Regularity for a Variational Inequality with a Pseudodifferential Operator of Negative Order

R. Schumann

Abstract. We prove that the solution of a variational inequality on a submanifold in \(\mathbb{R}^n \) involving a pseudodifferential operator of order -1 is bounded.

Keywords: Variational inequalities, regularity of solutions, pseudodifferential operators

AMS subject classification: 49A29, 47G05, 47H05

1. Introduction

Consider the variational inequality to find \(u \in K \) such that \((v - u, Au) \geq (v - u, b)\) for all \(v \in K \), where \(b \in W^{\frac{1}{2},2}(S) \) is given, \(K \) denotes the positive cone of the Hilbert space \(W^{-\frac{1}{2},2}(S) \) and \(A \) is an elliptic pseudodifferential operator of the negative order -1 on a closed manifold \(S \subset \mathbb{R}^n \).

Variational inequalities are nonlinear problems even if the operator \(A \) is linear because \(K \) fails to be a linear subspace of \(W^{-\frac{1}{2},2}(S) \). The usual setting is that \(A \) maps a Banach or Hilbert space \(X \) into its dual \(X^* \). In many applications \(X \) is a Sobolev space and \(A \) denotes a linear elliptic differential operator of order \(m \). By energetic considerations, for example, it is often easy to prove the (weak) solvability of the variational inequality. Concerning the regularity of weak solutions we find two different situations: For elliptic equations \(Au = b \) the inclusion \(b \in W^{k,2} \) implies, in general, the inclusion \(u \in W^{k+m,2} \). In contrast to this case, problems for variational inequalities have limited regularity, i.e. even if \(b \) is smooth, their solutions \(u \) cannot overcome a certain threshold of smoothness. For instance, Shamir [14] gave an example where \(u \notin W^{3,2}(\Omega) \cup W^{2,4}(\Omega) \) for \(A = -\Delta + I, b \in W^{1,p} \) for all \(p > 1 \) and \(K = \{ u \in W^{1,2}(\Omega) : u \geq 0 \text{ on } \Gamma \subset \partial \Omega \} \) (cf. Lions [9: Section 8.2] and Rodrigues [12: p. 279]). For variational inequalities with elliptic differential operators the regularity of solutions was investigated, e.g., by Kinderlehrer [6], Kinderlehrer and Stampacchia [8], and Uralzeva [2, 17]. The case of systems of variational inequalities with one-sided obstacles was treated in the papers of Kinderlehrer [7] (systems in \(\mathbb{R}^2 \)) and Schumann [13] (Lamé's system of elasticity in \(\mathbb{R}^N \) \((N \geq 2)\).

It seems however that problems concerning regularity of solutions of variational inequalities have not been considered if the operator \(A \) is a pseudodifferential operator.

R. Schumann: Universität Leipzig, Institut für Mathematik, Augustuspl. 10, D - 04109 Leipzig
of negative order. This case can also be motivated by a physical example (see [10]). A-priori the solution u of the variational inequality only belongs to the Sobolev space $W^{-\frac{1}{2}}(S)$ of negative order $-\frac{1}{2}$. Thus we are interested to prove more regularity for the solution. In Section 5 we shall prove the following result.

Theorem. Suppose $b \in W^{\gamma,p}(S)$ for some $\gamma \in (1,2)$ and $r > \frac{N}{\gamma - 1}$. Then the solution $u \in K$ of the variational inequality (1) below is essentially bounded, i.e. $u \in L_\infty(S)$.

We use the following notation. The norm in the Lebesgue space $L_p(U)$ where $U \subset \mathbb{R}^n$ denotes an open set is

$$||u||_p = ||u||_{p,U} = \left(\int_U |u(x)|^p dx \right)^{1/p},$$

and

$$||u||_{\gamma,p} = \left(||u||_p^p + |u|_{\gamma,p}^p \right)^{1/p}$$

denotes the norm in the Sobolev space $W^{\gamma,p}(U)$ with $\gamma \in (0,1)$ where the seminorm $|u|_{\gamma,p}$ is defined by

$$|u|_{\gamma,p} = \left(\int_{U \times U} |x-y|^{-N-\gamma p} |u(x) - u(y)|^p dx dy \right)^{1/p}.$$

The set of pseudodifferential operators of order m acting on U is denoted by $\mathcal{P}^m(U)$.

2. Problem and approximation (I)

We suppose that S is a smooth compact N-dimensional manifold ($N \geq 2$) without boundary ($\partial S = \emptyset$). Consider the following variational inequality:

Find $u \in K$ such that

$$(v - u, Au) \geq (v - u, b) \quad \text{for all } v \in K \quad (1)$$

where $b \in W^{\frac{1}{2},2}(S)$ is given and K is the positive cone of the Hilbert space $W^{-\frac{1}{2},2}(S)$, i.e.

$$K = \left\{ v \in W^{-\frac{1}{2},2}(S) : (v, \varphi) \geq 0 \text{ for all } \varphi \in D(S) \text{ such that } \varphi \geq 0 \text{ on } S \right\} \quad (2)$$

Clearly K is a closed cone of the Sobolev space $X = W^{-\frac{1}{2},2}(S)$. We denote the norm in X by $|| \cdot ||_{-\frac{1}{2},2}$ and make the following hypotheses on the linear continuous operator $A : W^{-\frac{1}{2},2}(S) \to W^{\frac{1}{2},2}(S)$:

(H1) There exists a constant $c > 0$ such that $(v, Av) \geq c ||v||_{-\frac{1}{2},2}^2$ for all $v \in X$.

For sake of technical simplicity, we assume that a part \(\Gamma' \) of \(S \) lies in the hyperplane \(\mathbb{R}^N \subset \mathbb{R}^n \) \((n = N + 1)\). Furthermore we suppose that the principal symbol of the pseudodifferential operator \(A \in \Psi^{-1}(S) \) on \(\Gamma \) is given by

\[
\sigma_{-1}(A)(x',\xi') = |\xi'|^{-1} \quad \text{for } (x',0) \in \Gamma
\]

where \(x' = (x_1, \ldots, x_N) \) and \(\xi' = (\xi_1, \ldots, \xi_N) \) (the general case can be handled after a coordinate transform).

It follows from hypothesis (H1) that the variational inequality (1) has a unique solution \(u \in K \) (for a proof cf. Lions [9: Chapter 2.8.2/Theorem 8.1]). Hypothesis (H2) will be used in Sections 4 and 5 to prove regularity of the solution.

To prove regularity we first approximate the solution \(u \) of variational inequality (1) by solutions \(u^\delta \) \((\delta > 0)\) of the following family of variational inequalities:

\[
\text{Find } u^\delta \in K_1 \text{ such that }
\delta (v - u^\delta | u^\delta) + (v - u^\delta, A u^\delta) \geq (v - u^\delta, b^\delta) \quad \text{for all } v \in K_1
\]

where

\[
K_1 = K \cap L^2(S) = \left\{ v \in L^2(S) : v(x) \geq 0 \ a.e. \ on \ S \right\}.
\]

\(b^\delta \in W^{1,2} \) and \((\cdot | \cdot)\) denotes the inner product in \(L^2(S) \).

We will show that the family \((u^\delta)_{\delta > 0}\) of solutions of variational inequalities (4) approximates the solution \(u \) of variational inequality (1).

Proposition 1. Let \(b, b^\delta \in W^{1,2}(S) \). Then the following assertions are true.

1. For any \(\delta > 0 \), there exists a unique solution \(u^\delta \in K_1 \) of inequality (4).

2. If \(\sup_{\delta} \|b^\delta\|_{1,2} < +\infty \), then \(\sup_{\delta} \|u^\delta\|_{-\frac{1}{2},2} < +\infty \).

3. If \(b^\delta \rightharpoonup b \) in \(W^{1,2}(S) \) as \(\delta \to +0 \), then \(u^\delta \rightharpoonup u \) in \(X = W^{-\frac{1}{2},2}(S) \) where \(u \) is the unique solution of inequality (1).

Proof. Assertion 1: \(K_1 \) is a closed, convex cone of \(L^2(S) \). The linear continuous operator \(A \) defined by

\[
(v, Au) = \delta (v | u) + (v, Au) \quad \text{for all } u, v \in X
\]

is strongly coercive on \(L^2(S) \) since \((u, Au) \geq \delta\|u\|_2^2 + c\|u\|_{\frac{1}{2},2}^2 \) for all \(u \in L^2(S) \) (cf. (2)). Thus existence and uniqueness of the solution \(u^\delta \) of variational inequality (4) follow immediately.

Assertion 2: We set \(v = 0 \) in (4) and get

\[
\delta\|u^\delta\|_2^2 + (u^\delta, Au^\delta) \leq \|b^\delta\|_{1,2}\|u^\delta\|_{-\frac{1}{2},2}.
\]
Thus, by (2) and Young's inequality
\[\delta\|u^\delta\|_2^2 + \frac{c}{2}\|u^\delta\|_{-\frac{1}{2},2}^2 \leq c_1\|b^\delta\|_{\frac{1}{2},2}^2. \]

This means that there exists a constant \(C > 0 \) such that
\[\sup_\delta \|u^\delta\|_{-\frac{1}{2},2} \leq C \quad \text{and} \quad \sup_\delta \sqrt{\delta}\|u^\delta\|_2 \leq C. \] (6)

Assertion 3: Now, we suppose that \(b^\delta \to b \) in \(W^{\frac{1}{2},2}(S) \) and that \((\delta_n) \) is a sequence converging to zero. For simplicity we write only \(\delta \) instead of \(\delta_n \) in what follows. Then we may conclude that, at least for a subsequence, \(u^\delta \to u_1 \in K \) in \(X \) and \(\sqrt{\delta}u^\delta \to w \) in \(L_2(S) \). By compact embedding, \(\sqrt{\delta}u^\delta \to w \) in \(X \). Since \((u^\delta) \) is bounded in \(X \) it follows that \(\sqrt{\delta}u^\delta \to 0 \) in \(X \) as \(\delta \to +0 \). Therefore \(w = 0 \) and \(\sqrt{\delta}u^\delta \to 0 \) in \(L_2(S) \).

(a) To prove \(u = u_1 \) we want to show that \(u_1 \) satisfies the inequality
\[(v - u_1, Au_1) \geq (v - u_1, b) \quad \text{for all} \quad v \in K_1. \] (7)

Then a density argument proves that \(u_1 \) is a solution of inequality (1) and the uniqueness of the solution gives \(u = u_1 \). Indeed, from (4) we get
\[\delta(u^\delta \mid u^\delta) + (u^\delta, Au^\delta) \leq (u^\delta - v, b^\delta) + \delta(v \mid u^\delta) + (v, Au^\delta). \] (8)

Since the positive bilinear form \(v \mapsto (Av, v) \) is weakly sequentially lower semicontinuous (cf. Zeidler [19: Vol. 3, p. 156]) it follows from \(\delta \to +0 \) that
\[(u_1, Au_1) \leq \liminf(u^\delta, Au^\delta) \leq \liminf ((u^\delta, Au^\delta) + \delta\|u^\delta\|^2) \leq (u_1 - v, b) + (v, Au_1) \] (9)

for all \(v \in K_1 \). Thus (7) is proved and we have \(u = u_1 \). A well-known argument concerning subsequences (cf. Zeidler [19: Vol. 1, p. 480]) shows that the whole sequence \((u^\delta_n) \) is weakly convergent to \(u \).

(b) We prove the strong convergence \(u^\delta \to u \) in \(X \). Let us use (8) with \(v = u \) to get
\[(u, Au) \leq \liminf(u^\delta, Au^\delta) \leq \limsup(u^\delta, Au^\delta) \leq \limsup ((u^\delta, Au^\delta) + \delta\|u^\delta\|^2) \leq \limsup ((u^\delta - u, b^\delta) + \delta(u \mid u^\delta) + (u, Au^\delta)) = (u, Au) \]

and therefore \((u^\delta, Au^\delta) \to (u, Au) \) as \(\delta \to +0 \). Then (2) implies
\[c\|u^\delta - u\|^2_{-\frac{1}{2},2} \leq (u^\delta - u, Au^\delta - Au) \to 0 \]

and Assertion 3 is proved. \(\blacksquare \)
3. Approximation (II)

In Section 2 we replaced the variational inequality (1) acting in \(X = W^{-\frac{1}{2},2}(S) \) by a family of approximate variational inequalities depending on \(\delta > 0 \) with cone \(K_1 \subseteq L_2(S) \) (see (4)). Now we suppose that \(\delta > 0 \) is fixed and introduce a penalization of the negative part of the functions of \(L_2(S) \). The aim is to get a variational inequality over the whole of \(L_2(S) \). This variational inequality has a unique solution \(u_\varepsilon = u_\varepsilon^\delta \) where \(\varepsilon > 0 \) is the penalization parameter. (Since \(\delta \) is fixed in this section we shall omit the supercript \(\delta \)).

Later, in Sections 4 and 5 we are going to derive bounds on the solutions depending neither on \(\varepsilon \) nor on \(\delta \) in order to get regularity results for the solution \(u \) of variational inequality (1).

Suppose \(\varepsilon > 0 \). We construct the following approximation of the variational inequality (4):

Find \(u_\varepsilon \in L_2(S) \) such that

\[
\delta(v - u_\varepsilon | u_\varepsilon) + (v - u_\varepsilon, Au_\varepsilon) + F_\varepsilon(v) - F_\varepsilon(u_\varepsilon) \geq (v - u_\varepsilon, b_\varepsilon) \tag{10}
\]

for all \(v \in L_2(S) \), where \(b_\varepsilon \in W^{\frac{1}{2},2}(S) \) and the penalization functional \(F_\varepsilon \) is defined by

\[
F_\varepsilon(v) = \frac{1}{2\varepsilon} \int_S |v|^{-1} dS
\]

for \(v \in L_2(S) \), denoting for any real function \(\varphi \) by \(\varphi^\pm \) the positive and negative parts of \(\varphi \), respectively, i.e. \(\varphi = \varphi^+ + \varphi^- \).

Parallel with (10) we consider the following variational inequality:

Find \(u^\delta \in L_2(S) \) such that

\[
\delta(v - u^\delta | u^\delta) + (v - u^\delta, Au^\delta) + F(v) - F(u^\delta) \geq (v - u^\delta, b^\delta) \tag{11}
\]

for all \(v \in L_2(S) \), where \(F \) is the indicatrix of the convex set \(K_1 \), i.e. for \(v \in L_2(S) \) we have \(F(v) = 0 \) if \(v \in K_1 \) and \(F(v) = +\infty \) otherwise.

We get now the following statement.

Proposition 2. Let \(\delta > 0 \) be fixed and \(b^\delta, b^\varepsilon \in W^{\frac{1}{2},2}(S) \). Then the following assertions are true.

1. For any \(\varepsilon > 0 \) the variational inequality (10) has exactly one solution \(u_\varepsilon \in L_2(S) \).
2. The variational inequality (11) has exactly one solution \(u^\delta \in L_2(S) \).
3. If \(M_0 = \sup_\varepsilon \|b_\varepsilon\|_{\frac{1}{2},2} < +\infty \), then there exists a constant \(M > 0 \) independent of \(\delta \) such that \(M = \sup_\varepsilon (\|u_\varepsilon\|_{\frac{1}{2},2} + \delta \|u_\varepsilon\|_2^2 + F_\varepsilon(u_\varepsilon)) < +\infty \).
4. \(b_\varepsilon \to b^\delta \) in \(W^{\frac{1}{2},2}(S) \) as \(\varepsilon \to +0 \) implies \(u_\varepsilon \to u^\delta \) in \(L_2(S) \) and in \(W^{-\frac{1}{2},2}(S) \).
Proof. Assertion 1 follows from the coercivity of the operator A defined by (5) and the fact that $F_\varepsilon(v) \geq 0$ for all $v \in L_2(S)$ (cf. Lions [9: Chapter 2.8.5/Theorem 8.5]). Since (11) and (4) are equivalent Assertion 2 is obvious. To prove Assertion 3 we set $v = 0$ in (10). As $F_\varepsilon(0) = 0$ we get

$$\delta \|u_\varepsilon\|_2^2 + (u_\varepsilon, Au_\varepsilon) + F_\varepsilon(u_\varepsilon) \leq \|b_\varepsilon\|_{\frac{1}{2},2} \|u_\varepsilon\|_{\frac{1}{2},2}.$$

Therefore

$$\delta \|u_\varepsilon\|_2^2 + \frac{c}{2} \|u_\varepsilon\|_{\frac{1}{2},2}^2 + F_\varepsilon(u_\varepsilon) \leq c_1 \|b_\varepsilon\|_{\frac{1}{2},2}$$ (12)

which gives Assertion 3.

To prove Assertion 4 suppose $\varepsilon = \varepsilon_n \to +0$. If $\|b_\varepsilon - b^\delta\|_{\frac{1}{2},2} \to 0$ we get from estimate (12) that at least for a subsequence $u_\varepsilon \to u_1$ in $L_2(S)$. Thus $u_\varepsilon \to u_1$ in X. We need to prove that $u_1 = u^\delta$. From the variational inequality (10) it follows that

$$\delta \|u_\varepsilon\|_2^2 + (u_\varepsilon, Au_\varepsilon) \leq \delta(v \mid u_\varepsilon) + (v, Au_\varepsilon) + F_\varepsilon(v) - F_\varepsilon(u_\varepsilon) + (u_\varepsilon - v, b_\varepsilon)$$ (13)

for all $v \in L_2(S)$. By virtue of Barbu and Precupanu [3: Theorem 2.3/p. 107] we have

$$F_\varepsilon(\varphi) = \frac{1}{2\varepsilon} \|\varphi - J_\varepsilon(\varphi)\|_2^2 + F(J_\varepsilon(\varphi))$$ (14)

where $J_\varepsilon = (I + \varepsilon \partial F)^{-1}$ denotes the resolvent of ∂F. Then $\sup_\varepsilon F_\varepsilon(u_\varepsilon) < +\infty$ implies $\|u_\varepsilon - J_\varepsilon u_\varepsilon\| \to 0$ if $\varepsilon \to +0$. Therefore we have $J_\varepsilon u_\varepsilon \to u_1$ in $L_2(S)$ and, since the convex function F is weakly sequentially lower semincontinuous (see [3: p. 102]),

$$F(u_1) \leq \lim inf F(J_\varepsilon u_\varepsilon)$$

$$\leq \lim inf \left(-\frac{1}{2\varepsilon} \|u_\varepsilon - J_\varepsilon u_\varepsilon\|_2^2 + F_\varepsilon(u_\varepsilon) \right)$$ (15)

$$\leq \lim inf F_\varepsilon(u_\varepsilon).$$

Since $u_\varepsilon \to u_1$ in $L_2(S)$ and $u_\varepsilon \to u_1$ in X we get from (13)

$$\delta \|u_1\|_2^2 + (u_1, Au_1)$$

$$\leq \lim inf (\delta \|u_\varepsilon\|_2^2 + (u_\varepsilon, Au_\varepsilon))$$

$$\leq \lim sup (\delta \|u_\varepsilon\|_2^2 + (u_\varepsilon, Au_\varepsilon))$$

$$\leq \lim sup \{\delta(v \mid u_\varepsilon) + (v, Au_\varepsilon) + F_\varepsilon(v) - F_\varepsilon(u_\varepsilon) + (u_\varepsilon - v, b_\varepsilon)\}$$

$$\leq F(v) - \lim inf F_\varepsilon(u_\varepsilon) + \delta(v \mid u_1) + (v, Au_1) + (u_1 - v, b)$$

$$\leq F(v) - F(u_1) + \delta(v \mid u_1) + (v, Au_1) + (u_1 - v, b)$$ (16)

for all $v \in L_2(S)$, i.e. u_1 is a solution of variational inequality (11). Observe that $F_\varepsilon(v) \to F(v)$ for all $v \in L_2(S)$ (see Barbu and Precupanu [3: p. 107]). Uniqueness implies $u_1 = u^\delta$.
4. Regularity

In this section we derive L_p-bounds for the solution $u_\varepsilon = u_\varepsilon^\delta$ of the variational inequality (10) that are independent of ε and δ. (Here again, we shall omit the superscript δ.) We are going to consider u_ε on the hyperplane part Γ of S defined in hypothesis (H2). The solution $u_\varepsilon \in L_2(S)$ satisfies the inequality

$$\delta(v - u_\varepsilon | u_\varepsilon) + (v - u_\varepsilon, Au_\varepsilon) + F_\varepsilon(v) - F_\varepsilon(u_\varepsilon) \geq (v - u_\varepsilon, b_\varepsilon)$$ \hspace{1cm} (17)

for all $v \in L_2(S)$. We multiply inequality (17) by the test function $v = u_\varepsilon + t\eta$, where $0 \neq t \in \mathbb{R}$ and $\eta \in C_0^\infty(S)$ satisfies the condition $\text{supp}\eta \subset \subset \Gamma$. Thus

$$\delta(\eta | u_\varepsilon) + (\eta, Au_\varepsilon) + \frac{1}{t}(F_\varepsilon(u_\varepsilon + t\eta) - F_\varepsilon(u_\varepsilon)) \left\{ \begin{array}{ll} > & t > 0 \\ = & t = 0 \\ < & t < 0 \end{array} \right. (\eta, b_\varepsilon) \text{ for } t \neq 0.$$

From

$$\lim_{t \to 0} \frac{1}{t}(F_\varepsilon(u_\varepsilon + t\eta) - F_\varepsilon(u_\varepsilon)) = \varepsilon^{-1} \int_{\Gamma} \eta u_\varepsilon^- \, dS$$

it follows that

$$\delta \int_{\Gamma} \eta u_\varepsilon^- \, dS + \int_{\Gamma} \eta Au_\varepsilon \, dS + \varepsilon^{-1} \int_{\Gamma} \eta u_\varepsilon^- \, dS = \int_{\Gamma} \eta b_\varepsilon \, dS$$ \hspace{1cm} (18)

for all $\eta \in C_0^\infty(S)$ and by approximation for all $\eta \in L_2(S)$ with $\text{supp}\eta \subset \subset \Gamma$. Since η can be chosen arbitrarily we get

$$\delta u_\varepsilon + Au_\varepsilon + \varepsilon^{-1} u_\varepsilon^- = b_\varepsilon \quad \text{in } L^1_2(\Gamma).$$ \hspace{1cm} (19)

4.1 (Localization and preliminary regularity). In the following we are going to use local properties of pseudodifferential operators. We choose an open subset $U \subset \subset \Gamma$ and an arbitrary but fixed test function $\varphi \in C_0^\infty(U)$ with $\varphi \geq 0$. Setting $g_\varepsilon = \varphi u_\varepsilon$, relation (19) gives

$$\delta g_\varepsilon + \varphi Au_\varepsilon + \varepsilon^{-1} g_\varepsilon^- = \varphi b_\varepsilon =: \tilde{b}_\varepsilon.$$ \hspace{1cm} (20)

Remark that $\text{supp}\tilde{b}_\varepsilon \subset U$. Furthermore we choose a function $\mu \in C_0^\infty(U)$ such that $\mu \equiv 1$ on an open set $W \subset \subset U$ with $K_\varphi = \text{supp}\varphi \subset W$. Then relation (20) may be written in the form

$$\delta g_\varepsilon + (\varphi A\mu) u_\varepsilon + \varepsilon^{-1} g_\varepsilon^- = \tilde{b}_\varepsilon - \varphi A(1 - \mu) u_\varepsilon = \tilde{b}_\varepsilon + R_1 u_\varepsilon = \tilde{b}_\varepsilon + \mu R_1 u_\varepsilon$$ \hspace{1cm} (21)

where $R_1 = -\varphi A(1 - \mu)$ is a so-called regularizing ψdo: $R_1 \in \Psi^{-\infty}(S)$ (see Dieudonné [4: Vol. 7, Prop. 23.26.11/p. 212]). Therefore $R_1 : W^{-\frac{1}{2},2}(S) \longrightarrow W^{m,2}(U) \subset W^{m,2}(S)$ is a continuous operator for all $m \in \mathbb{N}$.

Next we make use of the principal symbol $\sigma_{-1}(A)$ defined in hypothesis (H2). Let us agree to write $x \in \mathbb{R}^N$ and $\xi \in \mathbb{R}^N$ in the following instead of x' and ξ', respectively. Since the principal symbols of both $\varphi A\mu$ and $\mu A\varphi$ are the same: $\sigma_{-1}(\varphi A\mu)(x, \xi) = \sigma_{-1}(\mu A\varphi)(x, \xi) = \varphi(x)|\xi|^{-1}$, we only get a perturbation of order -2 exchanging φ and
μ in the term \((φAμ)\) of (21): \(φAμ = μAφ + P_{-2}\) where \(P_{-2} \in Ψ^{-2}(U)\) is a proper \(ψ\)do of order \(-2\). Thus
\[
δg_ε + (μAφ)u_ε + ε^{-1}g_ε^- = b_ε + μR_1u_ε + P_{-2}g_ε =: f_ε.
\] (22)

By the mapping properties of proper \(ψ\)do's, we see that \(P_{-2} : W^{-\frac{1}{2}}(U) → W^{\frac{3}{2}}(U)\) is a continuous linear mapping. Introducing a third cut-off function \(μ_1\) such that \(μ_1 \equiv 1\) on \(supp μ\) we can re-write (22) as
\[
δg_ε + (μAμ_1)g_ε + ε^{-1}g_ε^- = f_ε.
\] (23)

The principal symbol of \(μAμ_1\) on \(r\) is \(σ_{-1}(μAμ_1) = μ(x)|χ|^{-1}\).

Let us fix \(ε > 0\) and study the individual function \(g_ε\) for a moment.

Lemma 1. Let us assume \(b_ε \in W^{1,p}_{loc}(Γ)\) for all \(p < +∞\). Then \(g_ε = φu_ε^δ \in W^{1,p}(U)\) for all \(ε, δ > 0\) and \(p < +∞\).

Proof. The solution \(u_ε\) of inequality (17) belongs to \(L_2(S)\). Therefore \(f_ε \in W^{1,2}(U)\). From Treves [15: Theorem 2.1/p. 16] we get \((μAμ_1)g_ε \in W^{1,2}(U)\) and relation (23) gives the inclusion
\[
δg_ε + ε^{-1}g_ε^- \in W^{1,2}(U)
\] (24)

Therefore \(δg_ε^+\) and \((δ + ε^{-1})g_ε^-\) both belong to \(W^{1,2}(U)\), and \(g_ε \in W^{1,2}(U)\) for each fixed pair \(δ, ε > 0\). From the embedding theorem it follows that \(g_ε \in L_{p_1}(U)\) with \(p_1 = \frac{2N}{N-2}\) for \(N ≥ 3\) and \(p_1 < +∞\) arbitrary for \(N = 2\). From the same argument we derive the inclusion \(f_ε, (μAμ_1)g_ε \in W^{1,p_1}(U)\) and finally \(g_ε \in W^{1,p_1}(S) \subset L_{p_2}(U)\) with \(p_2 = \frac{2N}{N-4}\) for \(N ≥ 5\) and \(p_2 < +∞\) arbitrary for \(N ≤ 4\). Repeating the argument we conclude that for each \(ε, δ > 0\)
\[
g_ε = φu_ε^δ \in W^{1,p}(U) \quad \text{for all } p < +∞.
\] (25)

Then it follows from the embedding theorem that \(g_ε \in C^β(U)\) for all \(β \in (0, 1)\). \(\square\)

4.2 (\(L^p\)-regularity). We intend first to apply a \(ψ\)do \(P\) with principal symbol \(|χ|\) to equality (23). Then we multiply it by the test function \((g_ε)^{p-1} = |g_ε|^{p-2}g_ε\). In order to avoid additional regularizing terms containing \(ε^{-1}g_ε^-\) we need some preparation. For this define
\[
(Pv)(x) = \int_{\mathbb{R}^N} e^{iξx}χ(ξ)|ξ|^β\hat{v}(ξ)\frac{dξ}{(2π)^N}
\]
for \(v \in C^∞_0(\mathbb{R}^N)\), where \(χ \in C^∞(\mathbb{R}^N)\) is a cut-off function characterized, e.g., by
\[
χ(ξ) = \begin{cases}
0 & \text{if } |ξ| < 1 \\
1 & \text{if } |ξ| ≥ 2.
\end{cases}
\]

Now we put \(∫ Pv \cdot w dx\) into a form adapted for considerations of the positive and negative part of the functions involved. Taking real functions \(v, w ∈ C^∞_0(\mathbb{R}^N)\) the
theorem of Fubini gives

\[
(P_v, w) = \int_{\mathbb{R}^N} \left(\int_{\mathbb{R}^N} e^{i \xi \cdot x} \chi(\xi) |\xi| \hat{v}(\xi) \frac{d\xi}{2\pi N} \right) w(x) \, dx
\]

\[
= \int_{\mathbb{R}^N} \chi(\xi) |\xi| \hat{v}(\xi) \frac{d\xi}{2\pi N} \int_{\mathbb{R}^N} \frac{d\xi}{2\pi N}
\]

\[
= \int_{\mathbb{R}^N} |\xi| \hat{v}(\xi) \frac{d\xi}{2\pi N} + \int_{\mathbb{R}^N} (\chi(\xi) - 1) |\xi| \hat{v}(\xi) \frac{d\xi}{2\pi N}
\]

\[=: I_1 + I_2.
\]

The operator R_2 defined by

\[
(R_2 v)(x) = \int_{\mathbb{R}^N} e^{i \xi \cdot x} (\chi(\xi) - 1) |\xi| \hat{v}(\xi) \frac{d\xi}{2\pi N}
\]

for $v \in C_0^\infty(\mathbb{R}^N)$ is regularizing: $R_2 \in \mathcal{P}^{-\infty}(\mathbb{R}^N)$, since the amplitude $\chi(\xi) - 1$ vanishes outside the ball $B_2(0)$ (cf. Dieudonné [4: Remark 23.19.5(iii)/p.149]). Applying Parseval’s equality to I_1 we get

\[
I_1 = a \int_{\mathbb{R}^N \times \mathbb{R}^N} |x - y|^{-N-1} (v(x) - v(y)) (w(x) - w(y)) \, dx \, dy
\]

where $a = a(N) > 0$ is a constant (see Wloka [18: p. 97] and Hörmander [5: Vol. 1/p. 241]). We stress that both integrals I_1 and I_2 depend on v and w. We have $(R_2 v, w) = I_2$ and define an operator J_1 by

\[
(J_1 v, w) = I_1 = a \int_{\mathbb{R}^N \times \mathbb{R}^N} |x - y|^{-N-1} (v(x) - v(y)) (w(x) - w(y)) \, dx \, dy
\]

for all $v, w \in C_0^\infty(\mathbb{R}^N)$ to get

\[
(J_1 v, w) = (P_v, w) - (R_2 v, w).
\]

We now prove L_p-regularity of the solution u of the variational inequality (1).

Theorem 1. Let $2 \leq p < +\infty$ and $b \in W^{1,2}(S) \cap W^{1,p}_{loc}(\Gamma)$. Then $u \in L^p_{loc}(\Gamma)$.

Remark 1. For $2 \leq p < +\infty$, the inclusion $b \in W^{1,p}(S)$ implies the inclusion $u \in L^p(S)$ if after a coordinate transform the operator A has the principal symbol (3) in each coordinate patch of a partition of unity on S.

Proof of Theorem 1. To prove the theorem we consider the approximate problems and derive uniform bounds for the solutions $u_\varepsilon = u_\varepsilon^\delta$ of inequality (10) and u_δ of inequality (4).

(a) For simplicity we set $b_\delta = b \in W^{1,2}(S) \cap W^{1,p}_{loc}(\Gamma)$. By approximation, we may assume that the family (b_ε) belongs to $W^{1,2}(S) \cap W^{1,q}_{loc}(\Gamma)$ for all $q < +\infty$ and,
furthermore, \(b_\varepsilon \to b^\delta \) in \(W^{1,2} \)}(S) in \(W^{1,p}_{\text{loc}}(\Gamma) \) as \(\varepsilon \to +0. \) In particular, for any open set \(O \subset \subset \Gamma \)

\[
\sup_{\varepsilon} \| b_\varepsilon \|_{1,p,0} \leq M = M(O) < +\infty. \tag{29}
\]

It follows from Lemma 1 that \(g_\varepsilon \in W^{1,q}(U) \) for all \(q < +\infty. \) Therefore also \(g_\varepsilon^- \in W^{1,q}(U) \) for all \(q < +\infty. \) Suppose \(q > N, \) arbitrary. Then \(W^{1,q}(U) \) is a Banach algebra (see Adams [1: p. 115]) and it follows that \((g_\varepsilon)^{p-1} = |g_\varepsilon|^{p-2}g_\varepsilon \in W^{1,q}(U) \) for each \(q \geq 2. \) It is our goal to show that (29) implies

\[
\sup_{\varepsilon} \| g_\varepsilon \|_p \leq M_1 < +\infty \tag{30}
\]

where the constant \(M_1 \) is independent of \(\delta. \) This gives the local boundedness of \(u_\varepsilon \in L_p(\Gamma). \) In fact, we may choose \(\varphi \) such that \(\varphi \equiv 1 \) on any open set \(V \subset \subset U \) and estimation (30) implies

\[
\sup_{\varepsilon} \| u_\varepsilon \|_{p,V} \leq M_1 < +\infty. \tag{31}
\]

(b) We apply operator \(J_1 \) to equality (23) and multiply it by \(h_\varepsilon = (g_\varepsilon)^{p-1} \) to get

\[
\delta(J_1 g_\varepsilon, h_\varepsilon) + (J_1 (\mu A \mu_1) g_\varepsilon, h_\varepsilon) + \epsilon^{-1}(J_1 g_\varepsilon^-, h_\varepsilon) = (J_1 f_\varepsilon, h_\varepsilon),
\]

that is

\[
L_1 + L_2 + L_3 := \delta a \int \int |x-y|^{-N-1} (g_\varepsilon(x) - g_\varepsilon(y)) (h_\varepsilon(x) - h_\varepsilon(y)) \, dxdy
\]

\[
+ (P(\mu A \mu_1) g_\varepsilon, h_\varepsilon)
\]

\[
+ \epsilon^{-1} a \int \int |x-y|^{-N-1} (g_\varepsilon^-(x) - g_\varepsilon^-(y)) (h_\varepsilon(x) - h_\varepsilon(y)) \, dxdy
\]

\[
= ((P - R_2)f_\varepsilon, h_\varepsilon) + (R_2(\mu A \mu_1) g_\varepsilon, h_\varepsilon).
\]

Now we have to consider the terms \(L_1, L_2 \) and \(L_3 \) of (32) separately. The function \(t \mapsto |t|^{p-2} t \) is uniformly monotone for \(p \geq 2: \)

\[
(|s|^{p-2} s - |t|^{p-2} t)(s - t) \geq c|s - t|^p \quad \text{for all } s, t \in \mathbb{R} \tag{33}
\]

where \(c > 0 \) is a constant (cf. Zeidler [19: Vol. 2/p. 503]). Then

\[
L_1 = \delta a \int \int |x-y|^{-N-1} (g_\varepsilon(x) - g_\varepsilon(y)) (|g_\varepsilon(x)|^{p-2} g_\varepsilon(x) - |g_\varepsilon(y)|^{p-2} g_\varepsilon(y)) \, dxdy
\]

\[
\geq \delta ca \int \int |x-y|^{-N-1} |g_\varepsilon(x) - g_\varepsilon(y)|^p dxdy
\]

\[
= \delta ca |g_\varepsilon|^p_{p,p}.
\]

The third term \(L_3 \) in (32) is the penalization term. Observing that

\[
(|s|^{p-2} s - |t|^{p-2} t)(s^- - t^-) \geq (|s^-|^{p-2} s^- - |t^-|^{p-2} t^-)(s^- - t^-)
\]
it follows from (33) that

\[
L_3 = \varepsilon^{-1} a \int \int |x - y|^{-N-1} (g^-_\varepsilon(x) - g^-_\varepsilon(y)) (h^-_\varepsilon(x) - h^-_\varepsilon(y)) \, dx \, dy
\]

\[
\geq \varepsilon^{-1} c a \int \int |x - y|^{-N-1} |g^-_\varepsilon(x) - g^-_\varepsilon(y)|^p \, dx \, dy
\]

\[
= \varepsilon^{-1} c a |g^-_\varepsilon|_{p,p}^p.
\]

The second term of \(L_2 = (P(\mu A_1)g_\varepsilon, h_\varepsilon)\) of (32) contains the composition of \(P \in \Psi^1(U)\) and the proper \(\psi \) do \(\mu A_1 \in \Psi^{-1}(U)\). The principal symbol of \(P(\mu A_1) \in \Psi^0(U)\) is \(\sigma_0(P(\mu A_1))(x, \xi) = \chi(\xi)\mu(x)\). Thus there exists a \(\psi \) do \(P^{-1} \in \Psi^{-1}(U)\) such that

\[
\int (P(\mu A_1)(v)) \cdot w \, dx
\]

\[
= \int \left\{ \int e^{i(x-y)\xi} \chi(\xi)\mu(y)v(y) \, dy \cdot \frac{d\xi}{(2\pi)^N} \right\} w(x) \, dx + \int P_{-1} v \cdot w \, dx
\]

\[
= \int \left(\int e^{ix\xi} \chi(\xi)\bar{v}(\xi) \frac{d\xi}{(2\pi)^N} \right) w(x) \, dx + (P_{-1} v, w)
\]

\[\leq (1 + |P_{-1} v, w|) (1 + |P_{-1} v, w|)
\]

for all \(v, w \in C^0_c(W)\) where \(\int \int\) denotes an oscillatory integral and \(R_3\) is regularizing by the argument already used for \(R_2\). Then, by approximation,

\[
L_2 = \int g_\varepsilon^p \, dx + (R_3 g_\varepsilon, h_\varepsilon) + (P_{-1} g_\varepsilon, h_\varepsilon).
\]

By Hölder's inequality, equations (32) and (34) together give

\[
\delta c a |g_\varepsilon|_{p,p}^p + \|g_\varepsilon\|_{p,p}^p + \varepsilon^{-1} c a |g^-_\varepsilon|_{p,p}^p
\]

\[
\leq \left(\|P - R_2\|_p + \|R_2(\mu A_1)g_\varepsilon\|_p + \|R_3 g_\varepsilon\|_p + \|P_{-1} g_\varepsilon\|_p \right) \|g_\varepsilon\|_{p-1}^p
\]

\[
\leq C \left(\|\varphi b\|_{1,p,W} + \|P - R_2\|_p u \|_p, w + \|P_{-2} g_\varepsilon\|_{1,p,W}
\]

\[
+ \|R_2(\mu A_1)g_\varepsilon\|_p, w + \|R_3 g_\varepsilon\|_p, w + \|P_{-1} g_\varepsilon\|_p, w \right) \|g_\varepsilon\|_{p-1}^p
\]

since \(K_\varphi = \text{supp} \varphi \subset W \subset U\). Young's inequality and Proposition 2 imply

\[
\delta |g_\varepsilon|_{1,p,p}^p + \|g_\varepsilon\|_{p,p}^p + \varepsilon^{-1} |g^-_\varepsilon|_{p,p}^p
\]

\[
\leq C \left(\|b\|_{1,p,W} + \|u\|_{p,2,s} + \|P_{-2} g_\varepsilon\|_{1,p,W} + \|g_\varepsilon\|_{\frac{1}{2},2} + \|P_{-1} g_\varepsilon\|_{p,w} \right)
\]

\[
\leq C \left(1 + \|P_{-2} g_\varepsilon\|_{1,p,W} + \|P_{-1} g_\varepsilon\|_{p,w} \right)
\]
since R_1 and R_2 are regularizing.

(c) We are going to apply a bootstrap argument. Using the embedding theorem and the fact that $P_{-1} : W^{rac{1}{2},2}_{comp}(U) \to W^{rac{1}{2},2}_{loc}(U)$ and $P_{-2} : W^{rac{1}{2},2}_{comp}(U) \to W^{rac{3}{2},2}_{loc}(U)$ are continuous linear mappings we get

\[
\|P_{-1}g\|_{q_1,w} \leq c_1\|P_{-1}g\|_{\frac{1}{2},2,w} \leq c_2\|g\|_{-\frac{1}{2},2} \tag{36}
\]
\[
\|P_{-2}g\|_{1,q_1,w} \leq c_1\|P_{-2}g\|_{\frac{3}{2},2,w} \leq c_2\|g\|_{-\frac{1}{2},2} \tag{37}
\]

for some constants $c_1 > 0$ and $c_2 > 0$, where $q_1 = \frac{2N}{N-1}$. We stress that these constants depend upon W and K_y, but neither on ϵ nor on δ. It follows from (35) with $p = q_1$ that

\[
\sup_{\epsilon} \left(\epsilon|g_\epsilon|_{q_1, q_1, w}^q + \|g_\epsilon\|_{q_1, q_1, w} + \epsilon^{-1}|g_\epsilon^{-1}|_{q_1, q_1, w} \right) < +\infty. \tag{38}
\]

This implies $\sup_{\epsilon} \|g_\epsilon\|_{q_1, w} < +\infty$. As in the first step we get

\[
\sup_{\epsilon} \{\|P_{-2}g\|_{2,q_1,w} + \|P_{-1}g\|_{1,q_1,w}\} < +\infty. \tag{39}
\]

With $q_2 = \frac{2N}{N-3}$ the embedding theorem implies

\[
\|P_{-2}g\|_{1,q_2,w} \leq c_3\|P_{-2}g\|_{2,q_1,u} \quad \text{and} \quad \|P_{-1}g\|_{q_2,w} \leq c_3\|P_{-1}g\|_{1,q_1,w}
\]

and we get from (35) with $p = q_2$

\[
\sup_{\epsilon, \delta} \left(\delta|g_\epsilon|_{q_2, q_2}^q + \|g_\epsilon\|_{q_2, q_2} + \epsilon^{-1}|g_\epsilon^{-1}|_{q_2, q_2} \right) < +\infty.
\]

We can repeat this procedure as far as $q_j \leq p$. In the last step we get

\[
\sup_{\epsilon} \left(\delta|g_\epsilon|^p_{p,p} + \|g_\epsilon\|_{p,p} + \epsilon^{-1}|g_\epsilon^{-1}|_{p,p} \right) \leq M_1 < +\infty \tag{39}
\]

where the estimates used above show that the constant M_1 is independent of $\delta > 0$. This proves estimations (30) and (31).

(d) Let $\epsilon_n \to +0$ for fixed $\delta > 0$. Since $\sup \|g_\epsilon\|_p \leq M_1$ we can extract a subsequence with $\varphi u_\epsilon \to g^\delta$ in $L_p(U)$. As $u_\epsilon \to u^\delta$ in $L^2(S)$ (Proposition 2) we conclude that $g^\delta = \varphi u^\delta \in L^p(S)$, i.e. $u^\delta \in L^p_{loc}(\Gamma)$. Let $\varphi \equiv 1$ on V. The weak sequential lower semicontinuity of the norm gives $\|u^\delta\|_{p, V} \leq \|\varphi u^\delta\|_p \leq M_1$ for $V \subset U$.

(e) If $\delta_n \to +0$, there exists a subsequence such that $\varphi u^\delta \to u_0$ in $L_p(S)$ and $\varphi u^\delta \to u_0$ in $W^{-\frac{1}{2},2}(U)$. Proposition 1 gives $\varphi u^\delta \to \varphi u$ in $W^{-\frac{1}{2},2}(S)$. Consequently $u_0 = \varphi u \in L_p(U)$, and it follows that $u \in L^p_{loc}(\Gamma)$ with $\|u\|_{p, V} \leq \|\varphi u\|_p \leq M_1$ for $V \subset U$.
5. L^∞-regularity

5.1. To prove L^∞-regularity for the solutions u_ε of equation (19) we apply a method from the classical theory of differential equations due to Stampacchia. It depends on estimates for the size of level sets. As in Subsection 4.2 we begin with a kind of differentiation of equation (23). Here we are going to use the operator

\[(P^\gamma v)(x) := \int_{\mathbb{R}^N} e^{i x \xi} \chi(\xi) |\xi|^\gamma \hat{\nu}(\xi) \frac{d\xi}{(2\pi)^N} \]

(40)

for $v \in C^\infty_0(\mathbb{R}^N)$ where $1 < \gamma < 2$ and $\chi \in C^\infty(\mathbb{R}^N)$ is the same function as in Subsection 4.2. For $g_\varepsilon = \varphi u_\varepsilon$ we have the following estimate.

Lemma 2. Suppose $b_\varepsilon \in W^{1,2}(U)$ for some $\gamma \in (1, 2)$. Then there exist appropriate pseudo's Q_γ and $Q_{\gamma-2}$ from $\Psi^\gamma(U)$ and $\Psi^{\gamma-2}(U)$, respectively, such that

\[\delta a \left[|g_\varepsilon(x) - k|^2 + a |g_\varepsilon(x) - k|^2 \right]_{2,2} \leq \int_U \left(|Q_{\gamma} g_\varepsilon| + |Q_{\gamma-2} g_\varepsilon| \right) |g_\varepsilon(x) - k|^2 dx. \]

(41)

Proof. (a) For $v, w \in C^\infty_0(\mathbb{R}^N)$ we get

\[(P^\gamma v, w) = \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} e^{i x \xi} \chi(\xi) |\xi|^\gamma \hat{\nu}(\xi) \frac{d\xi}{(2\pi)^N} \ w(x) \ dx \]

\[= \int_{\mathbb{R}^N} |\xi|^\gamma \hat{\nu}(\xi) \overline{w(\xi)} \frac{d\xi}{(2\pi)^N} + \int_{\mathbb{R}^N} (\chi(\xi) - 1) |\xi|^\gamma \hat{\nu}(\xi) \overline{w(\xi)} \frac{d\xi}{(2\pi)^N} \]

(42)

Concerning the integral I_2^γ we observe that the operator R_2^γ defined by

\[(R_2^\gamma v)(x) = \int_{\mathbb{R}^N} e^{i x \xi} (\chi(\xi) - 1) |\xi|^\gamma \hat{\nu}(\xi) \frac{d\xi}{(2\pi)^N} \]

for $v \in C^\infty_0(\mathbb{R}^N)$ is regularizing, whereas Parseval's inequality implies

\[I_1^\gamma = a \int_{\mathbb{R}^N \times \mathbb{R}^N} |x - y|^{-N-\gamma} (v(x) - v(y)) (w(x) - w(y)) \ dx \ dy \]

(43)

with $a = a(\gamma, N) > 0$. Defining

\[(J^\gamma v, w) = I_1^\gamma \]

\[= a \int_{\mathbb{R}^N \times \mathbb{R}^N} |x - y|^{-N-\gamma} (v(x) - v(y)) (w(x) - w(y)) \ dx \ dy \]

for all $v, w \in C^\infty_0(\mathbb{R}^N)$ we get

\[(J^\gamma v, w) = (P^\gamma v, w) - (R_2^\gamma v, w). \]

(44)
(b) The application of the operator \(J \) to equality (23) and scalar multiplication by a test function \(h_\varepsilon \) gives

\[
L_1 + L_2 + L_3 := \delta a \int \int |x - y|^{-N-\gamma}(g_\varepsilon(x) - g_\varepsilon(y))(h_\varepsilon(x) - h_\varepsilon(y))\,dxdy \\
+ (P^\gamma(\mu A\mu_1)g_\varepsilon, h_\varepsilon) \\
+ \varepsilon^{-1} a \int \int |x - y|^{-N-\gamma}(g_\varepsilon^-(x) - g_\varepsilon^-(y))(h_\varepsilon(x) - h_\varepsilon(y))\,dxdy
\]

\[
= \left((P^\gamma - R_2^\gamma)f_\varepsilon, h_\varepsilon \right) + (R_2^\gamma(\mu A\mu_1)g_\varepsilon, h_\varepsilon).
\]

For \(k \geq 0 \), choose \(h_\varepsilon = |g_\varepsilon - k|^+ \in W^{\frac{3}{2}, 2}(U) \) in (45). It follows that \(\text{supp} [g_\varepsilon(x) - k]^+ \subseteq \text{supp} \varphi \) for \(k \geq 0 \). We first get

\[
L_1 = \delta a \int \int |x - y|^{-N-\gamma}([g_\varepsilon(x) - k] - [g_\varepsilon(y) - k]) \\
\times ([g_\varepsilon(x) - k]^+ - [g_\varepsilon(y) - k]^+)\,dxdy \\
\geq \delta a \int \int |x - y|^{-N-\gamma}||g_\varepsilon(x) - k|^+ - [g_\varepsilon(y) - k]^+|^2\,dxdy \\
= \delta a [g_\varepsilon(k)^+]^2|^{2}_{\frac{3}{2}, 2}.
\]

Observing that

\[
(s^- - t^-)(|s - k|^+ - |t - k|^+) \geq 0 \quad \text{for all } s, t \in \mathbb{R}
\]

we see that

\[
L_3 = \varepsilon^{-1} a \int \int |x - y|^{-N-\gamma}(g_\varepsilon^-(x) - g_\varepsilon^-(y)) \\
\times ([g_\varepsilon(x) - k]^+ - [g_\varepsilon(y) - k]^+)\,dxdy \\
\geq 0.
\]

In the second term \(L_2 \) of (45), the principal symbol of the composition \(P^\gamma(\mu A\mu_1) \) is \(\sigma_{\gamma - 1}(P^\gamma(\mu A\mu_1))(x, \xi) = \mu(x)|\xi|^{\gamma - 1}\chi(\xi) \). It follows that there exists a \(\psi \)-do \(P_{\gamma - 2} \in \Psi^{\gamma - 2}(U) \) such that \(P^\gamma(\mu A\mu_1) = P^{\gamma - 1}\mu + P_{\gamma - 2} \) where \(P^{\gamma - 1} \in \Psi^{\gamma - 1}(U) \) is defined by (40) with \(\gamma \) replaced by \(\gamma - 1 \). Thus (44) with \(\gamma - 1 \) instead of \(\gamma \) gives

\[
L_2 = (P^{\gamma - 1}g_\varepsilon, h_\varepsilon) + (P_{\gamma - 2}g_\varepsilon, h_\varepsilon) \\
= a \int \int |x - y|^{-N-\gamma + 1}([g_\varepsilon(x) - k] - [g_\varepsilon(y) - k])([g_\varepsilon(x) - k]^+ - [g_\varepsilon(y) - k]^+) \\
+ (R_3 g_\varepsilon, h_\varepsilon) + (P_{\gamma - 2} g_\varepsilon, h_\varepsilon) \\
\geq a [g_\varepsilon(k)^+]^{2}_{\frac{3}{2}, 2} + (R_3 g_\varepsilon, h_\varepsilon) + (P_{\gamma - 2} g_\varepsilon, h_\varepsilon).
\]

The regularizing operator \(R_3 = R_2^{\gamma - 1} \) arises from (44). Observe that \(\mu \equiv 1 \) on \(K_\varphi = \text{supp} \varphi \). Summarizing we get

\[
\delta a [g_\varepsilon(k)^+]^{2}_{\frac{3}{2}, 2} + a [g_\varepsilon(k)^+]^{2}_{\frac{3}{2}, 2} \\
\leq \int_U \left\{(P^\gamma - R_2^\gamma)f_\varepsilon + (R_2^\gamma(\mu A\mu_1)g_\varepsilon - P_{\gamma - 2} g_\varepsilon - R_3 g_\varepsilon)\right\}[g_\varepsilon(x) - k]^+\,dx
\]

\[
= \int_U (Q_\gamma f_\varepsilon + Q_{\gamma - 2} g_\varepsilon)[g_\varepsilon(x) - k]^+\,dx.
\]
where we have introduced $Q_{\gamma} = P^\gamma - R_{2}^\gamma$ and $Q_{\gamma - 2} = R_{2}^\gamma (\mu A \mu_1) - P_{\gamma - 2} - R_{3}$ to keep the notation short. This proves the lemma.

5.2 We prove an embedding theorem which is needed later in this section.

Lemma 3. Suppose $\Omega \subset \mathbb{R}^N$ is a domain and $s \in (0, 1)$ is given. We set $\frac{1}{q} = \frac{1}{2} - \frac{s}{N}$, i.e. $q = \frac{2N}{N-2s} > 2$. Then the following assertions are true.

1. We have the continuous embedding $W^{s,2}(\Omega) \subset L_q(\Omega)$, such that
 \[\|u\|_q \leq c \|u\|_{s,2} \quad \text{for all } u \in W^{s,2}(\Omega). \]

2. If $\Omega_1 \subset \subset \Omega$ is an open set, then there exists a constant $C = C(\Omega, \Omega_1) > 0$ such that
 \[\|u\|_q \leq C \|u\|_{s,2} \quad \text{for all } u \in W^{s,2}(\Omega) \text{ with } \text{supp } u \subseteq \Omega_1. \] (47)

Proof. For Assertion 1 cf. Triebel [16: p. 196]. For Assertion 2 we prove that

\[u \mapsto \|u\|_a = \left\{ |u|_{s,2}^2 + \int_{\Omega \setminus \Omega_1} |u|^2 \right\}^{1/2} \] (48)

is an equivalent norm on $W^{s,2}(\Omega)$, i.e. there exist constants $c_1, c_2 > 0$ such that

\[c_1 \left\{ |u|_{s,2}^2 + \int_{\Omega \setminus \Omega_1} |u|^2 \right\} \leq \left\{ |u|_{s,2}^2 + \int_{\Omega} |u|^2 \right\} \leq c_2 \left\{ |u|_{s,2}^2 + \int_{\Omega \setminus \Omega_1} |u|^2 \right\} \] (49)

for all $u \in W^{s,2}(\Omega)$. The first inequality in (49) is obvious. To prove the second one we suppose the contrary. Then there exists an sequence $(u_n)_{n \in \mathbb{N}}$ such that $\|u_n\|_{s,2} \geq n \|u_n\|_a$ ($n \in \mathbb{N}$). We define $v_n = u / \|u_n\|_{s,2}$. Thus $\|v_n\|_{s,2} = 1$ and $\|v_n\|_a \to 0$, and we can select a subsequence, again denoted by (v_n) such that $v_n \to v$ in $W^{s,2}(\Omega)$, $v_n \to v$ in $L_2(\Omega)$ and $v_n(x) \to v(x)$ a.e. in Ω. From $\|v_n\|_a \to 0$ it follows that

\[v_n(x) \to 0 \quad \text{a.e. in } \Omega \setminus \Omega_1 \] (50)

and

\[|v_n|_{s,2}^2 = \int_{\Omega \times \Omega} |x-y|^{-N-2s} |v_n(x) - v_n(y)|^2 \, dx \, dy \to 0. \]

Therefore $|v_n(x) - v_n(y)| \to 0$ a.e. in $\Omega \times \Omega$ and (50) implies $v_n(x) \to 0$ a.e. in Ω. This gives $v_n \to 0$ in $L_2(\Omega)$ and because of $|v_n|_{s,2} \to 0$ we see that $\|v_n\|_{s,2} \to 0$, which contradicts $\|v_n\|_{s,2} = 1$. Thus (49) is proved, and (47) follows immediately.

5.3 Now we define sets $A_\epsilon(k)$ where $g_\epsilon = \varphi u_\epsilon^\delta$ superceeds a level k:

\[A_\epsilon(k) = \{ x \in \Gamma : g_\epsilon \geq k \}. \]

We age going to estimate the size of $A_\epsilon(k)$. Remember that $1 < \gamma < 2$.

Lemma 4. We suppose \(b \in W^{\gamma, r}_{\text{loc}}(\Gamma) \) for some \(\gamma \in (1, 2) \) and \(r > \frac{N}{\gamma - 1} \). Set \(b^\delta := b \). Then there exist constants \(C > 0 \) and \(\beta > 1 \), independent from \(\varepsilon \) and \(\delta \), such that
\[
|A_\varepsilon(h)| \leq \frac{C}{(h - k)^\beta} |A_\varepsilon(k)|^\beta \quad \text{for all } h > k \geq 0
\]
where \(q = \frac{2N}{N+1-\gamma} \).

Proof. Set \(s = \frac{2 - 1}{2} \), \(q = \frac{2N}{N-2s} = \frac{2N}{N+1-\gamma} > 2 \) and \(\frac{1}{q} + \frac{1}{q'} = 1 \). It follows from Lemma 2, Lemma 3 and the inclusion \(\text{supp} \{ g_\varepsilon(x) - k \}^+ \subseteq \text{supp} \varphi \subseteq U \) that
\[
\left\{ \int_{A_\varepsilon(k)} |g_\varepsilon(x) - k|^q dx \right\}^{2/q} \leq c \left\{ \int_{A_\varepsilon(k)} (|Q_\gamma f_\varepsilon| + |Q_{\gamma - 2}g_\varepsilon|)^{q'} dx \right\}^{1/q'} \left\{ \int_{A_\varepsilon(k)} |g_\varepsilon(x) - k|^{|q|} dx \right\}^{1/q} \quad (52)
\]
for \(k \geq 0 \). Young's inequality gives
\[
\left\{ \int_{A_\varepsilon(k)} |g_\varepsilon(x) - k|^q dx \right\}^{2/q} \leq c \left\{ \int_{A_\varepsilon(k)} (|Q_\gamma f_\varepsilon| + |Q_{\gamma - 2}g_\varepsilon|)^{q'} dx \right\}^{2/q'}
\]
Therefore, for \(h > k \geq 0 \),
\[
|A_\varepsilon(h)|(h - k)^q \leq c \left\{ \int_{A_\varepsilon(k)} (|Q_\gamma f_\varepsilon| + |Q_{\gamma - 2}g_\varepsilon|)^{q'} dx \right\}^{q/q'}
\]
and, by Hölder's inequality with \(r > \frac{q}{q-2} = \frac{N}{\gamma - 1} \) and \(r > q' \),
\[
|A_\varepsilon(h)|(h - k)^q \leq c \left(\|Q_\gamma f_\varepsilon\|_{r,U} + \|Q_{\gamma - 2}g_\varepsilon\|_{r,U} \right)^q |A_\varepsilon(k)|^{q - 1 - \frac{q}{r}} \quad (53)
\]
We see that \(\beta = q - 1 - \frac{q}{r} > 1 \). It follows from (22) and (30) in the proof of Theorem 1 that \(\sup (\|Q_\gamma f_\varepsilon\|_{r,U} + \|Q_{\gamma - 2}g_\varepsilon\|_{r,U}) < +\infty \). This gives (51).

Now we are in the position to prove the uniform boundedness of the family \((u_\varepsilon) = (u^\delta_\varepsilon) \). We are going to use the following result of Stampacchia.

Lemma 5 (see Kinderlehrer and Stampacchia [8: p. 63]). Let \(\phi : [k_0, +\infty) \to \mathbb{R} \) be a non-negative and non-increasing function such that
\[
\phi(h) \leq \frac{C}{(h - k)^\alpha} |\phi(k)|^\beta \quad \text{for } h > k > k_0
\]
where \(C, \alpha \) and \(\beta \) are positive constants with \(\beta > 1 \). Then
\[
\phi(k_0 + M) = 0
\]
where

\[M = 2^{\frac{2}{\gamma + 1}} C \frac{1}{\gamma} \left| \phi(k_0) \right|^{\frac{\gamma - 1}{\gamma}}. \]

(55)

Theorem 2. Suppose \(b \in W^{1,\gamma}(U) \) for some \(\gamma \in (1,2) \) and \(r > \frac{N}{\gamma - 1} \). Then the solution \(u \) of the variational inequality (1) is locally bounded on \(\Gamma : u \in L^{\infty}(\Gamma) \), i.e. for all \(V \subset \subset \Gamma \) there exists a constant \(M > 0 \) such that \(0 \leq u(x) \leq M \) a.e. on \(V \).

Remark 2. Under the hypotheses of Remark 1 one may prove the inclusion \(u \in L_{\infty}(S) \).

Proof of Theorem 2. We shall prove the theorem in three steps.

(a) First we define \(b_\varepsilon^\delta = b_\varepsilon \) for all \(\varepsilon, \delta > 0 \). We are going to apply Lemma 5 and suppress the superindices \(\varepsilon, \delta \) again. Set \(\phi_\varepsilon(k) = |A_\varepsilon(k)| \) and \(k_0 = 0 \). Then \(\phi_\varepsilon(k_0) = |\{x \in \Gamma : g_\varepsilon \geq 0\}| \leq |U| \) and it follows from (51) that there exists a bound \(M > 0 \) independent of \(\varepsilon \) and \(\delta \) such that

\[\varphi(x) u_\varepsilon^\delta(x) = g_\varepsilon(x) \leq M := \sup_\varepsilon 2^{\delta - \varepsilon} C \frac{1}{\gamma} \left| \phi_\varepsilon(0) \right|^{\frac{\gamma - 1}{\gamma}} \leq c_1 |U|^{\frac{\gamma - 1}{\gamma}} \]

(56)

a.e. on \(U \).

(b) Next, we keep \(\delta > 0 \) fixed and let \(\varepsilon := \varepsilon_\delta \to +0 \). For simplicity, we omit the subscript \(n \). From Proposition 2 we know that \(u_\varepsilon \to u^\delta \) in \(L_2(S) \), \(g_\varepsilon \to g^\delta = \varphi u^\delta \) in \(L_2(U) \) and along a subsequence \(g_\varepsilon(x) \to g^\delta(x) \) a.e. in \(U \). Since \(u^\delta \in K_1 \) (56) gives

\[0 \leq \varphi(x) u^\delta(x) = g^\delta(x) \leq M \]

a.e. in \(U \).

(c) Finally, let \(\delta := \delta_\varepsilon \to +0 \). As in the proof of Theorem 1 we have \(\varphi u^\delta \to \varphi u \) in \(L_2(U) \), and \(\varphi u^\delta \to \varphi u \) in \(W^{-\frac{1}{2},2}(S) \). Along a subsequence, a theorem of Banach and Saks (see Riesz and Sz.-Nagy [11: p.72]) implies the strong \(L_2 \)-convergence of the sequence of arithmetic means, i.e. \(v_n = \frac{1}{n}(\varphi u^\delta_1 + \varphi u^\delta_2 + \ldots + \varphi u^\delta_n) \to \varphi u \) in \(L_2(U) \). Again, passing to a subsequence if necessary, \(v_n(x) \to \varphi(x) u(x) \) a.e. in \(U \). Since for the means \(0 \leq v_n(x) \leq M \) we have also \(0 \leq \varphi(x) u(x) \leq M \) a.e. in \(U \). As we may choose \(\varphi \) in Subsection 4.1 such that \(\varphi \equiv 1 \) on an arbitrary open set \(V \subset \subset U \) the assertion follows □

References

Received 16.06.1995