a p_{r(\mu)} s_\mu = 0 \). Since \( s(\mu) \in W \), there exists \( (\alpha', \beta') \in F \) with \( r(\beta') = s(\mu) \). Then \( r(\alpha') = s(\mu) \) also by 1). Thus \( S := \{(\alpha, \beta) \in F : s(\mu) = r(\alpha)\} \) is nonempty, and

\[
0 = s_\mu a = \sum_{(\alpha, \beta) \in S} r_{\alpha, \beta} s_\mu s_\alpha s_\beta \cdot.
\]
Lemma 2.3 in [5] we have \( r_{\alpha, \beta} = 0 \) for all \((\alpha, \beta) \in S\). This contradicts the given normal form for \( a \).

3. Let \((\sigma, \tau) \in F\). Then \( s(\sigma) = s(\tau)\) by definition of normal form. By Lemma 2.3 in [5] we have \( s_{\sigma}, a_{\sigma} \neq 0\). Since \( a \in Z(KP_R(\Lambda))\),

\[
0 \neq s_{\sigma}, a_{\sigma} = a_{s_{\sigma}} s_{\tau} = \sum_{(\alpha, \beta) \in F} r_{\alpha, \beta} s_{\alpha} s_{\beta} s_{\sigma} s_{\tau} = \sum_{r(\beta) = s(\sigma)} r_{\alpha, \beta} s_{\alpha} s_{(\sigma, \beta)} s_{\tau}.
\]

In particular, the set \( \{(\alpha, \beta) \in F : r(\beta) = s(\sigma)\} \) is nonempty. So there exists \((\alpha', \beta') \in F\) such that \( r(\beta') = s(\sigma)\). Since \( r(\alpha') = r(\beta')\) from 1, we are done.

4. Let \( M = |F| + 1\). Using (3) there exists a path \( \beta_1 \ldots \beta_M\) such that, for \( 1 \leq i \leq M\), there exists \( \alpha_i \in \Lambda\) with \((\alpha_i, \beta_i) \in F\). Since \( M > |F|\), there exists \( i < j \in \{1, \ldots, M\}\) such that \( \beta_i = \beta_j\). Then \( \beta_1 \ldots \beta_{j-1}\) is a closed path. \(\square\)

The next corollary follows from Lemma 4.2 (4).

Corollary 4.3. Let \( \Lambda \) be a row-finite \( k\)-graph with no sources and \( R \) a commutative ring with 1. If \( \Lambda \) has no closed paths then the center \( Z(KP_R(\Lambda)) = \{0\} \).

The next lemma describes the elements of the center of \( KP_R(\Lambda) \) when \( \Lambda \) is cofinal.

Lemma 4.4. Suppose that \( \Lambda \) is cofinal. Let \( a \in Z(KP_R(\Lambda)) \setminus \{0\} \) be in normal form \( \sum_{(\alpha, \beta) \in F} r_{\alpha, \beta} s_{\alpha} s_{\beta}\). Then \( \{v \in \Lambda^0 : \exists (\alpha, \beta) \in F \text{ with } v = r(\beta)\} = \Lambda^0\).

Proof. Write \( W := \{v \in \Lambda^0 : \exists (\alpha, \beta) \in F \text{ with } v = r(\beta)\}\). By definition of normal form, there exists \( m \in \mathbb{N}^k\) such that \( F \subset \Lambda \times \Lambda^m\). Let \( n = m \lor (1,1,\ldots,1)\).

By (KP4), for each \((\alpha, \beta) \in F\), we have \( s_{\alpha} s_{\beta} = \sum_{(\gamma, \eta) \in G} r_{\gamma, \eta} s_{\gamma} s_{\eta}\). By “reshaping” each pair of paths in \( F\) in this way, collecting like terms, and dropping those with zero coefficients, we see that there exist \( G \subset \Lambda \times \Lambda^m\) and \( r_{\gamma, \eta} \in R \setminus \{0\}\) such that \( a = \sum_{(\gamma, \eta) \in G} r_{\gamma, \eta} s_{\gamma} s_{\eta}\) is also in normal form. By construction, \( W' = \{v \in \Lambda^0 : \exists (\gamma, \eta) \in G \text{ with } v = r(\eta)\} \subset W\).

Let \( v \in \Lambda^0\). Using Lemma 4.2 (4), there exists \((\gamma_i, \eta_i)_{i=1}^l \subset G\) such that \( \eta_1 \ldots \eta_l\) is a closed path. Since \( d(\eta_i) \geq (1, \ldots, 1)\) for all \( i\), \( x := \eta_1 \ldots \eta_l\) is an infinite path. By cofinality, there exist \( q \in \mathbb{N}^k\) and \( v \in v\Lambda x(q)\). By the definition of \( x\), there exist \( q' \geq q\) and \( j\) such that \( x(q') = r(\eta_j)\). Let \( \lambda = x(q, q')\). Then \( v\lambda \in v\Lambda W'\). By Lemma 4.2 (2), \( v = r(\nu\lambda) \in W'\) as well. Thus \( W' = \Lambda^0\), and since \( W' \subset W\) we have \( W = \Lambda^0\). \(\square\)

The next lemma describes the elements of the center of \( KP_R(\Lambda) \) when \( \Lambda \) is aperiodic.

Lemma 4.5. Suppose that \( \Lambda \) is aperiodic and \( a \in Z(KP_R(\Lambda)) \setminus \{0\}\). Then there exist \( n \in \mathbb{N}^k\) and \( G \subset \Lambda^0\) such that \( a = \sum_{\alpha \in G} r_{\alpha} s_{\alpha} s_{\alpha^*}\) is in normal form.
The same argument as in Proposition 4.9 of [3] now shows that $\alpha, \beta$ such that $\alpha, \alpha \Lambda : (\text{is infinite. Write } 1 \text{ using (4.3). Thus})$

$$\sum_{a, b} \alpha, \beta \in \Lambda s(\sigma), \ d(\alpha), \ d(\beta) \leq m \quad \text{and} \quad \alpha \Lambda(0, d(\lambda)) = \beta \Lambda(0, d(\lambda)) \implies \alpha = \beta.$$  

The same argument as in Proposition 4.9 of [3] now shows that $s_{\alpha}, s_{\alpha}, a_s, s_{\alpha} \neq 0$. Since $a \in Z(KP_\Lambda(\Lambda))$, $0 \neq s_{\alpha}, s_{\alpha}, a_s, s_{\alpha} = as_{\alpha}, s_{\alpha}, s_{\alpha} = as_{\alpha}(\Lambda), s_{\alpha}$. Thus

$$0 \neq s(\sigma) \cdot s_{\alpha} \cdot s_{\alpha} = s_{\sigma}(d(\lambda), d(\lambda) + d(\sigma)) \cdot s_{\sigma}(0, d(\lambda)) \cdot s_{\tau}(0, d(\lambda)) \cdot s_{\tau}(d(\lambda), d(\lambda) + d(\tau)) = \delta_{\sigma, \tau} s_{\sigma}(d(\lambda), d(\lambda) + d(\sigma)) \cdot s_{\tau}(d(\lambda), d(\lambda) + d(\tau))$$

using (4.3). Thus $\sigma = \tau$.

Since $(\sigma, \tau) \in F$ was arbitrary we have $\alpha = \beta$ for all $(\alpha, \beta) \in F$. Let $G = \{ \alpha \in \Lambda : (\alpha, \alpha) \in F \}$ and write $r_{\alpha}$ for $r_{\alpha, \alpha}$. Note $G \subseteq \Lambda^n$ because $F \subseteq \Lambda \times \Lambda^n$. Thus $a = \sum_{a \in G} r_{\alpha} s_{\alpha} s_{\alpha}$ in normal form as desired. \qed

Our main theorem (Theorem 4.7) has two cases: $\Lambda^0$ finite and infinite.

**Lemma 4.6.** $KP_\Lambda(\Lambda)$ has an identity if and only if $\Lambda^0$ is finite.

**Proof.** If $\Lambda^0$ is finite, then $\sum_{a \in \Lambda^n} p_a$ is an identity for $KP_\Lambda(\Lambda)$. Conversely, assume that $KP_\Lambda(\Lambda)$ has an identity $1_{KP_\Lambda(\Lambda)}$. Aiming at a contradiction, suppose that $\Lambda^0$ is infinite. Write $1_{KP_\Lambda(\Lambda)}$ in normal form $\sum_{a, b} r_{\alpha, \beta} s_{\alpha} s_{\beta}$. Since $F$ is finite, so is $W := \{ v \in \Lambda^0 : \exists (\alpha, \beta) \in F \text{ with } v = r(\beta) \}$. Thus there exists $w \in \Lambda^0 \setminus W$. Now $p_w = 1_{KP_\Lambda(\Lambda)} p_w = \sum_{a, b} r_{\alpha, \beta} s_{\alpha} s_{\beta} p_w = 0$ because $w \neq r(\beta)$ for any of the $\beta$. This contradiction shows that $\Lambda^0$ must be finite. \qed

**Theorem 4.7.** Let $\Lambda$ be a row-finite k-graph with no sources and let $R$ be a commutative ring with 1.

1. Suppose $\Lambda$ is aperiodic and cofinal, and that $\Lambda^0$ is finite. Then $Z(KP_\Lambda(\Lambda)) = R1_{KP_\Lambda(\Lambda)}$.

2. Suppose that $\Lambda$ is cofinal and $\Lambda^0$ is infinite. Then $Z(KP_\Lambda(\Lambda)) = \{0\}$.

**Proof.**

1) Suppose $\Lambda$ is aperiodic and cofinal, and that $\Lambda^0$ is finite. Let $a \in Z(KP_\Lambda(\Lambda)) \setminus \{0\}$. Since $\Lambda$ is aperiodic, by Lemma 4.5 there exist $n \in \mathbb{N}^k$ and $G \subseteq \Lambda^n$ such that $a = \sum_{a \in G} r_{\alpha} s_{\alpha} s_{\alpha}$ is in normal form. Since $\Lambda$ is row-finite and $\Lambda^0$ is finite, $\Lambda^n$ is finite.

We claim that $G = \Lambda^n$. Aiming at a contradiction, suppose that $G \neq \Lambda^n$, and let $\lambda \in \Lambda^n \setminus G$. Then $s_{\lambda} = 0$ by (KP3). Since $a \in Z(KP_\Lambda(\Lambda))$,

$$0 = as_{\lambda} = \sum_{r(\alpha) = s(\lambda)} r_{\alpha} s_{\lambda} \neq s_{\lambda}.$$
Since $\Lambda$ is cofinal, $\{r(\alpha) : \alpha \in G\} = \Lambda^0$ by Lemma 4.4. Thus $S = \{\alpha \in G : r(\alpha) = s(\lambda)\} \neq \emptyset$. But $\{s_{\lambda_0}\alpha s_{\alpha^*} : \alpha \in S\}$ is linearly independent by Lemma 4.1. Thus $r_\alpha = 0$ for $\alpha \in S$, contradicting our choice of $\{r_\alpha\}$. It follows that $G = \Lambda^n$ as claimed, and that
\[
\alpha = \sum_{\alpha \in \Lambda^n} r_{\alpha_0}s_{\alpha}s_{\alpha^*}.
\]

Next we claim that $r_\mu = r_\nu$ for all $\mu, \nu \in \Lambda^n$. Let $\mu, \nu \in \Lambda^n$. Let $x \in s(\mu)\Lambda^\infty$. Since $\Lambda$ is cofinal, there exist $r, s \in \Lambda^n$.

Example 5.1. Let $d : \mathbb{N}^k \to \mathbb{N}^k$ be the identity map. Then $(\mathbb{N}^k, d)$ is a $k$-graph. By Example 7.1 in [3], $\text{KP}(\mathbb{N}^k)$ is commutative with identity $p_*$, and $\text{KP}_R(\mathbb{N}^k)$ is isomorphic to the ring of Laurent polynomials $R[x_1, x_1^{-1}, \ldots, x_k, x_k^{-1}]$ in $k$ commuting indeterminates.
Lemma 5.2. Suppose $\Lambda = \Lambda_1 \bigsqcup \Lambda_2$ is a disjoint union of two $k$-graphs. Then $\mathsf{KP}_R(\Lambda) = \mathsf{KP}_R(\Lambda_1) \oplus \mathsf{KP}_R(\Lambda_2)$.

Proof. For each $i \in \{1, 2\}$, let $(q^i, t^i)$ be the generating Kumjian–Pask $\Lambda_i$-family of $\mathsf{KP}_R(\Lambda_i)$, and let $(p, s)$ be the generating Kumjian–Pask $\Lambda$-family of $\mathsf{KP}_R(\Lambda)$. Restricting $(p, s)$ to $\Lambda_i$, gives a $\Lambda_i$-family in $\mathsf{KP}_R(\Lambda)$, and hence the universal property for $\mathsf{KP}_R(\Lambda_i)$ gives a homomorphism $\pi_i^p : \mathsf{KP}_R(\Lambda_i) \to \mathsf{KP}_R(\Lambda)$ such that $\pi_i^p \circ (q^i, t^i) = (p, s)$. Each $\pi_i^p$ is graded, and the graded uniqueness theorem (Theorem 4.1 in [3]) implies that $\pi_i^p$ is injective.

We now identify $\mathsf{KP}_R(\Lambda_i)$ with its image in $\mathsf{KP}_R(\Lambda)$. If $\mu \in \Lambda_1$ and $\lambda \in \Lambda_2$, then $s_\mu s_\lambda = s_\mu p_{r(\mu)} p_{r(\lambda)} s_\lambda = 0$. Similarly $s_\lambda s_\mu, s_\mu s_\lambda, s_\lambda s_\mu, s_\mu s_\lambda, s_\lambda s_\mu$ and $s_\mu s_\lambda$ are all zero. Thus $\mathsf{KP}_R(\Lambda_1) \mathsf{KP}_R(\Lambda_2) = 0 = \mathsf{KP}_R(\Lambda_2) \mathsf{KP}_R(\Lambda_1)$, and the internal direct sum $\mathsf{KP}_R(\Lambda_1) \oplus \mathsf{KP}_R(\Lambda_2)$ is a subalgebra of $\mathsf{KP}_R(\Lambda)$. Finally, $\mathsf{KP}_R(\Lambda_1) \oplus \mathsf{KP}_R(\Lambda_2)$ is all of $\mathsf{KP}_R(\Lambda)$ since the former contains all the generators of the latter. This gives the result. \(\square\

Proposition 5.3. Let $\Lambda$ be a row-finite $k$-graph with no sources and $R$ a commutative ring with 1. Then the following conditions are equivalent:

1. $\mathsf{KP}_R(\Lambda)$ is commutative;
2. $r = s$ on $\Lambda$ and $r|_{\Lambda^n}$ is injective;
3. $\Lambda \cong \bigsqcup_{v \in \Lambda^n} N_k$;
4. $\mathsf{KP}_R(\Lambda) \cong \bigoplus_{v \in \Lambda^n} R[x_1, x_1^{-1}, \ldots, x_k, x_k^{-1}]$.

Proof. 1) $\Rightarrow$ 2) Suppose that $\mathsf{KP}_R(\Lambda)$ is commutative. Aiming at a contradiction, suppose there exists $\lambda \in \Lambda$ such that $s(\lambda) \neq r(\lambda)$. Then $s_\lambda s_\lambda = s_\lambda s_\lambda^*$, and

$$p_{s(\lambda)} = p_{s(\lambda)}^2 = p_{s(\lambda)} s_\lambda s_\lambda = p_{s(\lambda)} s_\lambda s_\lambda^* = p_{s(\lambda)} p_{r(\lambda)} s_\lambda s_\lambda^* = 0.$$ 

But $p_v \neq 0$ for all $v \in \Lambda^0$ by Theorem 3.4 of [3]. This contradiction gives $r = s$.

Next, suppose $\lambda, \mu \in \Lambda^n$ with $\lambda \neq \mu$. Aiming at a contradiction, suppose that $r(\lambda) = r(\mu)$. Since $r = s$, we have $r(\lambda) = s(\lambda) = s(\mu) = r(\mu)$. Then $s_\lambda = p_{s(\lambda)} s_\lambda = p_{s(\lambda)} s_\mu s_\lambda = s_{\mu} s_\lambda s_\mu = 0$ by (KP3). Now $p_{s(\lambda)} = 0$, contradicting that $p_v \neq 0$ for all $v \in \Lambda^0$ by Theorem 3.4 of [3]. Thus $r$ is injective on $\Lambda^n$.

2) $\Rightarrow$ 3) Assume that $r = s$ on $\Lambda$ and that $r|_{\Lambda^n}$ is injective. Since $r = s$, the set $\{v Av \}_v \subseteq \Lambda^n$ is a partition of $\Lambda$. Since $r$ is injective on $\Lambda^n$, the subgraph $v\Lambda^c v$ has a single vertex $v$ and a single edge $f_v^c$. Thus $f_v^c \mapsto e_v$ defines a graph isomorphism $v\Lambda v \to N_k$. Hence $\Lambda \cong \bigsqcup_{v \in \Lambda^n} v\Lambda v \cong \bigsqcup_{v \in \Lambda^n} N_k$.

3) $\Rightarrow$ 4) Assume that $\Lambda \cong \bigsqcup_{v \in \Lambda^n} N_k$. By Lemma 5.2, $\mathsf{KP}_R(\Lambda)$ is isomorphic to $\bigoplus \mathsf{KP}_R(N_k)$, and by Example 5.1 each $\mathsf{KP}_R(N_k)$ is isomorphic to $R[x_1, x_1^{-1}, \ldots, x_k, x_k^{-1}]$.

4) $\Rightarrow$ 1) This follows since $\bigoplus R[x_1, x_1^{-1}, \ldots, x_k, x_k^{-1}]$ is commutative. \(\square\
References


Received October 25, 2012.

Jonathan H. Brown: Department of Mathematics, University of Dayton, 300 College Park, Dayton, OH 45469-2316, USA.

E-mail: jbrown10@udayton.edu

Astrid an Huef: Department of Mathematics and Statistics, University of Otago, Dunedin 9054, New Zealand.

E-mail: astrid@maths.otago.ac.nz