Divisibility of power sums and the generalized Erdős-Moser equation

Kieren MacMillan and Jonathan Sondow

For p a prime and k an integer, $v_p(k)$ denotes the highest exponent v such that $p^v | k$. (Here $a | b$ means a divides b.) For example, $v_2(2) = 0$ if and only if k is odd, and $v_2(40) = 3$.
For any power sum

\[S_n(m) := \sum_{j=1}^{m} j^n = 1^n + 2^n + \cdots + m^n \quad (m > 0, \ n > 0), \]

we determine \(v_2(S_n(m)) \). As motivation, we first give a classical extension of the fact that \(S_1(m) = m(m + 1)/2 \), a formula known to the ancient Greeks [1, Ch. 1] and famously [4] derived by Gauss at age seven to calculate the sum

\[1 + 2 + \cdots + 99 + 100 = (1 + 100) + (2 + 99) + \cdots + (50 + 51) = 5050. \]

Proposition 1. If \(n > 0 \) is odd and \(m > 0 \), then \(m(m + 1)/2 \) divides \(S_n(m) \).

The proof is a modification of Lengyel’s arguments in [5] and [6].

Proof of Proposition 1. Case 1: both \(n \) and \(m \) odd. Since \(m \) is odd we may group the terms of \(S_n(m) \) as follows, and as \(n \) is also odd we see by expanding the binomial that

\[S_n(m) = m^n + \sum_{j=1}^{(m-1)/2} (j^n + (m - j)^n) \implies m \mid S_n(m). \]

Similarly, grouping the terms in another way shows that

\[S_n(m) = \frac{1}{2} m \sum_{j=1}^{m} (j^n + ((m + 1) - j)^n) \implies \frac{m+1}{2} \mid S_n(m). \]

As \(m \) and \(m + 1 \) are relatively prime, it follows that \(m(m + 1)/2 \mid S_n(m) \).

Case 2: \(n \) odd and \(m \) even. Here

\[S_n(m) = \sum_{j=1}^{m/2} (j^n + (m + 1) - j)^n \implies (m + 1) \mid S_n(m) \]

and

\[S_n(m) = \frac{1}{2} m \sum_{j=0}^{m} (j^n + (m - j)^n) \implies \frac{m}{2} \mid S_n(m). \]

Thus \(m(m + 1)/2 \mid S_n(m) \) in this case, too. \(\square \)

Here is a paraphrase of Lengyel’s comments [5] on Proposition 1:

We note that Faulhaber had already known in 1631 (cf. [2]) that \(S_n(m) \) can be expressed as a polynomial in \(S_1(m) \) and \(S_2(m) \), although with fractional coefficients. In fact, \(S_n(m)/(2m+1) \) or \(S_n(m) \) can be written as a polynomial in \(m(m + 1) \) or \((m(m + 1))^2 \), if \(n \) is even or \(n \geq 3 \) is odd, respectively.
Proposition 1 implies that if n is odd, then

$$v_p(S_n(m)) \geq v_p(m(m + 1)/2),$$

for any prime p. When $p = 2$, Theorem 1 shows that the inequality is strict for odd $n > 1$.

Theorem 1. Given any positive integers m and n, the following divisibility formula holds:

$$v_2(S_n(m)) = \begin{cases} v_2(m(m + 1)/2) & \text{if } n = 1 \text{ or } n \text{ is even}, \\ 2v_2(m(m + 1)/2) & \text{if } n \geq 3 \text{ is odd}. \end{cases}$$ \hfill (1)

The elementary proof given in Section 3 uses a lemma proved by induction.

In the special case where m is a power of 2, formula (1) is due to Lengyel [5, Theorem 1]. His complicated proof, which uses Stirling numbers of the second kind and von Staudt’s theorem on Bernoulli numbers, is designed to be generalized. Indeed, for m a power of an odd prime p, Lengyel proves results [5, Theorems 3, 4, 5] towards a formula for $v_p(S_n(m))$.

In the next section, we apply formula (1) to a certain Diophantine equation.

2 Equations of Erdős-Moser type

As an application of Theorem 1, we give a simple proof of a special case of a result due to Moree. Before stating it, we discuss a conjecture made by Erdős and Moser [11] around 1953.

Conjecture 1 (Erdős-Moser). The only solution of the Diophantine equation

$$1^n + 2^n + \cdots + (m-1)^n = mn$$

is the trivial solution $1 + 2 = 3$.

Moser proved, among many other things, that *Conjecture 1 is true for odd exponents n.* (An alternate proof is given in [7, Corollary 1].) In 1987 Schinzel showed that in any solution, m is odd [10, p. 800]. For surveys of results on the problem, see [3, Section D7], [8], [9], and [10].

In 1996 Moree generalized Conjecture 1.

Conjecture 2 (Moree). The only solution of the generalized Erdős-Moser Diophantine equation

$$1^n + 2^n + \cdots + (m-1)^n = am^n$$

is the trivial solution $1 + 2 + \cdots + 2a = a(2a + 1)$.

Actually, Moree [8, p. 290] conjectured that equation (2) has no integer solution with $n > 1$. The equivalence to Conjecture 2 follows from the formula

$$1 + 2 + \cdots + k = \frac{1}{2}k(k + 1)$$

with $k = m - 1$.

Generalizing Moser’s result on Conjecture 1, Moree [8, Proposition 3] proved that Conjecture 2 is true for odd exponents \(n \). He also proved a generalization of Schinzel’s result.

Proposition 2 (Moree). If equation (2) holds, then \(m \) is odd.

In fact, Moree [8, Proposition 9] (see also [9]) showed more generally that if (2) holds and a prime \(p \) divides \(m \), then \(p - 1 \) does not divide \(n \). (The case \(p = 2 \) is Proposition 2.) His proof uses a congruence which he says [8, p. 283] can be derived from either the von Staudt-Clausen theorem, the theory of finite differences, or the theory of primitive roots.

We apply Theorem 1 to give an elementary proof of Proposition 2.

Proof of Proposition 2. If \(n = 1 \), then (2) and (3) show that \(m = 2a + 1 \) is odd.

If \(n > 1 \) and \(m \) is even, set \(d := v_2(m) = v_2(m(m+1)) \). Theorem 1 implies \(v_2(S_n(m)) \leq 2(d-1) \), and (2) yields \(S_n(m) = S_n(m-1) + mn = (a+1)m^n \). But then \(nd \leq v_2(S_n(m)) \leq 2(d-1) \), contradicting \(n > 1 \). Hence \(m \) is odd. \(\square \)

3 Proof of Theorem 1

The heart of the proof of the divisibility formula is the following lemma.

Lemma 1. Given any positive integers \(n, d, \) and \(q \) with \(q \) odd, we have

\[
v_2(S_n(2^d q)) = \begin{cases}
 d - 1 & \text{if } n = 1 \text{ or } n \text{ is even}, \\
 2(d-1) & \text{if } n \geq 3 \text{ is odd}.
\end{cases}
\]

(4)

Proof. We induct on \(d \). Since the power sum for \(S_n(2q) \) has exactly \(q \) odd terms, we have \(v_2(S_n(2q)) = 0 \), and so (4) holds for \(d = 1 \). By (3) with \(k = 2^d q \), it also holds for all \(d \geq 1 \) when \(n = 1 \). Now assume inductively that (4) is true for fixed \(d \geq 1 \).

Given a positive integer \(a \), we can write the power sum \(S_n(2a) \) as

\[
S_n(2a) = a^n + \sum_{j=1}^{a} ((a - j)^n + (a + j)^n) = a^n + 2 \sum_{j=1}^{a} \sum_{i=0}^{[n/2]} \binom{n}{2i} a^{n-2i} j^{2i}
\]

\[
= a^n + 2 \sum_{i=0}^{[n/2]} \binom{n}{2i} a^{n-2i} S_{2i}(a).
\]

If \(n \geq 2 \) is even, we extract the last term of the summation, set \(a = 2^d q \), and write the result as

\[
S_n(2^{d+1} q) = 2^{nd} q^n + 2^{d} S_n(2^d q) + 2^{2d+1} \sum_{i=0}^{(n-2)/2} \binom{n}{2i} 2^{d(n-2i-2)} q^{n-2i} S_{2i}(2^d q).
\]

By the induction hypothesis, the fraction is actually an odd integer. Since \(nd > d \), we conclude that \(v_2(S_n(2^{d+1} q)) = d \), as desired.
Similarly, if \(n \geq 3 \) is odd, then
\[
S_n(2^d + q) = 2^{nd} q^n + 2^{nd} nq S_{n-1}(2^d q) + 2^{2d+1} \sum_{i=0}^{(n-3)/2} \binom{n}{2i} 2^{d(n-2i-3)} q^{n-2i} S_{2i}(2^d q).
\]
Again by induction, the fraction is an odd integer. Since \(nd > 2d \), and \(n \) and \(q \) are odd, we see that \(v_2(S_n(2^d + q)) = 2d \), as required. This completes the proof of the lemma. \qed

Proof of Theorem 1. When \(m \) is even, write \(m = 2^d q \), where \(d \geq 1 \) and \(q \) is odd. Then
\[
v_2(m(m + 1)/2) = d - 1, \text{ and (4) implies (1).}
\]
If \(m \) is odd, set \(m + 1 = 2^d q \), with \(d \geq 1 \) and \(q \) odd. Again we have \(v_2(m(m + 1)/2) = d - 1 \). From (3) with \(k = m \) we get \(v_2(S_1(m)) = d - 1 \), so that (1) holds for \(n = 1 \). If \(n > 1 \), then \(nd > 2(d-1) \geq d - 1 \), and so (4) and the relations
\[
S_n(m) = S_n(m + 1) - (m + 1)^n \equiv S_n(m + 1) \pmod{2^{nd}}
\]
implies \(v_2(S_n(m)) = v_2(S_n(m + 1)) \) and, hence, (1). This proves the theorem. \qed

Acknowledgments. The authors are grateful to Tamas Lengyel and Pieter Moree for valuable comments and suggestions.

References

[9] Moree, P.: Moser’s mathematical work on the equation \(1^k + 2^k + \cdots + (m - 1)^k = m^k \). *Rocky Mountain J. Math.* (to appear); available at http://arxiv.org/abs/1011.2940

Kieren MacMillan
55 Lessard Avenue
Toronto, Ontario, Canada M6S 1X6
e-mail: kieren@alumni.rice.edu

Jonathan Sondow
209 West 97th Street
New York, NY 10025, USA
e-mail: jsondow@alumni.princeton.edu