An Explicit Formula for the Generic Number of Dormant Indigenous Bundles

by

Yasuhiro WAKABAYASHI

Abstract

A dormant indigenous bundle is an integrable \(P^1 \)-bundle on a proper hyperbolic curve of positive characteristic satisfying certain conditions. Dormant indigenous bundles were introduced and studied in \(p \)-adic Teichmüller theory developed by S. Mochizuki. Kirti Joshi proposed a conjecture concerning an explicit formula for the degree over the moduli stack of curves of the moduli stack classifying dormant indigenous bundles. In this paper, we give a proof for this conjecture.

2010 Mathematics Subject Classification: Primary 14H10; Secondary 14H60.
Keywords: \(p \)-adic Teichmüller theory, indigenous bundles, opers, \(p \)-curvature.

Contents

1 Preliminaries 386
2 Indigenous bundles 387
3 Dormant indigenous bundles 391
4 Quot-schemes 394
5 Computation via the Vafa–Intriligator formula 400
6 Relation to other results 404
References 408

Introduction

Let

\[\mathcal{M}_{g,zzz...}^{zzz...} \]

be the moduli stack classifying proper smooth curves of genus \(g > 1 \) over \(\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z} \) together with a dormant indigenous bundle (cf. the notation “zzz...”!). It

Communicated by S. Mochizuki. Received April 25, 2013. Revised August 16, 2013.

Y. Wakabayashi: Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan;
e-mail: wakabaya@kurims.kyoto-u.ac.jp

© 2014 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.
is known (cf. Theorem 3.3) that $\mathcal{M}_{g,\mathbb{F}_p}^{\text{Zzzy}}$ is represented by a smooth, geometrically connected Deligne–Mumford stack over \mathbb{F}_p of dimension $3g - 3$. Moreover, if we denote by $\mathcal{M}_{g,\mathbb{F}_p}$ the moduli stack classifying proper smooth curves of genus g over \mathbb{F}_p, then the natural projection $\mathcal{M}_{g,\mathbb{F}_p}^{\text{Zzzy}} \to \mathcal{M}_{g,\mathbb{F}_p}$ is finite, faithfully flat, and generically étale. The main theorem of the present paper, which was conjectured by Kirti Joshi, asserts that if $p > 2(g - 1)$, then the degree $\deg_{\mathcal{M}_{g,\mathbb{F}_p}^{\text{Zzzy}}} (\mathcal{M}_{g,\mathbb{F}_p})$ of $\mathcal{M}_{g,\mathbb{F}_p}^{\text{Zzzy}}$ over $\mathcal{M}_{g,\mathbb{F}_p}$ may be calculated as follows:

Theorem A (= Corollary 5.4).

$$\deg_{\mathcal{M}_{g,\mathbb{F}_p}} (\mathcal{M}_{g,\mathbb{F}_p}^{\text{Zzzy}}) = p^{g-1} \cdot \sum_{\theta=1}^{p-1} \frac{1}{\sin^{2g-2} \left(\frac{\pi \theta}{p} \right)}.$$

Here, recall that an indigenous bundle on a proper smooth curve X is a \mathbb{P}^1-bundle on X together with a connection which has certain properties (cf. Definition 2.1). The notion of an indigenous bundle was originally introduced and studied by Gunning in the context of compact hyperbolic Riemann surfaces (cf. [10, p. 69]). One may think of an indigenous bundle as an algebraic object encoding uniformization data for X. It may be interpreted as a projective structure, i.e., a maximal atlas consisting of coordinate charts on X such that the transition functions are expressed as Möbius transformations. Also, various equivalent mathematical objects, including certain kinds of differential operators (related to Schwarzian equations) of kernel functions, have been studied by many mathematicians.

In the present paper, we focus on indigenous bundles in **positive characteristic**. Just as in the case of the theory over \mathbb{C}, one may define the notion of an indigenous bundle and the moduli space classifying indigenous bundles. Various properties of such objects were first discussed in the context of the p-adic Teichmüller theory developed by S. Mochizuki (cf. [29], [30]). (From a different point of view, Y. Ihara developed, e.g. in [14], [15], a theory of Schwarzian equations in arithmetic context.) One of the key ingredients in the development of this theory is the study of the p-curvature of indigenous bundles in characteristic p. Recall that the p-curvature of a connection may be thought of as the obstruction to the compatibility of p-power structures that appear in certain associated spaces of infinitesimal (i.e., “Lie”) symmetries. We say that an indigenous bundle is **dormant** (cf. Definition 3.1) if its p-curvature vanishes identically. This condition implies, in particular, the existence of “sufficiently many” horizontal sections locally in the Zariski topology. Moreover, a dormant indigenous bundle corresponds, in a certain sense, to a certain type of rank 2 semistable bundle. Such bundles have been studied in a different context (cf. §6.1). This sort of phenomenon is peculiar to the theory of indigenous bundles in **positive characteristic**.
In this context, one natural question is the following:

Can one calculate explicitly the number of dormant indigenous bundles on a general curve?

Since (as discussed above) $\mathcal{M}_{g,p}^{\text{zar}}$ is finite, faithfully flat, and generically étale over $\mathcal{M}_{g,p}$, resolving this question reduces to the explicit computation of $\deg_{\mathcal{M}_{g,p}}(\mathcal{M}_{g,p}^{\text{zar}})$.

In the case of $g = 2$, S. Mochizuki [30, Chap. V, Corollary 3.7], H. Lange–C. Pauly [23, Theorem 2], and B. Osserman [33, Theorem 1.2] verified (by applying different methods) that

$$\deg_{\mathcal{M}_{2,p}}(\mathcal{M}_{2,p}^{\text{zar}}) = \frac{1}{24} \cdot (p^3 - p).$$

For arbitrary g, Kirti Joshi conjectured, with his amazing insight, an explicit description, as asserted in Theorem A, of the value $\deg_{\mathcal{M}_{g,p}}(\mathcal{M}_{g,p}^{\text{zar}})$. (In fact, Joshi has proposed, in a personal communication to the author, a somewhat more general conjecture. In the present paper, however, we shall restrict our attention to a certain special case.) The goal of the present paper is to verify the case $r = 2$ of this conjecture of Joshi.

Our discussion follows, to a substantial extent, the ideas in [18], as well as in personal communication of the author with Kirti Joshi. Indeed, some of our results are mild generalizations of the results of [18] on rank 2 opers to the case of families of curves over quite general base schemes. (Such relative formulations are necessary in the theory of the present paper, in order to consider deformations of various types of data.) For example, our Lemma 4.1 corresponds to [18, Theorem 3.1.6] (or [19, p. 627]; [35, Lemma 2.1]); Lemma 4.2 corresponds to [18, Theorem 5.4.1]; and Proposition 4.3 corresponds to [18, Proposition 5.4.2]. Moreover, the insight concerning the connection with the formula of Holla (cf. Theorem 5.1), which is a special case of the Vafa–Intriligator formula, is due to Joshi.

On the other hand, the new ideas introduced in the present paper may be summarized as follows. First, we verify the vanishing of obstructions to deformation to characteristic zero of a certain Quot-scheme that is related to $\mathcal{M}_{g,p}^{\text{zar}}$ (cf. Proposition 4.3, Lemma 4.4, and the discussion in the proof of Theorem 5.2). Then we relate $\deg_{\mathcal{M}_{g,p}}(\mathcal{M}_{g,p}^{\text{zar}})$ to the degree of the result of base-changing this Quot-scheme to \mathbb{C} by applying the formula of Holla (cf. Theorem 5.1, proof of Theorem 5.2) directly.

Finally, F. Liu and B. Osserman have shown (cf. [25, Theorem 2.1]) that $\deg_{\mathcal{M}_{g,p}}(\mathcal{M}_{g,p}^{\text{zar}})$ may expressed as a polynomial with respect to the characteristic of the base field. This was done by applying Ehrhart’s theory concerning the
cardinality of the set of lattice points inside a polytope. In §6, we shall discuss the relation between this result and our main theorem.

§1. Preliminaries

1.1. Throughout this paper, we fix an odd prime number p.

1.2. We shall denote by (Set) the category of (small) sets. If S is a Deligne–Mumford stack, then we shall denote by $(Sch)_S$ the category of schemes over S.

1.3. If S is a scheme and \mathcal{F} an \mathcal{O}_S-module, then we shall denote by \mathcal{F}^\vee its dual sheaf, i.e., $\mathcal{F}^\vee := \mathcal{H}om_{\mathcal{O}_S}(\mathcal{F}, \mathcal{O}_S)$. If $f : T \to S$ is a finite flat scheme over a connected scheme S, then we shall denote by $\deg_S(T)$ the degree of T over S, i.e., the rank of the locally free \mathcal{O}_S-module $f_*\mathcal{O}_T$.

1.4. If S is a scheme (or more generally, a Deligne–Mumford stack), then we define a curve over S to be a geometrically connected and flat (relative) scheme $f : X \to S$ of relative dimension 1. Denote by $\Omega_{X/S}$ the sheaf of 1-differentials of X over S, and by $\mathcal{T}_{X/S}$ the dual sheaf of $\Omega_{X/S}$ (i.e., the sheaf of derivations of X over S). We shall say that a proper smooth curve $f : X \to S$ is of genus g if the direct image $f_*\Omega_{X/S}$ is locally free of constant rank g.

1.5. Let S be a scheme over a field k, X a smooth scheme over S, G an algebraic group over k, and \mathfrak{g} the Lie algebra of G. Suppose that $\pi : \mathcal{E} \to X$ is a G-torsor over X. Then we may associate to π a short exact sequence

$$0 \to \text{ad}(\mathcal{E}) \to \tilde{T}_{\mathcal{E}/S} \xrightarrow{\alpha_{\mathcal{E}}} \mathcal{T}_{X/S} \to 0,$$

where $\text{ad}(\mathcal{E}) := \mathcal{E} \times^G \mathfrak{g}$ denotes the adjoint bundle associated to the G-torsor \mathcal{E}, and $\tilde{T}_{\mathcal{E}/S}$ denotes the subsheaf $(\pi_*\mathcal{T}_{\mathcal{E}/S})^G$ of G-invariant sections of $\pi_*\mathcal{T}_{\mathcal{E}/S}$. An S-connection on \mathcal{E} is a split injection $\nabla : \mathcal{T}_{X/S} \to \tilde{T}_{\mathcal{E}/S}$ of the above short exact sequence (i.e., $\alpha_{\mathcal{E}} \circ \nabla = \text{id}$). If X is of relative dimension 1 over S, then any such S-connection is necessarily integrable, i.e., compatible with the Lie bracket structures on $\mathcal{T}_{X/S}$ and $\tilde{T}_{\mathcal{E}/S} = (\pi_*\mathcal{T}_{\mathcal{E}/S})^G$.

Assume that G is a closed subgroup of GL_n for $n \geq 1$. Then the notion of an S-connection defined here may be identified with the usual definition of an S-connection on the associated vector bundle $\mathcal{E} \times^G (\mathcal{O}_S^\oplus n)$ (cf. [20, Lemma 2.2.3]; [21, p. 178, (1.0)]). In this situation, we shall not distinguish between these definitions.

If \mathcal{V} is a vector bundle on X equipped with an S-connection, then we denote by \mathcal{V}^∇ the sheaf of horizontal sections in \mathcal{V} (i.e., the kernel of the S-connection $\nabla : \mathcal{V} \to \mathcal{V} \otimes \Omega_{X/S}$).
1.6. Let S be a scheme of characteristic p (cf. §1.1) and $f : X \to S$ a scheme over S. The Frobenius twist of X over S is the base-change $X^{(1)}$ of the S-scheme X via the absolute Frobenius morphism $F_S : S \to S$ of S. Denote by $f^{(1)} : X^{(1)} \to S$ the structure morphism of the Frobenius twist of X over S. The relative Frobenius morphism of X over S is the unique morphism $F_{X/S} : X \to X^{(1)}$ over S that fits into a commutative diagram of the form

$$
\begin{array}{ccc}
X & \xrightarrow{F_{X/S}} & X^{(1)} \\
f \downarrow & & \downarrow f^{(1)} \\
S & \xrightarrow{id} & S
\end{array}
$$

where the upper (respectively, lower) composite is the absolute Frobenius morphism of X (respectively, S). If $f : X \to S$ is smooth, geometrically connected and of relative dimension n, then the relative Frobenius morphism $F_{X/S} : X \to X^{(1)}$ is finite and faithfully flat of degree p^n. In particular, the $\mathcal{O}_{X^{(1)}}$-module $F_{X/S}^* \mathcal{O}_{X}$ is locally free of rank p^n.

§2. Indigenous bundles

In this section, we recall the notion of an indigenous bundle on a curve. Much of the content of this section is implicit in [29].

First, we discuss the definition of an indigenous bundle on a curve (cf. [8, p. 104]; [29, Chap. I, Definition 2.2]). Fix a scheme S of characteristic p (cf. §1.1) and a proper smooth curve $f : X \to S$ of genus $g > 1$ (cf. §1.2).

Definition 2.1. (i) Let $P^\otimes = (P, \nabla)$ be a pair consisting of a PGL_2-torsor P over X and an (integrable) S-connection ∇ on P. We shall say that P^\otimes is an indigenous bundle on X/S if there exists a globally defined section σ of the associated \mathbb{P}^1-bundle $\mathbb{P}^1_P := P \times_{\text{PGL}_2} \mathbb{P}^1$ which has a nowhere vanishing derivative with respect to the connection ∇. We shall refer to σ as the Hodge section of P^\otimes (cf. Remark 2.1.1(i)).

(ii) Let $P_1^\otimes = (P_1, \nabla_1)$ and $P_2^\otimes = (P_2, \nabla_2)$ be indigenous bundles on X/S. An isomorphism from P_1^\otimes to P_2^\otimes is an isomorphism $P_1 \cong P_2$ of PGL_2-torsors over X that is compatible with the respective connections (cf. Remark 2.1.1(ii)).

Remark 2.1.1. Let $P^\otimes = (P, \nabla)$ be an indigenous bundle on X/S.

(i) The Hodge section σ of P^\otimes is uniquely determined by the condition that σ have a nowhere vanishing derivative with respect to ∇ (cf. [29, Chap. I, Proposition 2.4]).
(ii) The underlying PGL_2-torsors of any two indigenous bundles on X/S are isomorphic (cf. [29, Chap. I, Proposition 2.5]). If there is a spin structure $L = (\mathcal{L}, \eta_L)$ on X/S (cf. Definition 2.2), then the \mathbb{P}^1-bundle \mathbb{P}^1_p is isomorphic to the projectivization of an L-bundle \mathcal{F} as in Definition 2.3(i), and the subbundle $\mathcal{L} \subseteq \mathcal{F}$ induces the Hodge section σ (cf. Proposition 2.4).

(iii) If two indigenous bundles on X/S are isomorphic, then the isomorphism between them is unique. In particular, an indigenous bundle has no nontrivial automorphisms (cf. §1.1; [29, Chap. I, Theorem 2.8]).

Next, we consider a certain class of rank 2 vector bundles with an integrable connection (cf. Definition 2.3(ii)) associated to a specific choice of a spin structure (cf. Definition 2.2). In particular, we show (cf. Proposition 2.4) that such objects correspond to indigenous bundles bijectively. We recall from, e.g., [17, p. 25] the following:

Definition 2.2. A spin structure on X/S is a pair
\[L := (\mathcal{L}, \eta_L) \]
consisting of an invertible sheaf \mathcal{L} on X and an isomorphism $\eta_L : \Omega_{X/S} \cong \mathcal{L} \otimes^L 2$. A spin curve is a pair
\[(Y/S, \mathbb{L}) \]
consisting of a proper smooth curve Y/S of genus $g > 1$ and a spin structure \mathbb{L} on Y/S.

Remark 2.2.1. (i) X/S necessarily admits, at least étale locally on S, a spin structure. Indeed, let us denote by $\text{Pic}^d_{X/S}$ the relative Picard scheme of X/S classifying the set (equivalence classes, relative to the equivalence relation determined by tensoring with a line bundle pulled back from the base S, of) degree d invertible sheaves on X. Then the morphism
\[\text{Pic}^{g-1}_{X/S} \to \text{Pic}^{2g-2}_{X/S} : [\mathcal{L}] \mapsto [\mathcal{L} \otimes^L 2] \]
given by multiplication by 2 is finite and étale (cf. §1.1). Thus, the S-rational point of $\text{Pic}^{2g-2}_{X/S}$ classifying the equivalence class $[\Omega_{X/S}]$ lifts, étale locally, to a point of $\text{Pic}^{g-1}_{X/S}$.

(ii) Let $L = (\mathcal{L}, \eta_L)$ be a spin structure on X/S and T an S-scheme. Then by pulling back the structures \mathcal{L}, η_L via the natural projection $X \times_S T \to X$, we obtain a spin structure on the curve $X \times_S T$ over T, which, by abuse of notation, we shall also denote by \mathbb{L}.

In the following, let us fix a spin structure $L = (\mathcal{L}, \eta_L)$ on X/S.

\[388 \]
Y. Wakabayashi
Definition 2.3. (i) An L-bundle on X/S is an extension, in the category of O_X-modules,
\[0 \to L \to F \to L^\vee \to 0 \]
of L^\vee by L whose restriction to each fiber over S is nontrivial (cf. Remark 2.3.1(i)). We shall regard the underlying rank 2 vector bundle associated to an L-bundle as being equipped with a 2-step decreasing filtration $\{F^i\}_{i=0}^2$, defined as follows:
\[F^2 := 0 \subseteq F^1 := \text{Im}(L) \subseteq F^0 := F. \]
(ii) An L-indigenous vector bundle on X/S is a triple $F^{\otimes} := (F, \nabla, \{F^1_i\}^2_{i=0})$ consisting of an L-bundle $(F, \{F^1_i\}^2_{i=0})$ on X/S and an S-connection $\nabla : F \to F \otimes \Omega_{X/S}$ (cf. §1.5) satisfying the following two conditions:
(1) If we equip O_X with the trivial connection and the determinant bundle $\text{det}(F)$ with the natural connection induced by ∇, then the natural composite isomorphism $\text{det}(F) \sim \to L \otimes L^\vee \sim \to O_X$ is horizontal.
(2) The composite
\[L \nabla|_L F \otimes \Omega_{X/S} \to L^\vee \otimes \Omega_{X/S} \]
of the restriction $\nabla|_L$ of ∇ to L (\subseteq F) and the morphism $F \otimes \Omega_{X/S} \to L^\vee \otimes \Omega_{X/S}$ induced by the quotient $F \to L^\vee$ is an isomorphism. This composite is often referred to as the Kodaira–Spencer map.
(iii) Let $F^{\otimes}_1 = (F_1, \nabla_1, \{F^1_1\}^2_{i=0})$ and $F^{\otimes}_2 = (F_2, \nabla_2, \{F^1_2\}^2_{i=0})$ be L-indigenous bundles on X/S. Then an isomorphism from F^{\otimes}_1 to F^{\otimes}_2 is an isomorphism $F_1 \sim \to F_2$ of O_X-modules that is compatible with the respective connections and filtrations and induces the identity morphism of O_X (relative to the respective natural composite isomorphisms discussed in (i)) upon taking determinants.

Remark 2.3.1. (i) X/S always admits an L-bundle. Moreover, any two L-bundles on X/S are isomorphic Zariski locally on S. Indeed, since $f : X \to S$ is of relative dimension 1, the Leray–Serre spectral sequence $H^p(S, \mathbb{R}^q f_* \Omega_{X/S}) \Rightarrow H^{p+q}(X, f_* \Omega_{X/S})$ associated to the morphism $f : X \to S$ yields an exact sequence
\[0 \to H^1(S, f_* \Omega_{X/S}) \to \text{Ext}^1(L^\vee, L) \to H^0(S, \mathbb{R}^1 f_* \Omega_{X/S}) \to H^2(S, f_* \Omega_{X/S}), \]
where the set $\text{Ext}^1(\mathcal{L}^\vee, \mathcal{L}) \cong H^1(X, \Omega_{X/S})$ corresponds to the set of extension classes of \mathcal{L}^\vee by \mathcal{L}. In particular, if S is an affine scheme, then the set of nontrivial extension classes corresponds bijectively to the set $H^0(S, \mathcal{O}_S) \setminus \{0\} \subseteq H^0(S, \mathcal{O}_S) \cong H^0(S, \mathbb{R}^1 f_* \Omega_{X/S})$.

Also, since the degree of the line bundle \mathcal{L} on each fiber over S is positive it follows immediately that the structure of \mathcal{L}-bundle on the underlying rank 2 vector bundle of an \mathbb{L}-bundle is unique.

(ii) If two \mathbb{L}-indigenous vector bundles on X/S are isomorphic, then the isomorphism between them is unique up to multiplication by an element of $\Gamma(S, \mathcal{O}_S)$ whose square is equal to 1 (i.e., ± 1 if S is connected). In particular, the group of automorphisms of an \mathbb{L}-indigenous vector bundle may be identified with the group of elements of $\Gamma(S, \mathcal{O}_S)$ whose square is 1. (Indeed, these facts follow from an argument similar to that in [29, Chap. I, proof of Theorem 2.8].)

(iii) One may define, in an evident fashion, the pull-back of an \mathbb{L}-indigenous vector bundle on X/S with respect to a morphism of schemes $S' \to S$; this notion of pull-back is compatible, in the evident sense, with composites $S'' \to S' \to S$.

Let $\mathcal{F}^\otimes = (\mathcal{F}, \nabla, \{\mathcal{F}^1\}_{i=0}^2)$ be an \mathbb{L}-indigenous vector bundle on X/S. By a change of structure group via the natural map $\text{SL}_2 \to \text{PGL}_2$, one may construct, from (\mathcal{F}, ∇), a PGL$_2$-torsor $\mathcal{P}_\mathcal{F}$ together with an S-connection $\nabla_{\mathcal{P}_\mathcal{F}}$. Moreover, the subbundle $\mathcal{L} (\subseteq \mathcal{F})$ determines a globally defined section σ of the associated \mathbb{P}^1-bundle $\mathbb{P}^1_{\mathcal{P}_\mathcal{F}} := \mathcal{P}_\mathcal{F} \times_{\text{PGL}_2} \mathbb{P}^1$ on X. One may verify easily from the condition given in Definition 2.3(ii)(2) that $\mathcal{P}^\otimes := (\mathcal{P}_\mathcal{F}, \nabla_{\mathcal{P}_\mathcal{F}})$ is an indigenous bundle on X/S, whose Hodge section is given by σ (cf. Definition 2.1(i)). Then (cf. [29, Chap. I, Proposition 2.6]) we have:

Proposition 2.4. If $(X/S, \mathbb{L})$ is a spin curve, then the assignment $\mathcal{F}^\otimes \mapsto \mathcal{P}^\otimes$ discussed above determines a functor from the groupoid of \mathbb{L}-indigenous vector bundles on X/S to the groupoid of indigenous bundles on X/S. Moreover, this functor induces a bijective correspondence between the set of isomorphism classes of \mathbb{L}-indigenous vector bundles on X/S (cf. Remark 2.3.1(ii)) and the set of isomorphism classes of indigenous bundles on X/S (cf. Remark 2.1.1(iii)). Finally, this correspondence is functorial with respect to S (cf. Remark 2.3.1(iii)).

Proof. The construction of a functor as asserted is routine. The stated (bijective) correspondence follows from [29, Chap. I, Proposition 2.6]. (Here, we note that Proposition 2.6 in [29] states only that an indigenous bundle determines an *indigenous vector bundle* (cf. [29, Chap. I, Definition 2.2]) up to tensor product with a line bundle together with a connection whose square is trivial. But one may eliminate that indeterminacy by the condition that the underlying vector bundle
be an L-bundle.\) The functoriality with respect to \(S\) follows immediately from the

construction of the assignment \(F^\otimes \mapsto P^\otimes\) (cf. Remark 2.3.1(iii)). \(\square\)

§3. Dormant indigenous bundles

In this section, we recall the notion of a dormant indigenous bundle and discuss

various related moduli functors.

Let \(S\) be a scheme over a field \(k\) of characteristic \(p\) (cf. §1.1) and \(f : X \to S\)
a proper smooth curve of genus \(g > 1\). Denote by \(X^{(1)}\) the Frobenius twist of \(X\)
over \(S\) and \(F_{X/S} : X \to X^{(1)}\) the relative Frobenius morphism of \(X\) over \(S\) (cf.

§1.6).

First, we recall the definition of the \(p\)-curvature map. Let us fix an algebraic

group \(G\) over \(k\) and denote by \(g\) the Lie algebra of \(G\). Let \((\pi : E \to X, \nabla : T_{X/S} \to \tilde{T}_{E/S})\)
a pair consisting of a \(G\)-torsor \(E\) over \(X\) and an \(S\)-connection \(\nabla\) on \(E\), i.e., a section of the natural quotient \(\alpha_E : (\pi^* T_E/S)^G = : \tilde{T}_E \to T_{X/S}\) (cf.

§1.5). If \(\partial\) is a derivation corresponding to a local section \(\partial\) of \(T_{X/S}\) (respectively,

\(\tilde{T}_{E/S}\)), then we shall denote by \(\partial^{[p]}\) the \(p\)-th iterate of \(\partial\), which is

also a derivation corresponding to a local section of \(T_{X/S}\) (respectively, \(\tilde{T}_E\)). Since

\(\alpha_E(\partial^{[p]}) = (\alpha_E(\partial))^{[p]}\) for any local section of \(T_{X/S}\), the image of the \(p\)-linear map

from \(T_{X/S}\) to \(\tilde{T}_{E/S}\) defined by assigning \(\partial \mapsto \nabla(\partial^{[p]}) - (\nabla(\partial))^{[p]}\) is contained in

\(\text{ad}(E) =: \ker(\alpha_E)\). Thus, we obtain an \(O_X\)-linear morphism

\[
\psi(E, \nabla) : T_{X/S}^{\otimes p} \to \text{ad}(E)
\]
determined by assigning

\[
\partial^{\otimes p} \mapsto \nabla(\partial^{[p]}) - (\nabla(\partial))^{[p]}.
\]

We shall refer to \(\psi(E, \nabla)\) as the \(p\)-curvature map of \((E, \nabla)\).

If \(U\) is a vector bundle on \(X^{(1)}\), then we may define an \(S\)-connection (cf.

§1.5; [21, p. 178, (1.0)])

\[
\nabla^\text{can}_{U} : F_{X/S}^* U \to F_{X/S}^* U \otimes \Omega_{X/S}
\]
on the pull-back \(F_{X/S}^* U\) of \(U\), which is uniquely determined by the condition that the

sections of the subsheaf \(F_{X/S}^{-1}(U)\) be horizontal. It is easily verified that the \(p\)-curvature map of \((F_{X/S}^* U, \nabla_{U}^\text{can})\) vanishes identically on \(X\) (cf. Remark 3.0.1(i)).

Remark 3.0.1. Assume that \(G\) is a closed subgroup of \(\text{GL}_n\) for \(n \geq 1\) (cf. §1.5).

Let \((E, \nabla)\) be a pair consisting of a \(G\)-torsor \(E\) over \(X\) and an \(S\)-connection \(\nabla\) on \(E\).

Write \(V\) for the vector bundle on \(X\) associated to \(E\), and \(\nabla_V\) for the \(S\)-connection

on \(V\) induced by \(\nabla\).
(i) The p-curvature map $\psi(E,\nabla)$ of (E,∇) is compatible, in the evident sense, with the classical p-curvature map (cf., e.g., [21, p. 190]) of (V,∇_V). In this situation, we shall not distinguish between these definitions of the p-curvature map.

(ii) The sheaf V^∇ of horizontal sections in V may be considered as an $O_X^{(1)}$-module via the underlying homeomorphism of the relative Frobenius morphism $F_{X/S} : X \to X^{(1)}$. Thus, we have a natural horizontal morphism

$$\nu_{(V,\nabla_V)} : (F_{X/S}^*V^\nabla,\nabla_{\text{can}}^{V^\nabla}) \to (V,\nabla_V)$$

of O_X-modules. It is known (cf. [21, Theorem 5.1]) that the p-curvature map of (V,∇_V) vanishes identically on X if and only if $\nu_{(V,\nabla_V)}$ is an isomorphism. In particular, the assignment $V \mapsto (F_{X/S}^*V^\nabla,\nabla_{\text{can}}^{V^\nabla})$ determines an equivalence, which is compatible with the formation of tensor products (hence also symmetric and exterior products), between the category of vector bundles on $X^{(1)}$ and the category of vector bundles on X equipped with an S-connection whose p-curvature vanishes identically.

Definition 3.1. We shall say that an indigenous bundle $P^\psi = (P,\nabla)$ (respectively, an L-indigenous vector bundle $F^\psi = (F,\nabla,\{F_i\}_{i=0}^2)$) on X/S is dormant if the p-curvature map of (P,∇) (respectively, (F,∇)) vanishes identically on X.

Next, we shall define a certain class of dormant indigenous bundles, which we shall refer to as dormant ordinary. Let $P^\psi = (P,\nabla)$ be a dormant indigenous bundle on X/S. Denote by

$$\text{ad}(P^\psi) := (\text{ad}(P),\nabla_{\text{ad}})$$

the pair consisting of the adjoint bundle $\text{ad}(P)$ associated to P and the S-connection ∇_{ad} on $\text{ad}(P)$ naturally induced by ∇. Let us consider the first relative de Rham cohomology sheaf $\mathcal{H}^1_{\text{dR}}(\text{ad}(P^\psi))$, that is,

$$\mathcal{H}^1_{\text{dR}}(\text{ad}(P^\psi)) := R^1f_*(\text{ad}(P)^\psi \otimes \Omega^*_{X/S})$$

where $\text{ad}(P) \otimes \Omega^*_{X/S}$ denotes the complex

$$\cdots \to 0 \to \text{ad}(P) \xrightarrow{\nabla_{\text{ad}}} \text{ad}(P) \otimes \Omega_{X/S} \to 0 \to \cdots$$

concentrated in degrees 0 and 1. Recall (cf. [29, Chap. I, Theorem 2.8]) that there is a natural exact sequence

$$0 \to f_*(\Omega^{\psi}_{X/S}) \to \mathcal{H}^1_{\text{dR}}(\text{ad}(P^\psi)) \to R^1f_*(\mathcal{T}_{X/S}) \to 0.$$
On the other hand, the natural inclusion \(\text{ad}(\mathcal{P})^\nabla \hookrightarrow \text{ad}(\mathcal{P}) \) of the subsheaf of horizontal sections induces a morphism of \(\mathcal{O}_S \)-modules
\[
\mathbb{R}^1 f_*(\text{ad}(\mathcal{P})^\nabla) \to H^1_{\text{dR}}(\text{ad}(\mathcal{P}^\circ)).
\]
Thus, by composing this morphism with the right-hand surjection in the above short exact sequence, we obtain a morphism
\[
\gamma_{\mathcal{P}^\circ} : \mathbb{R}^1 f_*(\text{ad}(\mathcal{P})^\nabla) \to \mathbb{R}^1 f_*(\mathcal{T}_{X/S})
\]
of \(\mathcal{O}_S \)-modules.

Definition 3.2. We shall say that an indigenous bundle \(\mathcal{P}^\circ \) is *dormant ordinary* if \(\mathcal{P}^\circ \) is dormant and \(\gamma_{\mathcal{P}^\circ} \) is an isomorphism.

Next, let us introduce notations for various moduli functors classifying the objects discussed above. Let \(\mathcal{M}_{g,p} \) be the moduli stack of proper smooth curves of genus \(g > 1 \) over \(\mathbb{F}_p \). Denote by
\[
S_{g,p} : (\text{Sch})_{\mathcal{M}_{g,p}} \to (\text{Set})
\]
(cf. [29, Chap. I, discussion preceding Lemma 3.2]) the set-valued functor on \((\text{Sch})_{\mathcal{M}_{g,p}} \) (cf. §1.2) which, to any \(\mathcal{M}_{g,p} \)-scheme \(T \) classifying a curve \(Y/T \), assigns the set of isomorphism classes of indigenous bundles on \(Y/T \). Also, denote by
\[
\mathcal{M}^{\text{zsc}}_{g,p} \quad (\text{resp., } \mathcal{M}^{\text{zsc}}_{g,p} \circledast)
\]
the subfunctor of \(S_{g,p} \) classifying the set of isomorphism classes of dormant indigenous bundles (resp., dormant ordinary indigenous bundles). By forgetting the datum of an indigenous bundle, we obtain natural transformations
\[
S_{g,p} \to \mathcal{M}_{g,p}, \quad \mathcal{M}^{\text{zsc}}_{g,p} \to \mathcal{M}_{g,p}.
\]

Next, if \((X/S,L) \) is a spin curve, then we shall denote by
\[
\mathcal{M}^{\text{zsc}}_{X/S,L} : (\text{Sch})_S \to (\text{Set})
\]
the set-valued functor on \((\text{Sch})_S \) which, to any \(S \)-scheme \(T \), assigns the set of isomorphism classes of dormant \(L \)-indigenous bundles on the curve \(X \times_S T \) over \(T \). It follows from Proposition 2.4 that there is a natural isomorphism of functors on \((\text{Sch})_S \)
\[
\mathcal{M}^{\text{zsc}}_{X/S,L} \xrightarrow{\sim} \mathcal{M}^{\text{zsc}}_{g,p,S} \times_{\mathcal{M}_{g,p}} S,
\]
where \(\mathcal{M}^{\text{zsc}}_{g,p,S} \) denotes the fiber product of the natural projection \(\mathcal{M}^{\text{zsc}}_{g,p} \to \mathcal{M}_{g,p} \) and the classifying morphism \(S \to \mathcal{M}_{g,p} \) of \(X/S \).
Next, we quote a result from p-adic Teichmüller theory due to S. Mochizuki concerning the moduli stacks (which are in fact schemes, relatively speaking, over $\mathcal{M}_{g,\mathbb{F}_p}$) that represent the functors discussed above. Here, we wish to emphasize the importance of the open density of the dormant ordinary locus. As we shall see in Proposition 4.2 and its proof, the properties stated in the following Theorem 3.3 enable us to relate a numerical calculation in characteristic zero to the degree of certain moduli spaces of interest in positive characteristic.

Theorem 3.3. The functor $\mathcal{S}_{g,\mathbb{F}_p}$ is represented by a relative affine space over $\mathcal{M}_{g,\mathbb{F}_p}$ of relative dimension $3g - 3$. The functor $\mathcal{M}_{g,\mathbb{F}_p}^{\text{za}}$ is represented by a closed substack of $\mathcal{S}_{g,\mathbb{F}_p}$ which is finite and faithfully flat over $\mathcal{M}_{g,\mathbb{F}_p}$, and which is smooth and geometrically irreducible over \mathbb{F}_p. The functor $\oplus_{i=1}^{\infty} \mathcal{M}_{g,\mathbb{F}_p}^{\text{za}}$ is an open dense substack of $\mathcal{M}_{g,\mathbb{F}_p}^{\text{za}}$ and coincides with the étale locus of $\mathcal{M}_{g,\mathbb{F}_p}^{\text{za}}$ over $\mathcal{M}_{g,\mathbb{F}_p}$.

Proof. The assertion follows from [29, Chap. I, Corollary 2.9]; [30, Lemma 2.7]; [30, Chap. II, Theorem 2.8 (and its proof)]. □

In particular, it follows that it makes sense to speak of the degree
\[
\deg_{\mathcal{S}_{g,\mathbb{F}_p}}(\mathcal{M}_{g,\mathbb{F}_p}^{\text{za}})
\]
of $\mathcal{M}_{g,\mathbb{F}_p}^{\text{za}}$ over $\mathcal{M}_{g,\mathbb{F}_p}$. The generic étaleness of $\mathcal{M}_{g,\mathbb{F}_p}^{\text{za}}$ over $\mathcal{M}_{g,\mathbb{F}_p}$ implies that if X is a sufficiently generic proper smooth curve of genus g over an algebraically closed field of characteristic p, then the number of dormant indigenous bundles on X is exactly $\deg_{\mathcal{S}_{g,\mathbb{F}_p}}(\mathcal{M}_{g,\mathbb{F}_p}^{\text{za}})$. As we explained in the Introduction, our main interest is the explicit computation of $\deg_{\mathcal{M}_{g,\mathbb{F}_p}}(\mathcal{M}_{g,\mathbb{F}_p}^{\text{za}})$.

§4. Quot-schemes

To calculate $\deg_{\mathcal{M}_{g,\mathbb{F}_p}}(\mathcal{M}_{g,\mathbb{F}_p}^{\text{za}})$, it will be necessary to relate $\mathcal{M}_{g,\mathbb{F}_p}^{\text{za}}$ to certain Quot-schemes. Here, to prepare for the discussion in §5 below, we introduce notions for Quot-schemes in arbitrary characteristic.

Let T be a noetherian scheme, Y a proper smooth curve over T of genus $g > 1$ and \mathcal{E} a vector bundle on Y. Denote by
\[
\mathcal{Q}^{2.0}_{\mathcal{E}/Y/T} : (\text{Sch})_T \to (\text{Set})
\]
the functor which to any $f : T' \to T$ associates the set of isomorphism classes of injective morphisms of coherent $\mathcal{O}_{Y \times_T T'}$-modules
\[
i : \mathcal{F} \to \mathcal{E}_{T'}.
\]
where \mathcal{E}_T' denotes the pull-back of \mathcal{E} via the projection $Y \times_T T' \to Y$, such that the quotient $\mathcal{E}_T'/i(\mathcal{F})$ is flat over T' (which, since Y/T is smooth of relative dimension 1, implies that \mathcal{F} is locally free), and \mathcal{F} is of rank 2 and degree 0. It is known (cf. [7, Chap. 5, Theorem 5.14]) that $\mathcal{Q}^0_{\mathcal{E}/Y/T}$ is represented by a proper scheme over T.

Now let $(X/S, \mathcal{L} = (L, \eta \mathcal{L}))$ be a spin curve of characteristic p and denote, for simplicity, the relative Frobenius morphism $F_{X/S} : X \to X^{(1)}$ by F. In the following discussion, we consider the Quot-scheme

$$Q^{2,0}_{F, (L^\vee)/X^{(1)}/S}$$

in the case where the data “$(Y/T, \mathcal{E})$” is taken to be $(X^{(1)}/S, F_*(L^\vee))$. If we denote by $\tilde{i} : \tilde{F} \to (F_*(L^\vee))_{\mathcal{Q}^{2,0}_{F, (L^\vee)/X^{(1)}/S}}$ the tautological injective morphism of sheaves on $X^{(1)} \times_S \mathcal{Q}^{2,0}_{F, (L^\vee)/X^{(1)}/S}$, then the determinant $\text{det}(\tilde{F}) := \wedge^2(\tilde{F})$ determines a classifying morphism

$$\text{det} : Q^{2,0}_{F, (L^\vee)/X^{(1)}/S} \to \text{Pic}^0_{X^{(1)}/S}$$

(cf. Remark 2.2.1(i)) classifying the set of equivalence classes of degree 0 line bundles on $X^{(1)}/S$. We shall denote by

$$Q^{2,0}_{F, (L^\vee)/X^{(1)}/S}$$

the scheme-theoretic inverse image, via det, of the identity section of $\text{Pic}^0_{X^{(1)}/S}$.

Next, we discuss a relationship between $M_{X/S, \mathcal{L}}$ and $Q^{2,0}_{F, (L^\vee)/X^{(1)}/S}$. To this end, we introduce a certain filtered vector bundle with connection as follows. Let us consider the rank p vector bundle $A_L := F^* F_*(L^\vee)$ on X (cf. §1.6), which has the canonical S-connection

$$\nabla^{\text{can}}_{F_*(L^\vee)}$$

(cf. the discussion preceding Remark 3.0.1). By using this connection, we may define a p-step decreasing filtration $\{A^{(p)}_L\}_i$ on A_L as follows:

$$A^0_L := A_L, A^1_L := \ker(A_L \to L^\vee), A^j_L := \ker(A^{j-1}_L \to A^j_L \otimes \Omega_{X/S} \to A_L/A^{j-1}_L \otimes \Omega_{X/S})$$
Lemma 4.1. (i) For each $j = 1, \ldots, p - 1$, the map

$$A_{j}^{-1}/A_{j} \to A_{j}/A_{j+1} \otimes \Omega_{X/S}$$

defined by $a \mapsto \nabla_{\text{can}}(a) (a \in A_{j}^{-1})$, where the bars denote the images in the respective quotients, is well-defined and determines an isomorphism of \mathcal{O}_{X}-modules.

(ii) Let us identify A_{1}/A_{2} with \mathcal{L} via the isomorphism

$$A_{1}/A_{2} \to A_{0}/A_{1} \otimes \Omega_{X/S} \to \mathcal{L} \otimes \Omega_{X/S} \to \mathcal{L},$$

obtained by composing the isomorphism of (i) (i.e., the first isomorphism of the display) with the tautological isomorphism arising from the definition of A_{1} (i.e., the second isomorphism of the display), followed by the isomorphism determined by the given spin structure (i.e., the third isomorphism of the display). Then the natural extension structure

$$0 \to A_{1}/A_{2} \to A_{1}/A_{2} \to A_{0}/A_{1} \to 0$$

determines a structure of \mathcal{L}-bundle on A_{1}/A_{2}.

Proof. The various assertions of Lemma 4.1 follow from an argument (in the case where S is an arbitrary scheme) similar to the argument (in the case where $S = \text{Spec}(k)$ for an algebraically closed field k) given in the proofs of [19, p. 627] and [35, Lemma 2.1].

Lemma 4.2. Let $g : V \to F_{*}(\mathcal{L}^\vee)$ be an injective morphism classified by an S-rational point of $\mathcal{O}^{2,0}_{F_{*}(\mathcal{L}^\vee)/X^{(1)}/S}$ and denote by $\{(F^{*}V)^{i}\}_{i=0}^{p}$ the filtration on the pull-back $F^{*}V$ defined by setting

$$(F^{*}V)^{i} := (F^{*}V) \cap (F^{*}g)^{-1}(A_{L}^{i}),$$

where we denote by $F^{*}g$ the pull-back of g via F.

(i) The composite

$$F^{*}V \to A_{L} \to A_{L}/A_{L}^{2}$$

of $F^{*}g$ with the natural quotient $A_{L} \to A_{L}/A_{L}^{2}$ is an isomorphism of \mathcal{O}_{X}-modules.
(ii) If, moreover, \(g \) corresponds to an \(S \)-rational point of \(\mathcal{Q}^{2,\mathcal{O}}_{F_0(\mathcal{L}^\vee)/X^{(1)}/S} \), then the triple
\[
(F^*V, \nabla^\text{can}_V, \{(F^*V)^i\}^2_{i=0}),
\]
where \(\nabla^\text{can}_V \) denotes the canonical connection on \(F^*V \) (cf. the discussion preceding Remark 3.0.1), forms a dormant \(L \)-indigenous bundle on \(X/S \).

Proof. First, we consider assertion (i). Since \(F^*V \) and \(A_L/A^2_L \) are flat over \(S \), it suffices, by considering the various fibers over \(S \), to verify the case where \(S = \text{Spec}(k) \) for a field \(k \). If we write \(gr^i := (F^*V)^i/(F^*V)^{i+1} (i = 0, \ldots, p-1) \), then it follows immediately from the definitions that the coherent \(\mathcal{O}_X \)-module \(gr^i \) admits a natural embedding \(gr^i \hookrightarrow A^i_L/A^{i+1}_L \) into the subquotient \(A^i_L/A^{i+1}_L \). Since this subquotient is a line bundle (cf. Lemma 4.1), one verifies easily that \(gr^i \) is either trivial or a line bundle. In particular, since \(F^*V \) is of rank 2, the cardinality of the set \(I := \{i \mid gr^i \neq 0\} \) is exactly 2. Next, let us observe that the pull-back \(F^*g \) of \(g \) via \(F \) is compatible with the respective connections \(\nabla^\text{can}_V \) (cf. the statement of (ii)), \(\nabla^\text{can}_{F^*V} \). Thus, it follows from Lemma 4.1(i) that \(gr^{i+1} \neq 0 \) implies \(gr^i \neq 0 \). But this shows that \(I = \{0, 1\} \), and hence the composite
\[
F^*V \to A_L \to A_L/A^2_L
\]
is an isomorphism at the generic point of \(X \). On the other hand, observe that
\[
\text{deg}(F^*V) = p \cdot \text{deg}(V) = p \cdot 0 = 0
\]
and
\[
\text{deg}(A_L/A^2_L) = \text{deg}(A_L/A^1_L) + \text{deg}(A^1_L/A^2_L) = \text{deg}(L^\vee) + \text{deg}(L) = 0
\]
(cf. Lemma 4.1(i)). Thus, by comparing the respective degrees of \(F^*V \) and \(A_L/A^2_L \), we conclude that the above composite is an isomorphism of \(\mathcal{O}_X \)-modules. This completes the proof of (i).

Assertion (ii) follows immediately from the definition of an \(L \)-indigenous bundle, assertion (i), and Lemma 4.1. \(\square \)

By applying the above lemma, we may conclude that the moduli space \(\mathcal{M}_{X/S, L}^{\text{ind}} \) is isomorphic to the Quot-scheme \(\mathcal{Q}^{2,\mathcal{O}}_{F_0(\mathcal{L}^\vee)/X^{(1)}/S} \):

Proposition 4.3. Let \((X/S, \mathbb{L}) \) be a spin curve. Then there is an isomorphism of \(S \)-schemes
\[
\mathcal{Q}^{2,\mathcal{O}}_{F_0(\mathcal{L}^\vee)/X^{(1)}/S} \cong \mathcal{M}_{X/S, L}^{\text{ind}}.
\]

Proof. The assignment
\[
[g : V \to F_0(\mathcal{L}^\vee)] \mapsto (F^*V, \nabla^\text{can}_{F^*V}, \{(F^*V)^i\}^2_{i=0}),
\]
discussed in Lemma 4.2, determines (by Lemma 4.2(ii)) a map
\[\alpha_S : Q^{2,O}_{F,(L^\vee)/(X^{(1)}/S)}(S) \to M^\text{reg}_{X/S,L}(S) \]
between the respective sets of \(S \)-rational points. By the functoriality of the construction of \(\alpha_S \) with respect to \(S \), it suffices to prove the bijectivity of \(\alpha_S \).

The injectivity of \(\alpha_S \) follows from the observation that any element \([g : V \to F_*(L^\vee)] \in Q^{2,O}_{F,(L^\vee)/(X^{(1)}/S)}(S)\) is, by adjunction, determined by the morphism \(F^*V \to L^\vee \), i.e., the natural surjection, as in Definition 2.3(i), arising from the fact that \(F^*V \) is an \(L \)-bundle (cf. Lemma 4.2(ii)).

Next, we consider the surjectivity of \(\alpha_S \). Let \((F, \nabla, \{F^i\})\) be a dormant \(L \)-indigenous bundle on \(X/S \). Consider the composite \(F^*F^\nabla \xrightarrow{\sim} F \to L^\vee \) of the natural horizontal isomorphism \(F^*F^\nabla \xrightarrow{\sim} F \) (cf. Remark 3.0.1(ii)) with the natural surjection \(F \to F/F^1 = L^\vee \). This composite determines a morphism
\[g_F : (F \cong F^*F^\nabla \to F^*F_*(L^\vee) =: A_L) \]
via the adjunction relation “\(F^*(-) + F_*(-) \)” (cf. the discussion preceding Lemma 4.1) and pull-back by \(F \).

Next, we claim that \(g_F \) is injective. Indeed, since \(g_F \) is (tautologically, by construction!) compatible with the respective surjectons \(F \to L^\vee \), \(A_L \to L^\vee \), we conclude that \(g_F(F^1) \subseteq A_L^1 \), and \(\ker(g_F) \subseteq F^1 \). Since \(g_F \) is manifestly horizontal (by construction), \(\ker(g_F) \) is stabilized by \(\nabla \), hence contained in the kernel of the Kodaira–Spencer map \(F^1 \to F/F^1 \otimes \Omega_{X/S} \) (cf. Definition 2.3(ii)(2)), which is an isomorphism by the definition of an \(L \)-indigenous bundle (cf. Definition 2.3(ii)). This implies that \(g_F \) is injective.

Moreover, by applying a similar argument to the pull-back of \(g_F \) via any base-change over \(S \), one concludes that \(g_F \) is universally injective with respect to base-change over \(S \). This implies that \(A_L/g_F(F) \) is flat over \(S \) (cf. [26, p. 17, Theorem 1]).

Now denote by \(g_F^\nabla : F^\nabla \to F_*(L^\vee) \) the morphism obtained by restricting \(g_F \) to the respective subsheaves of horizontal sections in \(F \), \(A_L \). Observe that the pull-back of \(g_F^\nabla \) via \(F \) may be identified with \(g_F \), and that \(F^*(F_*(L^\vee)/g_F^\nabla(F^\nabla)) \) is naturally isomorphic to \(A_L/g_F(F) \). Thus, it follows from the faithful flatness of \(F \) that \(g_F^\nabla \) is injective, and \(F_*(L^\vee)/g_F^\nabla(F^\nabla) \) is flat over \(S \). On the other hand, since the determinant of \((F, \nabla)\) is trivial, \(\det(F^\nabla) \) is isomorphic to the trivial \(\mathcal{O}_{X^{(1)}} \)-module (cf. Remark 3.0.1(ii)). Thus, \(g_F^\nabla \) determines an \(S \)-rational point of \(Q^{2,O}_{F,(L^\vee)/(X^{(1)}/S)} \) that is mapped by \(\alpha_S \) to the \(S \)-rational point of \(M^\text{reg}_{X/S,L} \) corresponding to \((F, \nabla, \{F^i\})\). This implies that \(\alpha_S \) is surjective and hence completes the proof of Proposition 4.3. \qed
Next, we relate $Q_{F_* (\mathcal{L}^\vee)/X^{(1)}/S}$ to $Q_{F_* (\mathcal{L}^\vee)/X^{(1)}/S}$. By pulling back line bundles on $X^{(1)}$ via the relative Frobenius $F : X \to X^{(1)}$, we obtain a morphism

$$\text{Pic}^{0}_{X^{(1)}/S} \to \text{Pic}^{0}_{X/S} : [\mathcal{N}] \mapsto [F^* \mathcal{N}].$$

We shall denote by

$$\text{Ver}_{X/S}$$

the scheme-theoretic inverse image, via this morphism, of the identity section of $\text{Pic}^{0}_{X/S}$. It is well-known (cf. [4, exp. VII, pp. 440–443]; [28, Proposition 8.1 and Theorem 8.2]; [27, Appendix, Lemma (1.0)]) that $\text{Ver}_{X/S}$ is finite and faithfully flat over S of degree ρ^2 and, moreover, étale over the points s of S such that the fiber of X/S at s is ordinary. (Recall that the locus of $\mathcal{M}_{g, \mathbb{Z}}$ classifying ordinary curves is open and dense.) Then we have the following

Lemma 4.4. There is an isomorphism of S-schemes

$$Q_{F_* (\mathcal{L}^\vee)/X^{(1)}/S}^{2,0} \times_S \text{Ver}_{X/S} \sim Q_{F_* (\mathcal{L}^\vee)/X^{(1)}/S}^{2,0}.$$

Proof. It suffices to prove that there is a bijection between the respective sets of S-rational points that is functorial with respect to S.

Let $(g : \mathcal{V} \to F_* (\mathcal{L}^\vee), \mathcal{N})$ be an element of $(Q_{F_* (\mathcal{L}^\vee)/X^{(1)}/S}^{2,0} \times_S \text{Ver}_{X/S})(S)$. It follows from the projection formula that the composite

$$g_\mathcal{N} : \mathcal{V} \otimes \mathcal{N} \to F_* (\mathcal{L}^\vee) \otimes \mathcal{N} \to F_* (\mathcal{L}^\vee \otimes F^* \mathcal{N}) \sim F_* (\mathcal{L}^\vee \otimes \mathcal{O}_X) = F_* (\mathcal{L}^\vee)$$

determines an element of $Q_{F_* (\mathcal{L}^\vee)/X^{(1)}/S}^{2,0}(S)$. Thus, we obtain a functorial (with respect to S) map

$$\gamma_S : (Q_{F_* (\mathcal{L}^\vee)/X^{(1)}/S}^{2,0} \times_S \text{Ver}_{X/S})(S) \to Q_{F_* (\mathcal{L}^\vee)/X^{(1)}/S}^{2,0}(S).$$

Conversely, let $g : \mathcal{V} \to F_* (\mathcal{L}^\vee)$ be an injective morphism classified by an element of $Q_{F_* (\mathcal{L}^\vee)/X^{(1)}/S}^{2,0}(S)$. Consider the injective morphism $g_{\det (\mathcal{V}) \otimes (p^{-1}/2)}$, i.e., the morphism $g_\mathcal{N}$ constructed above for $\mathcal{N} = \det (\mathcal{V}) \otimes (p^{-1}/2)$. We observe that

$$\det (\mathcal{V} \otimes \det (\mathcal{V})^{\otimes (p^{-1}/2)} \cong \det (\mathcal{V}) \otimes \det (\mathcal{V})^{\otimes 2 \frac{1}{p-1}} \cong \det (\mathcal{V})^{\otimes p} \cong F^*_S (F^*(\det (\mathcal{V}))),$$

where $F^*_S (\cdot)$ denotes the pull-back by the morphism $X^{(1)} \to X$ obtained by base-change of X/S via the absolute Frobenius morphism $F_S : S \to S$ of S (cf. §1.6). On the other hand, since $F^*_S (\det (\mathcal{V})) \cong (\mathcal{A}^r_L / \mathcal{A}^r_L^2) \otimes (\mathcal{A}^2_L / \mathcal{A}^2_L^2) \cong \mathcal{L}^\vee \otimes \mathcal{L} \cong \mathcal{O}_X$ (cf. Lemmas 4.1(ii), 4.2(ii)), it follows that the determinant of $\mathcal{V} \otimes \det (\mathcal{V})^{\otimes (p^{-1}/2)}$ is trivial. Thus the pair $(g_{\det (\mathcal{V}) \otimes (p^{-1}/2)}, \det (\mathcal{V}))$ determines an element of $(Q_{F_* (\mathcal{L}^\vee)/X^{(1)}/S}^{2,0} \times_S \text{Ver}_{X/S})(S)$. One verifies easily that this assignment determines an inverse to γ_S. This completes the proof of Lemma 4.4. \qed
§5. Computation via the Vafa–Intriligator formula

By combining Proposition 4.3, Lemma 4.4, and the discussions preceding Theorem 3.3 and Lemma 4.4, we obtain the following equalities:

\[
\deg_{M_g,F_p}(M_{Z_{\text{aff}}}) = \deg_S(M_{X/S,L}) = \deg_S(Q_{F,\langle\mathcal{L}'\rangle/X(1)/S}) = \frac{1}{p^a} \cdot \deg_S(Q_{F,\langle\mathcal{L}'\rangle/X(1)/S}).
\]

Hence, to determine \(\deg_{M_g,F_p}(M_{Z_{\text{aff}}})\), it suffices to calculate \(\deg_S(Q_{F,\langle\mathcal{L}'\rangle/X(1)/S})\) (for an arbitrary spin curve \((X/S, L)\)).

In this section, we review a numerical formula for the degree of a certain Quot-scheme over the field \(\mathbb{C}\) of complex numbers and relate it to the degree of the Quot-scheme in positive characteristic.

Let \(C\) be a smooth proper curve over \(\mathbb{C}\) of genus \(g > 1\). If \(r\) is an integer, and \(E\) is a vector bundle on \(C\) of rank \(n\) and degree \(d\) with \(1 \leq r \leq n\), then we define invariants

\[
e_{\text{max}}(E, r) := \max \{ \deg(F) \in \mathbb{Z} \mid F\text{ is a subbundle of } E\text{ of rank } r\},
\]

\[
s_r(E) := d \cdot r - n \cdot e_{\text{max}}(E, r).
\]

(Here, we recall that one verifies immediately, for instance, by considering an embedding of \(E\) into a direct sum of \(n\) line bundles, that \(e_{max}(E, r)\) is well-defined.)

In the following, we review some facts concerning these invariants (cf. [11]; [22]; [12]). Denote by \(\mathcal{N}_C^{n,d}\) the moduli space of stable bundles on \(C\) of rank \(n\) and degree \(d\) (cf. [22, pp. 310–311]). It is known that \(\mathcal{N}_C^{n,d}\) is irreducible (cf. the discussion at the beginning of [22, p. 311]). Thus, it makes sense to speak of a “sufficiently general” stable bundle in \(\mathcal{N}_C^{n,d}\), i.e., a stable bundle that corresponds to a point of the scheme \(\mathcal{N}_C^{n,d}\) that lies outside some fixed closed subscheme. If \(E\) is a sufficiently general stable bundle in \(\mathcal{N}_C^{n,d}\), then (cf. [22, pp. 310–311]) one has

\[
s_r(E) = r(n - r)(g - 1) + \epsilon, \text{ where } \epsilon \text{ is the unique integer such that } 0 \leq \epsilon < n \text{ and } s_r(E) = r \cdot d \text{ mod } n.
\]

Also, the number \(\epsilon\) coincides (cf. [12, pp. 121–122]) with the dimension of every irreducible component of the Quot-scheme \(Q_{E,C/\mathbb{C}}^{r, e_{\text{max}}(E, r)}\) (cf. §4).

If, moreover, the equality \(s_r(E) = r(n - r)(g - 1)\) holds (i.e., \(\dim(Q_{E,C/\mathbb{C}}^{r, e_{\text{max}}(E, r)}) = 0\)), then \(Q_{E,C/\mathbb{C}}^{r, e_{\text{max}}(E, r)}\) is étale over \(\text{Spec}(\mathbb{C})\) (cf. [12, pp. 121–122]). Finally, under this particular assumption, a formula for the degree of this Quot-scheme was given by Holla as follows.

Theorem 5.1. Let \(C\) be a proper smooth curve over \(\mathbb{C}\) of genus \(g > 1\), and \(E\) a sufficiently general stable bundle in \(\mathcal{N}_C^{n,d}\). Write \((a,b)\) for the unique pair
of integers such that \(d = an - b \) with \(0 \leq b < n \). Also, suppose that \(s_r(\mathcal{E}) = r(n - r)(g - 1) \) (equivalently, \(e_{\text{max}}(\mathcal{E}, r) = (dr - r(n - r)(g - 1))/n \)). Then

\[
\deg_C(Q^r_{\mathcal{E}/C/k}) = \frac{(-1)^{(r-1)(br-(g-1)r^2)/n}r!}{r!} \sum_{\rho_1, \ldots, \rho_r} \frac{(\prod_{i=1}^r \rho_i)^{b-g+1}}{\prod_{i \neq j} (\rho_i - \rho_j)^{g-1}},
\]

where \(\rho_i^a = 1 \) for \(1 \leq i \leq r \) and the sum is over tuples \((\rho_1, \ldots, \rho_r) \) with \(\rho_i \neq \rho_j \).

Proof. The assertion follows from \([12, \text{Theorem 4.2}]\), where “\(k \)” (respectively, “\(r \)”)

By applying this formula, we deduce the same kind of formula for certain vector bundles in positive characteristic.

Theorem 5.2. Let \(k \) an algebraically closed field of characteristic \(p \) and \((X/k, L = (\mathcal{L}, \eta_C))\) a spin curve of genus \(g \geq 1 \). Suppose that \(X/k \) is sufficiently general in \(M_{g,p} \). (Here, we recall that \(M_{g,p} \) is irreducible (cf. \([3, \text{§5}]\)); thus, it makes sense to speak of a “sufficiently general” \(X/k \), i.e., an \(X/k \) that determines a point of \(M_{g,p} \) that lies outside some fixed closed substack.) Then \(Q^{2,0}_{F_*(\mathcal{L}^\vee)/X^{(1)}/k} \) over \(\text{Spec}(k) \) is finite and étale over \(k \). If, moreover, we suppose that \(p > 2(g-1) \), then the degree \(\deg_k(Q^{2,0}_{F_*(\mathcal{L}^\vee)/X^{(1)}/k}) \) of \(Q^{2,0}_{F_*(\mathcal{L}^\vee)/X^{(1)}/k} \) over \(\text{Spec}(k) \) is given by

\[
\deg_k(Q^{2,0}_{F_*(\mathcal{L}^\vee)/X^{(1)}/k}) = \frac{p^{2g-1}}{2^{2g-1}} \sum_{\theta=1}^{p-1} \frac{1}{\sin^{2g-2}(\theta p)} \cdot \sum_{\zeta=1, \zeta \neq 1}^{\zeta^{g-1}} \frac{\zeta^{g-1}}{(\zeta - 1)^{2g-2}}.
\]

Proof. Suppose that \(X \) is an ordinary (cf. the discussion preceding Lemma 4.4) proper smooth curve over \(k \) classified by a \(k \)-rational point of \(M_{g,p} \) which lies in the complement of the image of \(M_{g,p}^{\text{zar}} \) via the natural projection \(M_{g,p}^{\text{zar}} \rightarrow M_{g,p} \) (cf. Theorem 3.3 and the discussion preceding it). Then it follows from Theorem 3.3, Proposition 4.3, and Lemma 4.4 that \(Q^{2,0}_{F_*(\mathcal{L}^\vee)/X^{(1)}/k} \) is finite and étale over \(k \).

Next, we determine \(\deg_k(Q^{2,0}_{F_*(\mathcal{L}^\vee)/X^{(1)}/k}) \). Denote by \(W \) the ring of Witt vectors with coefficients in \(k \), and \(K \) the fraction field of \(W \). Since \(\dim(X^{(1)}) = 1 \), which implies that \(H^2(X^{(1)}, \Omega^2_{X^{(1)}}) = 0 \), it follows from well-known generalities of deformation theory that \(X^{(1)} \) may be lifted to a smooth proper curve \(X^{(1)}_W \) over \(W \) of genus \(g \). In a similar vein, the fact that \(H^2(X^{(1)}, \mathcal{E}nd_{\mathcal{O}_{X^{(1)}}}(F_*(\mathcal{L}^\vee))) = 0 \) implies that \(F_*(\mathcal{L}^\vee) \) may be lifted to a vector bundle \(\mathcal{E} \) on \(X^{(1)}_W \).
Now let η be a k-rational point of $Q^{2,0}_{F,((\mathcal{L}^\vee)/X^{(1)}/k}$ classifying an injective morphism $\iota : F \to F_*(\mathcal{L}^\vee)$. The tangent space to $Q^{2,0}_{F,((\mathcal{L}^\vee)/X^{(1)}/k}$ at η may be naturally identified with the k-vector space $\operatorname{Hom}_{O_{X^{(1)}}}(F, F_*(\mathcal{L}^\vee)/i(F))$, and the obstruction to lifting η to any first order thickening of $\operatorname{Spec}(k)$ is given by an element of $\operatorname{Ext}_{X^{(1)}}^1(F, F_*(\mathcal{L}^\vee)/i(F))$. On the other hand, since, as was observed above, $Q^{2,0}_{F,((\mathcal{L}^\vee)/X^{(1)}/k}$ is étale over $\operatorname{Spec}(k)$, we have $\operatorname{Hom}_{O_{X^{(1)}}}(F, F_*(\mathcal{L}^\vee)/i(F)) = 0$, and hence $\operatorname{Ext}_{X^{(1)}}^1(F, F_*(\mathcal{L}^\vee)/i(F)) = 0$ by Lemma 5.3 below. This implies that η may be lifted to a W-rational point of $Q^{2,0}_{\mathcal{E}/X^{(1)}W/W}$ and hence $Q^{2,0}_{\mathcal{E}/X^{(1)}W/W}$ is finite and étale over W by Lemma 5.3 and the vanishing of $\operatorname{Hom}_{O_{X^{(1)}}}(F, F_*(\mathcal{L}^\vee)/i(F))$.

Now a routine argument shows that K may be supposed to be a subfield of \mathbb{C}. Denote by $X^{(1)}_C$ the base-change of $X^{(1)}_W$ via the morphism $\operatorname{Spec}(\mathbb{C}) \to \operatorname{Spec}(W)$ induced by the composite embedding $W \hookrightarrow K \hookrightarrow \mathbb{C}$, and \mathcal{E}_C the pull-back of \mathcal{E} via the natural morphism $X^{(1)}_C \to X^{(1)}_W$. Thus, we obtain

$$\deg_k(Q^{2,0}_{F,((\mathcal{L}^\vee)/X/k}) = \deg_W(Q^{2,0}_{\mathcal{E}/X^{(1)}W/W}) = \deg_C(Q^{2,0}_{\mathcal{E}_C/X^{(1)}_C/C}).$$

To prove the required formula, we calculate $\deg_C(Q^{2,0}_{\mathcal{E}_C/X^{(1)}_C/C})$ by applying Theorem 5.1.

By [35, Theorem 2.2], $F_*(\mathcal{L}^\vee)$ is stable. Since the degree of \mathcal{E}_C coincides with the degree of $F_*(\mathcal{L}^\vee)$, we have $\deg(\mathcal{E}_C) = (p - 2)(g - 1)$ (cf. the proof of Lemma 5.3). On the other hand, one verifies easily from the definition of stability and the properness of Quot-schemes (cf. [7, Theorem 5.14]) that \mathcal{E}_C is a stable vector bundle. Next, let us observe that $Q^{2,0}_{\mathcal{E}_C/X^{(1)}_C/C}$ is zero-dimensional (cf. the discussion above), which, by the discussion preceding Theorem 5.1, implies that $s_2(\mathcal{E}_C) = 2(p - 2)(g - 1)$. Thus, by choosing the deformation \mathcal{E} of $F_*(\mathcal{L}^\vee)$ appropriately, we may assume, without loss of generality, that \mathcal{E}_C is sufficiently general in $\mathcal{M}^{p,(p-2)(g-1)}_{X^{(1)}_C}$ for Theorem 5.1 to hold. Now we compute (cf. the discussion preceding Theorem 5.1):

$$e_{\max}(\mathcal{E}_C, 2) = \frac{1}{p} \cdot \deg_C(\mathcal{E}_C) \cdot 2 - s_2(\mathcal{E}_C)) = \frac{1}{p} \cdot ((p - 2)(g - 1) \cdot 2 - 2 \cdot (p - 2)(g - 1)) = 0.$$

If, moreover, we write (a, b) for the unique pair of integers such that $\deg_C(\mathcal{E}_C) = p \cdot a - b$ with $0 \leq b < p$, then the hypothesis $p > 2(g - 1)$ implies that $a = g - 1$ and $b = 2(g - 1)$. Thus, by applying Theorem 5.1 in the case where the data

$$\left\{(C, \mathcal{V}, n, d, r, a, b, e_{\max}(\mathcal{V}, r))\right\}$$
Proof. First, we verify that Q_{E_2}, $p, (g - 1)(p - 2), 2, g - 1, 2(g - 1), 0$.

This completes the proof of the required equality.

The following lemma was used in the proof of Theorem 5.2.

Lemma 5.3. Let k be a field of characteristic p, $(X/k, \mathbb{L} := (\mathcal{L}, \eta_\mathcal{L}))$ a spin curve, and \(i : \mathcal{F} \to F_\ast(\mathcal{L}^\vee) \) an injective morphism classified by a k-rational point of \(\mathcal{Q}_{F_\ast(\mathcal{L}^\vee)/X}^{2,0} \). Write \(\mathcal{G} := F_\ast(\mathcal{L}^\vee)/i(\mathcal{F}) \). Then \(\mathcal{G} \) is a vector bundle on \(X^{(1)} \), and

\[
\text{dim}_k(\text{Hom}_{\mathcal{O}_{X^{(1)}}}(\mathcal{F}, \mathcal{G})) = \text{dim}_k(\text{Ext}_{\mathcal{O}_{X^{(1)}}}^1(\mathcal{F}, \mathcal{G})).
\]

Proof. First, we verify that \(\mathcal{G} \) is a vector bundle. Since \(F : X \to X^{(1)} \) is faithfully flat, it suffices to verify that the pull-back \(F^\ast \mathcal{G} \) is a vector bundle on \(X \). Recall (cf. Lemma 4.2(i)) that the composite \(F^\ast \mathcal{F} \to \mathcal{A}_\mathcal{L}(= F^\ast F_\ast(\mathcal{L}^\vee)) \to \mathcal{A}_\mathcal{L}/\mathcal{A}^2_\mathcal{L} \) of the pull-back of \(i \) with the natural surjection \(\mathcal{A}_\mathcal{L} \to \mathcal{A}_\mathcal{L}/\mathcal{A}^2_\mathcal{L} \) is an isomorphism. This implies easily that the natural composite \(\mathcal{A}^2_\mathcal{L} \to \mathcal{A}_\mathcal{L} \to F^\ast \mathcal{G} \) is an isomorphism, and hence \(F^\ast \mathcal{G} \) is a vector bundle, as desired.

Next we consider the asserted equality. Since the morphism \(F : X \to X^{(1)} \) is finite, well-known cohomological generalities yield the equality \(\chi(F_\ast(\mathcal{L}^\vee)) = \chi(\mathcal{L}^\vee) \) of Euler characteristics. Thus, it follows from the Riemann–Roch theorem that

\[
\deg(F_\ast(\mathcal{L}^\vee)) = \chi(F_\ast(\mathcal{L}^\vee)) - \text{rk}(F_\ast(\mathcal{L}^\vee))(1 - g) = \chi(\mathcal{L}^\vee) - p(1 - g) = (p - 2)(g - 1),
\]

and since \(\text{rk}(\text{Hom}_{\mathcal{O}_{X^{(1)}}}(\mathcal{F}, \mathcal{G})) = 2(p - 2) \),

\[
\deg(\text{Hom}_{\mathcal{O}_{X^{(1)}}}(\mathcal{F}, \mathcal{G})) = 2 \cdot \deg(\mathcal{G}) - (p - 2) \cdot \deg(\mathcal{F}) = 2 \cdot \deg(F_\ast(\mathcal{L}^\vee)) - 0 = 2(p - 2)(g - 1).
\]
Finally, by applying the Riemann–Roch theorem again, we obtain
\[
\dim_k(\text{Hom}_{\mathcal{O}_{X(1)}}(\mathcal{F}, \mathcal{G})) - \dim_k(\text{Ext}^1_{\mathcal{O}_{X(1)}}(\mathcal{F}, \mathcal{G}))
\]
\[= \text{deg}(\text{Hom}_{\mathcal{O}_{X(1)}}(\mathcal{F}, \mathcal{G})) + \text{rk}(\text{Hom}_{\mathcal{O}_{X(1)}}(\mathcal{F}, \mathcal{G}))(1 - g)
\]
\[= 2(p - 2)(g - 1) + 2(p - 2)(1 - g) = 0. \]

Thus, we deduce the main result of the present paper.

Corollary 5.4. Suppose that \(p > 2(g - 1) \). Then
\[
\deg_{\mathcal{M}_{g,p}}(\mathcal{M}_{g,p}^{\text{max}}) = \frac{p^g - 1}{2^{g-1}} \cdot \sum_{\theta = 1}^{p-1} \frac{1}{\sin^{2g-2}(\pi \theta / p)} \cdot \sum_{\zeta = 1, \zeta \neq 1}^{\zeta - 1} (-1)^{g-1} \cdot \zeta^{p-1} \cdot \frac{1}{(\zeta - 1)^{2g-2}}.
\]

Proof. Let us fix a spin curve \((X/k, \mathcal{L})\) for which Theorem 5.2 holds. Then it follows from Theorem 5.2 and the discussion at the beginning of \(\S 5\) that
\[
\deg_{\mathcal{M}_{g,p}}(\mathcal{M}_{g,p}^{\text{max}}) = \frac{1}{p^g} \cdot \deg_C(\mathcal{O}_{\mathcal{E}_X(\mathcal{L})}^{2,0}/X^{(1)}/k) = \frac{p^g - 1}{2^{g-1}} \cdot \sum_{\theta = 1}^{p-1} \frac{1}{\sin^{2g-2}(\pi \theta / p)} \cdot \sum_{\zeta = 1, \zeta \neq 1}^{\zeta - 1} (-1)^{g-1} \cdot \zeta^{p-1} \cdot \frac{1}{(\zeta - 1)^{2g-2}}. \]

\(\Box\)

§6. Relation to other results

Finally, we discuss some topics related to the main result of the present paper.

6.1. Let \(k \) be an algebraically closed field of characteristic \(p \) and \(X \) a proper smooth curve over \(k \) of genus \(g \) with \(p > 2(g - 1) \). Denote by \(F : X \to X^{(1)} \) the relative Frobenius morphism. Let \(\mathcal{E} \) be an indecomposable vector bundle on \(X \) of rank 2 and degree 0. If \(\mathcal{E} \) admits a rank one subbundle of positive degree, then it follows from the definition of semistability that \(\mathcal{E} \) is not semistable. On the other hand, since \(\mathcal{E} \) is indecomposable, the computation of suitable \(\text{Ext}^1 \) groups via Serre duality shows that the degree of any rank one subbundle of \(\mathcal{E} \) is at most \(g - 1 \). We shall say that \(\mathcal{E} \) is **maximally unstable** if it admits a rank one subbundle of degree \(g - 1 (> 0) \). Let us denote by \(B \) the set of isomorphism classes of rank 2 semistable bundles \(\mathcal{V} \) on \(X^{(1)} \) such that \(\det(\mathcal{V}) \cong \mathcal{O}_X \) and \(F^* \mathcal{V} \) is indecomposable and maximally unstable. Then it is well-known (cf., e.g., [32, Proposition 4.2]) that there is a natural \(2^{2g} \)-to-1 correspondence between \(B \) and the set of isomorphism
The Number of Dormant Indigenous Bundles

405

classes of dormant indigenous bundles on X/k. Thus, Corollary 5.4 of the present paper enables us to calculate the cardinality of B, i.e., to conclude that

$$\#B = 2 \cdot p^{g-1} \sum_{\theta=1}^{p-1} \frac{1}{\sin^{2g-2} \left(\frac{\pi \theta}{p} \right)}.$$

In the case where $g = 2$, this result is consistent with the result obtained in [23, p. 180, Theorem 2].

6.2. F. Liu and B. Osserman have shown (cf. [25, Theorem 2.1]) that $\deg_{M_g,F_p}(\mathcal{M}_{g,p}^{\text{ss}})$ may be expressed as a polynomial with respect to the characteristic p of degree $3g - 3$ (e.g., $\deg_{M_2,F_p}(\mathcal{M}_{2,p}^{\text{ss}}) = \frac{1}{24} \cdot (p^3 - p)$, as referred to in the Introduction). In fact, this result may also be obtained as a consequence of Corollary 5.4. This may not be apparent at first glance, but nevertheless may be verified by applying either of the following two different (but, closely related) arguments.

(1) Let C be a connected compact Riemann surface of genus $g > 1$. Then the moduli space of S-equivalence classes (cf. [13, Definition 1.5.3]) of rank 2 semistable bundles on C with trivial determinant,

$$\text{ss}\mathcal{N}_C^{2,\mathcal{O}},$$

may be represented by a projective algebraic variety of dimension $3g - 3$ (cf. [34, Theorem 8.1]; [1, p. 18]; [31, Introduction]), and $\text{Pic}(\text{ss}\mathcal{N}_C^{2,\mathcal{O}}) \cong \mathbb{Z} \cdot [\mathcal{L}]$ for a certain ample line bundle \mathcal{L} (cf. [5, p. 55, Theorem B]; [1, p. 19, Theorem 1]; [1, p. 21, discussion at the beginning of §4]). The Verlinde formula, introduced in [37] and proved, e.g., in [6, Theorem 4.2], implies that, for $k = 0, 1, \ldots$, we have

$$\dim_C(H^0(\text{ss}\mathcal{N}_C^{2,\mathcal{O}}, \mathcal{L}^k)) = \left(\frac{k+2}{g-1}\right)^{g-1} \sum_{\theta=1}^{k+1} \frac{1}{\sin^{2g-2} \left(\frac{\pi \theta}{k+2} \right)}$$

(cf. [1, p. 24, Corollary]). Thus, for sufficiently large k, the value at k of the Hilbert polynomial $\text{Hilb}_C(t) \in \mathbb{Q}[t]$ of \mathcal{L} coincides with the RHS of the above equality. On the other hand, Corollary 5.4 shows that for an odd prime p, the value at $k = p - 2$ of this RHS divided by 2^3 coincides with $\deg_{M_g,F_p}(\mathcal{M}_{g,p}^{\text{ss}})$. Thus, $\deg_{M_g,F_p}(\mathcal{M}_{g,p}^{\text{ss}})$ (for sufficiently large p) may be expressed as $\text{Hilb}_C(p - 2)$ for a suitable polynomial $\text{Hilb}_C(t) \in \mathbb{Q}[t]$ of degree $3g - 3$ (=$\dim(\text{ss}\mathcal{N}_C^{2,\mathcal{O}})$).
Another approach yields a more concrete expression for $\deg_{M,g,F_p}(\mathcal{M}_{y,z}^{g,F_p})$. For a pair of positive integers (n,k), we set

$$V(n,k) := \sum_{\theta=1}^{k-1} \frac{1}{\sin^{2n}\left(\frac{2\pi \theta}{k}\right)}.$$

Then it follows from [38, Theorem 1(i), (ii) and proof of Theorem 1(iii)] that

$$V(n,k) = -\text{Res}_{x=0}\left[\frac{k \cdot \cot(kx)}{\sin^{2n}(x)} dx\right],$$

where $\text{Res}_{x=0}(f)$ denotes the residue of f at $x = 0$. Thus, $V(n,k)$ may be computed by considering the relation $\frac{1}{\sin^2(x)} = 1 + \cot^2(x)$ and the coefficient of the Laurent expansion (cf. [38, proof of Theorem 1(iii)])

$$\cot(x) = \frac{1}{x} + \sum_{j=1}^{\infty} \frac{(-1)^j (2j) B_{2j} x^{2j-1}}{(2j)!},$$

where B_{2j} denotes the $(2j)$-th Bernoulli number, i.e.,

$$\frac{w}{e^w - 1} = 1 - \frac{w}{2} + \sum_{j=1}^{\infty} \frac{B_{2j}}{(2j)!} w^{2j}.$$

In particular, an explicit computation shows that $V(n,k)$ may be expressed as a polynomial of degree $2n$ with respect to k. Thus, $\deg_{M,g,F_p}(\mathcal{M}_{y,z}^{g,F_P})$ (equal to $\frac{p^{g-1}}{2^{g-1}} \cdot V(g-1,p)$ by Corollary 5.4) may be expressed as a polynomial with respect to p of degree $2(g-1) + (g-1) = 3g - 3$. Moreover, by applying the above discussion, we obtain the following explicit expressions:

\begin{align*}
\deg_{M_2,F_p}(\mathcal{M}_{y,z}^{g,F_p}) & = \frac{1}{24} \cdot (p^4 - p), \\
\deg_{M_3,F_p}(\mathcal{M}_{y,z}^{g,F_p}) & = \frac{1}{1440} \cdot (p^6 + 10p^4 - 11p^2), \\
\deg_{M_4,F_p}(\mathcal{M}_{y,z}^{g,F_p}) & = \frac{1}{120960} \cdot (2p^9 + 21p^7 + 168p^5 - 191p^3), \\
\deg_{M_5,F_p}(\mathcal{M}_{y,z}^{g,F_p}) & = \frac{1}{7257600} \cdot (3p^{12} + 40p^{10} + 294p^8 + 2160p^6 - 2497p^4), \\
\deg_{M_6,F_p}(\mathcal{M}_{y,z}^{g,F_p}) & = \frac{1}{2048} \cdot \left(\frac{2}{93555}p^{15} + \frac{1}{2835}p^{13} + \frac{26}{8505}p^{11} + \frac{164}{8505}p^9 + \frac{128}{945}p^7 - \frac{14797}{93555}p^5\right).
\end{align*}
\[\deg_{M_7,p}(\mathcal{M}_{7,p}^{ras}) = \frac{1}{8192} \left(\frac{1382}{638512875} p^{18} + \frac{4}{93555} p^{16} + \frac{31}{70875} p^{14} + \frac{556}{178605} p^{12} + \frac{3832}{212625} p^{10} + \frac{256}{2079} p^8 - \frac{92427157}{638512875} p^6 \right). \]

\[\deg_{M_8,p}(\mathcal{M}_{8,p}^{ras}) = \frac{1}{32768} p^7 \left(\frac{4}{1243225} p^{14} + \frac{1382}{273648375} p^{12} + \frac{4}{66825} p^{10} + \frac{311}{637875} p^8 + \frac{1184}{382725} p^6 + \frac{1888}{111375} p^4 + \frac{1024}{9009} p^2 - \frac{36740617}{273648375} \right). \]

\[\deg_{M_9,p}(\mathcal{M}_{9,p}^{ras}) = \frac{1}{131072} p^8 \left(\frac{3617}{162820783125} p^{16} + \frac{32}{54729675} p^{14} + \frac{226648}{28733079375} p^{12} + \frac{2144}{29469825} p^{10} + \frac{9568125}{17067584} p^8 + \frac{19305}{61430943169} p^6 + \frac{4946}{1064188125} p^4 + \frac{2048}{36288000} p^2 - \frac{488462349375}{1064188125} \right). \]

\[\deg_{M_{10},p}(\mathcal{M}_{10,p}^{ras}) = \frac{1}{524288} p^9 \left(\frac{87734}{3979295480125} p^{18} + \frac{3617}{54273594375} p^{16} + \frac{92}{18716} p^{14} + \frac{2092348}{119654944} p^{12} + \frac{4042}{16229632} p^{10} + \frac{35083125}{402631125} p^8 + \frac{1064188125}{23133945892303} p^6 + \frac{32768}{328185} p^4 - \frac{194896477400625}{23133945892303} \right). \]

Acknowledgements. The author cannot express enough his sincere and deep gratitude to Professors Shinichi Mochizuki and Kirti Joshi for their helpful suggestions and heartfelt encouragement as well as for formulating the conjecture. Without their philosophies and amazing insights, his study of mathematics would have remained “dormant”.

The author would also like to thank Professors Yuichiro Hoshi, Brian Osserman, and Go Yamashita for helpful discussions and advice. The author was supported by the Grant-in-Aid for Scientific Research (KAKENHI No. 24-5691) and the Grant-in-Aid for JSPS fellows.

Special thanks go to Mr. Katsurou Takahashi, the staff of “CAFE PROVERBS [15:17]” in Kyoto, and the various individuals with whom the author became acquainted there. The author deeply appreciates the relaxed and comfortable environment that they provided for writing the present paper.
Finally, the author would like to thank the referee for carefully reading the manuscript and giving some comments and suggestions.

References

The Number of Dormant Indigenous Bundles

