
Abstract. — In this note, we consider blow-up for solutions of the SU(3) Toda system on a compact surface Σ. In particular, we give a complete proof of the compactness result stated by Jost, Lin and Wang in [11] and we extend it to the case of singularities. This is a necessary tool to find solutions through variational methods.

Key words: Toda system, compactness of solutions, blow-up analysis, mass quantization

Mathematics Subject Classification: 35B44, 35J47, 35J60

1. Introduction

Let (Σ, g) be a smooth, compact Riemannian surface. We consider the SU(3) Toda system on Σ:

\[-\Delta u_i = \sum_{j=1}^{2} a_{ij} \rho_j \left(\frac{V_j e^{u_j}}{\int_{\Sigma} V_j e^{u_j} \, dv_g} - \frac{1}{|\Sigma|} \right) - 4\pi \sum_{j=1}^{l} \zeta_{ij} \left(\delta_{pj} - \frac{1}{|\Sigma|} \right) \quad i = 1, 2 \tag{1} \]

with $\rho_i > 0$, $0 < V_i \in C^\infty(\Sigma)$, $\zeta_{ij} > -1$, $p_j \in \Sigma$ given and

\[A = (a_{ij}) = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \]

is the SU(3) Cartan matrix.

The Toda system is widely studied in both geometry (description of holomorphic curves in $\mathbb{C}P^N$, see e.g. [4, 6, 8]) and mathematical physics (non-abelian Chern-Simons vortices theory, see [10, 18, 19]).

In the regular case, Jost, Lin and Wang [11] proved the following important mass-quantization result for sequences of solutions of (1).

Theorem 1.1. Suppose $\zeta_{ij} = 0$ for any i, j and let $u_n = (u_{1,n}, u_{2,n})$ be a sequence of solutions of (1) with $\rho_i = \rho_{i,n}$. Define, for $x \in \Sigma$, $\sigma_1(x)$, $\sigma_2(x)$ as

\[\sigma_i(x) := \lim_{r \to 0} \lim_{n \to +\infty} \rho_{i,n} \frac{\int_{B_r(x)} V_i e^{u_{i,n}} \, dv_g}{\int_{\Sigma} V_i e^{u_{i,n}} \, dv_g}. \tag{2} \]

Presented by A. Ambrosetti
Then,

(3) \((\sigma_1(x), \sigma_2(x)) \in \{(0, 0), (0, 4\pi), (4\pi, 0), (4\pi, 8\pi), (8\pi, 4\pi), (8\pi, 8\pi)\}\).

In the same paper, the authors state that Theorem 1.1 immediately implies the following compactness result.

Theorem 1.2. Suppose \(x_{ij} = 0 \) for any \(i, j\) and let \(K_1, K_2\) be compact subsets of \(\mathbb{R}^+ \setminus 4\pi \mathbb{N}\). Then, the space of solutions of (1) with \(\rho_i \in K_i\) satisfying \(\int_\Sigma u_i \, dv_g = 0\) is compact in \(H^1(\Sigma)\).

Theorem 1.2 is a necessary step to find solutions of (1) by variational methods, as was done in [2, 16, 17].

Although Theorem 1.2 has been widely used, it was not explicitly proved how it follows from Theorem 1.1. Recently, in [13], a proof was given in the case \(\rho_1 < 8\pi\).

The purpose of this note is to give a complete proof of Theorem 1.2, extending it to the singular case as well. Actually, the proof follows quite directly from [7].

In the presence of singularities, that is when we allow the \(x_{ij}\) to be non-zero, it is convenient to write the system (1) in an equivalent form through the following change of variables:

\[
\begin{align*}
\tilde{u}_i &\rightarrow u_i + 4\pi \sum_{j=1}^{l} x_{ij} G_{p_j} \\
&\text{where } G_p \text{ solves } \begin{cases} -\Delta G_p = \delta_p - \frac{1}{|\Sigma|} \\
\int_{\Sigma} G_p \, dv_g = 0 \end{cases}.
\end{align*}
\]

The new \(u_i\)’s solve

(4) \(-\Delta u_i = \sum_{j=1}^{2} a_{ij} \rho_j \left(\frac{\tilde{V}_j e^{u_j}}{\int_{\Sigma} \tilde{V}_j e^{u_j} \, dv_g} - \frac{1}{|\Sigma|} \right) \quad i = 1, 2.\)

with

\[
\tilde{V}_i = \prod_{j=1}^{l} e^{-4\pi x_{ij} G_{p_j}} V_i \quad \Rightarrow \quad \tilde{V}_i \sim d(\cdot, p_j)^{2x_{ij}} \quad \text{near } p_j.
\]

In this case, we still have an analogue of Theorem 1.1 for the newly defined \(u_i\).

The finiteness of the local blow-up values has been proved in [14].

We will also show how this quantization result implies compactness of solutions outside a closed, zero-measure set of \(\mathbb{R}^+\).

Theorem 1.3. There exist two discrete subset \(\Lambda_1, \Lambda_2 \subset \mathbb{R}^+\), depending only on the \(x_{ij}\)’s, such that for any \(K_i \subset \mathbb{R}^+ \setminus \Lambda_i\), the space of solutions of (1) with \(\rho_i \in K_i\) satisfying \(\int_\Sigma u_i \, dv_g = 0\) is compact in \(H^1(\Sigma)\).

As in the regular case, Theorem 1.3 has an important application in the variational analysis of (1), see for instance [2, 1].
2. Proof of the main results

Let us consider a sequence u_n of solutions of (1) with $\rho_i = \rho_{i,n} \to \bar{\rho}_i$ and let us define

\begin{equation}
 w_{i,n} := u_{i,n} - \log \int_{\Sigma} \tilde{V}_i e^{w_{i,n}} dv_g + \log \rho_{i,n},
\end{equation}

which solves

\begin{equation}
\begin{cases}
 -\Delta w_{i,n} = \sum_{j=1}^{2} a_{ij} (\tilde{V}_j e^{w_{j,n}} - \rho_{j,n}) ; \\
 \int_{\Sigma} \tilde{V}_i e^{w_{i,n}} dv_g = \rho_{i,n}
\end{cases}
\end{equation}

moreover,

\[
 \sigma_i(x) = \lim_{r \to 0} \lim_{n \to +\infty} \int_{B_r(x)} \tilde{V}_i e^{w_{i,n}} dv_g.
\]

Let us denote by S_i the blow-up set of $w_{i,n}$:

\[
 S_i := \{ x \in \Sigma : \exists \{x_n\} \subseteq \Sigma, w_{i,n}(x_n) \to +\infty \}.
\]

For $w_{i,n}$ we have a concentration-compactness result from [15, 3]:

Theorem 2.1. Up to subsequences, one of the following alternatives holds:

- *(Compactness)* $w_{i,n}$ is bounded in $L^\infty(\Sigma)$ for $i = 1, 2$.
- *(Blow-up)* The blow-up set $S := S_1 \cup S_2$ is non-empty and finite and $\forall i \in \{1, 2\}$ either $w_{i,n}$ is bounded in $L^\infty_{loc}(\Sigma \setminus S)$ or $w_{i,n} \to -\infty$ locally uniformly in $\Sigma \setminus S$.

In addition, if $S_1 \setminus (S_1 \cap S_2) \neq \emptyset$, then $w_{i,n} \to -\infty$ locally uniformly in $\Sigma \setminus S$.

Moreover, denoting by μ_i the weak limit of the sequence of measures $\tilde{V}_i e^{w_{i,n}}$, one has

\[
 \mu_i = r_i + \sum_{x \in S_i} \sigma_i(x) \delta_x
\]

with $r_i \in L^1(\Sigma) \cap L^\infty_{loc}(\Sigma \setminus S_i)$ and $\sigma_i(x) \geq 2\pi \min\{1, 1 + \zeta_i(x)\}$ for $x \in S_i$, $i = 1, 2$, where

\[
 \zeta_i(x) = \begin{cases}
 0 & \text{if } x \neq p_j, j = 1, \ldots, l \\
 2x_{ij} & \text{if } x = p_j.
 \end{cases}
\]

Here we want to show that one has $r_i \equiv 0$ for at least one $i \in \{1, 2\}$. It may actually occur that only one of the r_i's is zero, as shown in [9]. Anyway, to prove Theorems 1.2 and 1.3 we only need one between r_1 and r_2 to be identically zero.
As a first thing, we can show that the profile near blow-up points resembles a combination of Green’s functions:

Lemma 2.1. \(w_{i,n} - \overline{w}_{i,n} \to \sum_{j=1}^{2} \sum_{x \in S_j} a_{ij} \sigma_j(x) G_x + s_i \) in \(L^\infty_{\text{loc}}(\Sigma \setminus S) \) and weakly in \(W^{1,q}(\Sigma) \) for any \(q \in (1, 2) \) with \(e^{s_i} \in L^p(\Sigma) \) \(\forall p \geq 1 \).

Proof. If \(q \in (1, 2) \)
\[
\int_{\Sigma} \nabla w_{i,n} \cdot \nabla \varphi \, dv_g \leq \|\Delta w_{i,n}\|_{L^1(\Sigma)} \|\varphi\|_{\infty} \leq C \|\varphi\|_{W^{1,q}(\Sigma)}
\]
\(\forall \varphi \in W^{1,q}(\Sigma) \) with \(\int_{\Sigma} \varphi = 0 \), hence one has \(\|\nabla w_{i,n}\|_{L^q(\Sigma)} \leq C \). In particular \(w_{i,n} - \overline{w}_{i,n} \) converges to a function \(w_i \in W^{1,q}(\Sigma) \) weakly in \(W^{1,q}(\Sigma) \) \(\forall q \in (1, 2) \) and, thanks to standard elliptic estimates, we get convergence in \(L^\infty_{\text{loc}}(\Sigma \setminus S) \).

The limit functions \(w_i \) are distributional solutions of
\[
-\Delta w_i = \sum_{j=1}^{2} a_{ij} \left(r_j + \sum_{x \in S_j} \sigma_j(x) \delta_x - \frac{\tilde{p}_j}{|\Sigma|} \right).
\]
In particular \(s_i := w_i - \sum_{j=1}^{2} \sum_{x \in S_j} a_{ij} \sigma_j(x) G_x \) solves
\[
-\Delta s_i = \sum_{j=1}^{2} a_{ij} \left(r_j + \frac{1}{|\Sigma|} \sum_{x \in S_j} \sigma_j(x) - \frac{\tilde{p}_j}{|\Sigma|} \right).
\]
Since \(-\Delta s_i \in L^1(\Sigma) \) we can exploit Remark 2 in [5] to prove that \(e^{s_i} \in L^p(\Sigma) \) \(\forall p \geq 1 \).

The following Lemma shows the main difference between the case of vanishing and non-vanishing residual.

Lemma 2.2.

- \(r_i \equiv 0 \Rightarrow \overline{w}_{i,n} \to -\infty \).
- \(r_i \not\equiv 0 \Rightarrow \overline{w}_{i,n} \) is bounded.

Proof. First of all, \(\overline{w}_{i,n} \) is bounded from above due to Jensen’s inequality.

Now, take any non-empty open set \(\Omega \subseteq \Sigma \setminus S \).
\[
\int_{\Omega} \tilde{V}_i e^{w_{i,n}} \, dv_g = e^{\overline{w}_{i,n}} \int_{\Omega} \tilde{V}_i e^{w_{i,n} - \overline{w}_{i,n}} \, dv_g
\]
and by Lemma 2.1
\[
\int_{\Omega} \tilde{V}_i e^{w_{i,n} - \overline{w}_{i,n}} \, dv_g \to_{n \to +\infty} \int_{\Omega} \tilde{V}_i e^{\sum_{j=1}^{2} \sum_{x \in S_j} a_{ij} \sigma_j(x) G_x + s_i} \, dv_g \in (0, +\infty).
\]
On the other hand,
\[
\int_{\Omega} \tilde{V}_i e^{u_{i,n}} \, dv_g \xrightarrow{n \to \infty} \mu_i(\Omega) = \int_{\Omega} r_i(x) \, dv_g(x).
\]

If \(r_i \equiv 0 \) one has \(\tilde{w}_{i,n} \to -\infty \). If instead \(r_i \not\equiv 0 \), choosing \(\Omega \) such that \(\int_{\Omega} r_i(x) \, dv_g > 0 \) we must have \(\tilde{w}_{i,n} \) necessarily bounded. \(\square \)

Remark 2.1. From the previous two lemmas, we can write \(r_i = \hat{V}_i e^{s_i} \), where
\[
\hat{V}_i := \tilde{V}_i e^{\sum_{j=1}^{p} \alpha_j(x) G_{x}}
\]
satisfies \(\hat{V}_i \sim d(\cdot, x) \frac{2a_i(x)}{x} \) around each \(x \in S_i \), provided \(r_i \not\equiv 0 \).

The key lemma is an extension of Chae-Ohtsuka-Suzuki [7] to the singular case. Basically, it gives necessary conditions on the \(\sigma_j \)'s to have non-vanishing residual.

Lemma 2.3. For both \(i = 1, 2 \) we have \(s_i \in W^{2,p}(\Sigma) \) for some \(p > 1 \). Moreover, if \(\sum_{j=1}^{2} a_{ij}\sigma_j(x_0) \geq 4\pi(1 + \alpha_i(x_0)) \) for some \(x_0 \in S_i \), then \(r_i \equiv 0 \).

Proof. If both \(r_1 \) and \(r_2 \) are identically zero, then also \(s_1 \) and \(s_2 \) are both identically zero, so there is nothing to prove.

Suppose now \(r_1 \not\equiv 0 \) and \(r_2 \equiv 0 \). In this case,
\[
\begin{cases}
-\Delta s_1 = 2(r_1 + \frac{1}{|\Sigma|} \sum_{x_0 \in S_1} \sigma_1(x_0) - \frac{p_i}{|\Sigma|}) \\
-\Delta s_2 = -(r_1 + \frac{1}{|\Sigma|} \sum_{x_0 \in S_1} \sigma_1(x_0) - \frac{p_i}{|\Sigma|})
\end{cases}
\]

Then, being \(G_s(y) \geq -C \) for all \(x, y \in \Sigma \) with \(x \neq y \), we get
\[
s_1(x) = \int_{\Sigma} G_s(y) 2r_1(y) \, dv_g(y) \geq -2C \int_{\Sigma} r_1 \, dv_g \geq -C'.
\]

Therefore, from the previous remark, around each \(x_0 \in S_1 \) we get
\[
r_1(y) \geq C d(x_0, y) \frac{2a_i(x_0)}{x} \frac{\sum_{j=1}^{2} a_{ij}(x_0)}{x},
\]
so being \(r_1 \in L^1(\Sigma) \), it must be \(\sum_{j=1}^{2} a_{ij}(x_0) < 4\pi(1 + \alpha_i(x_0)) \).

Moreover, being \(e^{q s_i} \in L^1(\Sigma) \) for any \(q \geq 1 \), from Holder’s inequality we get \(r_1 \in L^p(\Sigma) \) for some \(p > 1 \); therefore, standard estimates yield \(s_i \in W^{2,p}(\Sigma) \) for both \(i = 1, 2 \).

Consider now the case of both non-vanishing residuals, which means by Theorem 2.1 \(S_1 = S_2 = S \). In this case,
\[
-\Delta \left(\frac{2s_1 + s_2}{3} \right) = \left(r_1 + \frac{1}{|\Sigma|} \sum_{x_0 \in S_1} \sigma_1(x_0) - \bar{p}_1 \right)
\]
hence, arguing as before, \(\frac{2\sigma_1 + \sigma_2}{3} \geq -C \). Therefore, using the convexity of \(t \to e^t \) we get

\[
C \int_{\Sigma} \min \{ \hat{V}_1, \hat{V}_2 \} \, dv_g \leq \int_{\Sigma} \min \{ \hat{V}_1, \hat{V}_2 \} e^{\frac{2\sigma_1 + \sigma_2}{3}} \, dv_g \\
\leq \frac{2}{3} \int_{\Sigma} \hat{V}_1 e^{\sigma_1} \, dv_g + \frac{1}{3} \int_{\Sigma} \hat{V}_2 e^{\sigma_2} \, dv_g \\
= \frac{2}{3} \int_{\Sigma} r_1 \, dv_g + \frac{1}{3} \int_{\Sigma} r_2 \, dv_g < +\infty.
\]

Therefore, for any \(x_0 \in S \) there exists \(i \in \{1, 2\} \) such that \(\sum_{j=1}^{2} a_{ij} \sigma_j(x_0) < 4\pi(1 + \alpha_i(x_0)) \). Fix \(x_0 \) and suppose, without loss of generality, that this is true for \(i = 1 \). This implies that \(r_1 \in L^p(B_r(x_0)) \) for small \(r \), so for \(x \in B_{\frac{r}{2}}(x_0) \) we have

\[
s_2(x) = \int_{\Sigma} G_{x}(y) 2r_2(y) \, dv_g(y) - \int_{B_r(x_0)} G_{x}(y)r_1(y) \, dv_g(y) \\
- \int_{\Sigma \setminus B_r(x_0)} G_{x}(y)r_1(y) \, dv_g(y) \\
\geq -C - \sup_{z \in \Sigma} \| G_z \|_{L^{p'}(\Sigma)} \| r_1 \|_{L^p(B_r(x_0))} - \sup_{z \in B_{\frac{r}{2}}(x_0)} \| G_z \|_{L^\infty(\Sigma \setminus B_r(x_0))} \| r_1 \|_{L^1(\Sigma)} \\
\geq -C'.
\]

Therefore, arguing as before, we must have \(\sum_{j=1}^{2} a_{2j} \sigma_j(x_0) < 4\pi(1 + \alpha_2(x_0)) \) and \(r_2 \in L^p(B_{\frac{r}{2}}(x_0)) \). This implies \(-\Delta s_i \in L^p(B_{\frac{r}{2}}(x_0)) \) for both \(i \)'s. Hence, being \(x_0 \) arbitrary and \(-\Delta s_i \in L^p_{loc}(\Sigma \setminus S) \), by elliptic estimates the proof is complete. □

From Lemmas 2.1 and 2.3 we can deduce, through a Pohozaev identity, the following information about the local blow-up values. This was explicitly done in [12, 14].

Lemma 2.4. If \(x_0 \in S \) then

\[
\sigma_1^2(x_0) + \sigma_2^2(x_0) - \sigma_1(x_0)\sigma_2(x_0) = 4\pi(1 + \alpha_1(x_0))\sigma_1(x_0) + 4\pi(1 + \alpha_2(x_0))\sigma_2(x_0).
\]

Lemma 2.5. If \(x_0 \in S_1 \cap S_2 \) then there exists \(i \) such that \(\sum_{j=1}^{2} a_{ij} \sigma_j(x_0) \geq 4\pi(1 + \alpha_i(x_0)) \).

Proof. Suppose the statement is not true. Then, by Lemmas 2.3 and 2.4, we would have
which has no solution between positive $\sigma_1(x_0)$, $\sigma_2(x_0)$.

In fact, by multiplying the first equation by $\frac{\sigma_1(x_0)}{2}$ and the second by $\frac{\sigma_2(x_0)}{2}$ and summing, we get

$$\sigma_1^2(x_0) + \sigma_2^2(x_0) - \sigma_1(x_0)\sigma_2(x_0) < 2\pi(1 + \alpha_1(x_0))\sigma_1(x_0) + 2\pi(1 + \alpha_2(x_0))\sigma_2(x_0),$$

which contradicts the third equation.

The scenario is described by the picture.

Corollary 2.1. Let w_n be a sequence of solutions of (6). If $S \neq \emptyset$ then either $r_1 \equiv 0$ or $r_2 \equiv 0$. In particular there exists $i \in \{1, 2\}$ such that $\bar{p}_i = \sum_{x \in S_i} \sigma_i(x)$.

Figure 1. The algebraic conditions (7) satisfied by $\sigma_1(x_0)$, $\sigma_2(x_0)$.
Proof of Theorems 1.2 and 1.3. Let u_n be a sequence of solutions of (1) with $\rho_i = \rho_{i,n} \to \bar{\rho}_i$ and $\int_{\Sigma} u_{1,n} \, dv_g = \int_{\Sigma} u_{2,n} \, dv_g = 0$ and let $w_{i,n}$ be defined by (5).

If both $w_{1,n}$ and $w_{2,n}$ are bounded from above, then by standard estimates u_n is bounded in $W^{2,p}(\Sigma)$, hence is compact in $H^1(\Sigma)$.

Otherwise, from Corollary 2.1 we must have $\bar{\rho}_i = \sum_{x \in S_i} \sigma_i(x)$ for some $i \in \{1, 2\}$. In the regular case, from Theorem 1.1 follows that ρ_i must be an integer multiple of 4π, hence the proof of Theorem 1.2 is complete.

In the singular case, local blow-up values at regular points are still defined by (3), whereas for any $j = 1, \ldots, l$ there exists a finite Γ_j such that $(\sigma_1(p_j), \sigma_2(p_j)) \in \Gamma_j$. Therefore, it must hold

$$\rho_i \in \Lambda_i := \left\{ 4\pi k + \sum_{j=1}^{l} n_j \sigma_j, \ k \in \mathbb{N}, \ n_j \in \{0, 1\}, \ \sigma_j \in \Pi_i(\Gamma_j) \right\},$$

where Π_i is the projection on the i^{th} component; being Λ_i discrete we can also conclude the proof of Theorem 1.3.

Acknowledgments. The authors have been supported by the PRIN project Variational and perturbative aspects of nonlinear differential problems.

References

Received 15 October 2014, and in revised form 17 April 2015.

Luca Battaglia
S.I.S.S.A.
Via Bonomea 265, 34136 Trieste (Italy)
lbatta@sissa.it

Gabriele Mancini
S.I.S.S.A.
Via Bonomea 265, 34136 Trieste (Italy)
gmancini@sissa.it