Existence, Uniqueness and Data Dependence for the Solutions of some Integro-Differential Equations of Mixed Type in Banach Space

V. Mureșan

Abstract. In this paper we study existence, uniqueness and data dependence for the solutions of some integro-differential equations of mixed type in Banach space by using Picard and weakly Picard operators’ technique and suitable Bielecki norms.

Keywords: Integro-differential equations, fixed points, Picard operators, weakly Picard operators

AMS subject classification: 34K05, 47H10

1. Introduction

Ordinary differential equations, functional differential equations with or without deviating argument and equations in abstract spaces have been studied in many papers. In the papers [3, 6] theorems about the existence and uniqueness of solutions of some abstract nonlinear non-local Cauchy problems in Banach spaces were considered and in the paper [4] a theorem about the existence of an approximate solution to an abstract nonlinear non-local Cauchy problem in a Banach space was given, too. We remark in the same field the monographs [5, 9, 11 - 13].

Integro-differential equations of mixed type in Banach spaces have been studied in the papers [7, 10], and integro-differential equations of mixed type with impulses in Banach spaces were considered in the paper [14], too. Fredholm-Volterra integral equations in relationship with Maia’s theorem were considered in the paper [16].

The aim of the present paper is to obtain existence, uniqueness and data dependence results for the solutions of some integro-differential equations of
mixed type in Banach space. To do this we use Picard and weakly Picard operators’ technique due to I. A. Rus (see [18 - 22]). So, our technique is different from those used in the papers quoted above.

Let \((X, \| \cdot \|)\) be a Banach space. Consider the problem

\[
x'(t) = f\left(t, x(t), \int_0^t K_1(t, s)x(s) \, ds, \int_0^T K_2(t, s)x(s) \, ds\right) \\
x(0) = x_0
\]

on \([0, T]\), where \(f \in C([0, T] \times X^3, X), K_i \in C(D_i, \mathbb{R}) \ (i = 1, 2)\) and \(x_0 \in X\).

It is well known that \(x \in C^1([0, T], X)\) is a solution of problem (1) if and only if \(x\) is a solution in \(C([0, T], X)\) of the integro-differential equation

\[
x(t) = x_0 + \int_0^t f\left(\xi, x(\xi), \int_0^\xi K_1(\xi, s)x(s) \, ds, \int_0^T K_2(\xi, s)x(s) \, ds\right) \, d\xi
\]

on \([0, T]\).

In [10] the author combines topological degree theory and monotone iterative technique given in [12] to investigate the existence of solutions and also minimal and maximal solutions of problem (1). In the present paper we consider suitable Bielecki norms in a convenient space and obtain existence, uniqueness and data dependence results for the solutions of equation (2) which is equivalent to problem (1).

In [7] the authors study the existence of solutions of the abstract non-local integro-differential Cauchy problem in arbitrary Banach spaces

\[
x'(t) = f\left(t, x(t), \int_0^t K_1(t, s)x(s) \, ds, \int_0^T K_2(t, s)x(s) \, ds\right) \\
x(0) = x_0 - \sum_{i=1}^p c_i x(t_i)
\]

on \([0, T]\), where \(f \in C([0, T] \times X^3, X), 0 < t_1 < t_2 < \ldots < t_p \leq T, c_i \neq 0, p \in \mathbb{N}\) and \(x_0 \in X\). This problem is equivalent to the integro-differential equation

\[
x(t) = x_0 - \sum_{i=1}^p c_i x(t_i) \\
+ \int_0^t f\left(\xi, x(\xi), \int_0^\xi K_1(\xi, s)x(s) \, ds, \int_0^T K_2(\xi, s)x(s) \, ds\right) \, d\xi
\]
on \([0, T]\). For this purpose, the Kuratowski measure of non-compactness, fixed point principles and a monotone iterative technique were applied. We remark that the weakly Picard operators technique can be used to prove existence of solutions to equation (3).

2. Preliminaries

Let \((X, d)\) be a metric space and \(A : X \rightarrow X\) an operator. We shall use the following notations:

\[
P(X) = \{ Y \subseteq X | Y \neq \emptyset \}
\]

\[
F_A = \{ x \in X | A(x) = x \} - \text{the fixed point set of } A
\]

\[
I(A) = \{ Y \in P(X) | A(Y) \subseteq Y \}
\]

\[
O_A(x) = \{ x, A(x), A^2(x), ..., A^n(x), ... \} - \text{the } A\text{-orbit of } x \in X
\]

\[
H : P(X) \times P(X) \rightarrow \mathbb{R}^+ \cup \{ +\infty \}
\]

\[
H(Y, Z) = \max \left(\sup_{a \in Y} \inf_{b \in Z} d(a, b), \sup_{b \in Z} \inf_{a \in Y} d(a, b) \right)
\] - the Pompeiu-Hausdorff functional on \(P(X)\).

Definition 2.1 (Rus [18]). Let \((X, d)\) be a metric space. An operator \(A : X \rightarrow X\) is a Picard operator if there exists \(x^* \in X\) such that \(F_A = \{ x^* \}\) and the sequence \((A^n(x_0))_{n \in \mathbb{N}}\) converges to \(x^*\) for all \(x_0 \in X\).

Definition 2.2 (Rus [19]). Let \((X, d)\) be a metric space. An operator \(A : X \rightarrow X\) is a weakly Picard operator if the sequence \((A^n(x_0))_{n \in \mathbb{N}}\) converges for all \(x_0 \in X\) and its limit (which may depend on \(x_0\)) is a fixed point of \(A\).

If \(A\) is a weakly Picard operator, then we consider the operator

\[
A^\infty : X \rightarrow X, \quad A^\infty(x) = \lim_{n \to \infty} A^n(x).
\]

The following results are useful in what follows:

Theorem 2.1 [17]. Let \((Y, d)\) be a complete metric space and \(A, B : Y \rightarrow Y\) two operators. We suppose the following:

(i) \(A\) is a contraction with contraction constant \(\alpha\) and \(F_A = \{ x^*_A \}\).

(ii) \(B\) has fixed points and \(x^*_B \in F_B\).

(iii) There exists \(\eta > 0\) such that \(d(A(x), B(x)) \leq \eta\), for all \(x \in Y\).

Then \(d(x^*_A, x^*_B) \leq \frac{\eta}{1-\alpha}\).

Theorem 2.2 [22]. Let \((X, d)\) be a complete metric space and \(A, B : X \rightarrow X\) two orbitally continuous operators. We suppose the following:
(i) There exists $\alpha \in [0, 1)$ such that
\[
 d(A^2(x), A(x)) \leq \alpha d(x, A(x)) \quad (x \in X).
\]
\[
 d(B^2(x), B(x)) \leq \alpha d(x, B(x)) \quad (x \in X).
\]

(ii) There exists $\eta > 0$ such that $d(A(x), B(x)) \leq \eta$ for all $x \in X$.

Then $H(F_A, F_B) \leq \frac{\eta}{1-\alpha}$ where H denotes the Pompeiu-Hausdorff functional.

Theorem 2.3 [19]. Let (X, d) be a metric space. Then $A : X \to X$ is a weakly Picard operator if and only if there exists a partition $X = \bigcup_{\lambda \in \Lambda} X_\lambda$ of X such that

(a) $X_\lambda \in I(A)$

(b) $A|_{X_\lambda} : X_\lambda \to X_\lambda$ is a Picard operator, for all $\lambda \in \Lambda$.

Consider a Banach space $(X, \| \cdot \|)$, let $\| \cdot \|_B$ and $\| \cdot \|_C$ be the Bielecki and Chebyshev norms on $C([0, T], X)$ defined by
\[
 \|x\|_B = \max_{t \in [0, T]} \|x(t)e^{-\tau t}\| \quad (\tau > 0) \quad \text{and} \quad \|x\|_C = \max_{t \in [0, T]} \|x(t)\|
\]

and denote by d_B and d_C their corresponding metrics. We consider the set
\[
 C_L([0, T], X) = \left\{ x \in C([0, T], X) \left| \|x(t_1) - x(t_2)\| \leq L|t_1 - t_2| \right. \right. \text{for all } t_1, t_2 \in [0, T] \}
\]
where $L > 0$ and $B_R = \{ x \in X : \|x\| \leq R \}$ with $R > 0$. If $d \in \{d_C, d_B\}$, then $(C([0, T], X), d)$ and $(C_L([0, T], X), d)$ are complete metric spaces.

3. A integro-differential equation of mixed type

Consider equation (2). Denote $k_i = \max_{(t, s) \in D_i} |K_i(t, s)|$ ($i = 1, 2$). We have

Theorem 3.1. Suppose the following:

(i) $f \in C([0, T] \times X^3, X)$.

(ii) There exists a constant $M > 0$ such that $\|f(s, u, v, w)\| \leq M$ for all $u, v, w \in X$ and all $s \in [0, T]$.

(iii) $M \leq L$.

(iv) There exists a constant $L_0 > 0$ such that
\[
 \|f(s, u_1, v_1, w_1) - f(s, u_2, v_2, w_2)\|
 \leq L_0 \left(\|u_1 - u_2\| + \|v_1 - v_2\| + \|w_1 - w_2\| \right)
\]
for all \(u_i, v_i, w_i \in X \quad (i = 1, 2) \) and all \(s \in [0, T] \).

(v) There exists a constant \(\tau > 0 \) such that \(\frac{L_0}{\tau} \left(1 + \frac{k_1}{\tau} + k_2 T e^{\tau T} \right) < 1 \).

Then equation (2) has a unique solution \(x^* \) in \(C_L([0, T], X) \), and this solution can be obtained by the successive approximation method, starting from any element of \(C_L([0, T], X) \).

Proof. Consider the continuous operator

\[
A : (C_L([0, T], X), \| \cdot \|_B) \rightarrow (C_L([0, T], X), \| \cdot \|_B)
\]

defined by

\[
A(x)(t) = x_0 + \int_0^t f \left(\xi, x(\xi), \int_0^\xi K_1(\xi, s)x(s) \, ds, \int_0^T K_2(\xi, s)x(s) \, ds \right) d\xi.
\]

We have

\[
\| A(x)(t) - A(z)(t) \|
\leq \int_0^t \left\| f \left(\xi, x(\xi), \int_0^\xi K_1(\xi, s)x(s) \, ds, \int_0^T K_2(\xi, s)x(s) \, ds \right)
- f \left(\xi, z(\xi), \int_0^\xi K_1(\xi, s)z(s) \, ds, \int_0^T K_2(\xi, s)z(s) \, ds \right) \right\| d\xi
\leq L_0 \int_0^t \left[\| x(\xi) - z(\xi) \| + \left\| \int_0^\xi K_1(\xi, s)(x(s) - z(s)) \, ds \right\|
+ \left\| \int_0^T K_2(\xi, s)(x(s) - z(s)) \, ds \right\| \right] d\xi
\leq L_0 \left\{ \int_0^t \| x(\xi) - z(\xi) \| d\xi + k_1 \int_0^t \left(\int_0^\xi \| x(s) - z(s) \| \, ds \right) d\xi
+ k_2 \int_0^t \left(\int_0^T \| x(s) - z(s) \| e^{-\tau s} e^{\tau s} \right) d\xi \right\}
\leq L_0 \left\{ \int_0^t \| x(\xi) - z(\xi) \| e^{-\tau \xi} e^{\tau \xi} d\xi
+ k_1 \int_0^t \left(\int_0^\xi \| x(s) - z(s) \| e^{-\tau s} e^{\tau s} ds \right) d\xi
+ k_2 \int_0^t \left(\int_0^T \| x(s) - z(s) \| e^{-\tau s} e^{\tau s} ds \right) d\xi \right\}
\]
\[\begin{align*}
&\leq L_0 \|x - z\|_B \left[\int_0^t e^{\tau \xi} d\xi + k_1 \int_0^t \left(\int_0^\xi e^{\tau s} ds \right) d\xi \\
&\quad + k_2 \int_0^t \left(\int_0^T e^{\tau s} ds \right) d\xi \right] \\
&= L_0 \|x - z\|_B \left[\left(\frac{e^{\tau t}}{\tau} - \frac{1}{\tau} \right) + k_1 \left(\frac{e^{\tau t}}{\tau} - \frac{1}{\tau} - t \right) + \frac{k_2}{\tau} (e^{\tau T} - 1)t \right] \\
&\leq L_0 \|x - z\|_B \left[\frac{e^{\tau t}}{\tau} + \frac{k_1}{\tau} \frac{e^{\tau t}}{\tau} + k_2 \frac{e^{\tau T}}{\tau} e^{\tau(T-t)T} \right] \\
&\leq L_0 \frac{1}{\tau} e^{\tau t} \left(1 + \frac{k_1}{\tau} + k_2 Te^{\tau T} \right) \|x - z\|_B
\end{align*} \]

for all \(x, z \in C_L([0, T], X) \). It follows that

\[\|A(x)(t) - A(z)(t)\| e^{-\tau t} \leq \frac{L_0}{\tau} \left(1 + \frac{k_1}{\tau} + k_2 Te^{\tau T} \right) \|x - z\|_B \]

for all \(t \in [0, T] \). So

\[\|A(x) - A(z)\|_B \leq \frac{L_0}{\tau} \left(1 + \frac{k_1}{\tau} + k_2 Te^{\tau T} \right) \|x - z\|_B \]

for all \(x, z \in C_L([0, T], X) \). The operator \(A \) is of Lipschitz type with constant

\[L_A = \frac{L_0 \left(1 + \frac{k_1}{\tau} + k_2 Te^{\tau T} \right)}{\tau} \tag{4} \]

and \(0 < L_A < 1 \). By applying the Contraction Principle to this operator we obtain that \(A \) is a Picard operator.

Similarly as above, we can prove

Theorem 3.2. Suppose the following:

(i) \(f \in C([0, T] \times B^3_R, X) \) with \(\|f(s, u, v, w)\| \leq M(R) \) for all \(s \in [0, T] \)
and \(u, v, w \in B_R \).

(ii) \(M(R) \leq L \).

(iii) \(k_i T \leq 1 \) \((i = 1, 2) \).

(iv) \(\|x_0\| + M(R)T \leq R \).
(v) There exists a constant $L_0 > 0$ such that
\[
\| f(s, u_1, v_1, w_1) - f(s, u_2, v_2, w_2) \| \\
\leq L_0 (\| u_1 - u_2 \| + \| v_1 - v_2 \| + \| w_1 - w_2 \|)
\]
for all $u_i, v_i, w_i \in B_R \ (i = 1, 2)$ and all $s \in [0, T]$.

(vi) There exists a constant $\tau > 0$ such that
\[
\frac{L_0}{\tau} (1 + \frac{k_1}{\tau} + k_2 Te^{\tau T}) < 1.
\]

Then equation (2) has a unique solution in $C_L([0, T], B_R)$, and this solution can be obtained by the successive approximation method, starting from any element of $C_L([0, T], B_R)$.

Remark 3.1. If we consider the problem
\[
x' = \frac{1}{10} \int_0^t \sin(t + s)x(s) \, ds + \frac{1}{18} \int_0^t \cos(ts)x(s) \, ds
\]
\[
x(0) = 0
\]
on $[0, T]$, then $L_0 = 1$, $k_1 = \frac{1}{10}$, $k_2 = \frac{1}{18}$, and for $\tau = 2$ we have condition (vi) in Theorem 3.2.

Now, we consider both equation (2) and
\[
x(t) = y_0 + \int_0^t g \left(\xi, x(\xi), \int_0^\xi K_1(\xi, s)x(s) \, ds, \int_0^T K_2(\xi, s)x(s) \, ds \right) d\xi
\]
on $[0, T]$, where $g \in C([0, T] \times X^3, X)$ and $K_i \in C(D_i, \mathbb{R}) \ (i = 1, 2)$ are the same as in equation (2) and $y_0 \in X$. We have

Theorem 3.3. Suppose the following:

(i) All conditions in Theorem 3.1 are satisfied and $x^* \in C_L([0, T], X)$ is the unique solution of equation (2).

(ii) There exists a constant $M_1 > 0$ such that $\| g(s, u, v, w) \| \leq M_1$ for all $u, v, w \in X$ and all $s \in [0, T]$.

(iii) With the same Lipschitz constant L_0 as in Theorem 3.1,
\[
\| g(s, u_1, v_1, w_1) - g(s, u_2, v_2, w_2) \| \\
\leq L_0 (\| u_1 - u_2 \| + \| v_1 - v_2 \| + \| w_1 - w_2 \|)
\]
for all $u_i, v_i, w_i \in X \ (i = 1, 2)$ and all $s \in [0, T]$.

(iv) $M_1 \leq L$.

(v) There exists a constant $\eta > 0$ such that
\[
\| f(s, u, v, w) - g(s, u, v, w) \| \leq \eta
\]
for all $u, v, w \in X$ and $s \in [0, T]$.

Then, if y^* is the solution of equation (5),

$$\|x^* - y^*\|_B \leq \frac{\|x_0 - y_0\| + \eta T}{1 - L_A}$$

where L_A is given by (4) with $\tau = \tau_0 > 0$ such that $0 < L_A < 1$.

Proof. Consider the operators

$$A, B : C_L([0, T], X) \to C_L([0, T], X)$$

defined by

$$A(x)(t) = x_0 + \int_0^t f(t, x(t), \int_0^t K_1(s, x(s)) ds, \int_0^T K_2(s, x(s)) ds) \, ds$$

$$B(x)(t) = y_0 + \int_0^t g(t, x(t), \int_0^t K_1(s, x(s)) ds, \int_0^T K_2(s, x(s)) ds) \, ds$$

on $[0, T]$, in which $K_i \in C(D_i, \mathbb{R})$ ($i = 1, 2$) are the same. We have

$$\|A(x)(t) - B(x)(t)\| \leq \|x_0 - y_0\| + \eta T \quad (t \in [0, T]).$$

It follows that

$$\|A(x) - B(x)\|_B \leq \|x_0 - y_0\| + \eta T.$$}

So we can apply Theorem 2.1.

Remark 3.2. The results obtained in this section can be generalized to study existence, uniqueness and data dependence for the solutions of the problem with linear modification of the argument

$$x'(t) = f(t, x(t), x(\lambda t), \int_0^t K_1(s, x(\lambda s)) ds, \int_0^T K_2(s, x(\lambda s)) ds)$$

$$x(0) = x_0$$

on $[0, T]$, where $0 < \lambda < 1$, $f \in C([0, T] \times X^4, X)$, $K_i \in C(D_i, R)$ ($i = 1, 2$) and $x_0 \in X$. This problem is more general than those considered in [15].
4. Another integro-differential equation of mixed type

Now, we consider the integral equation of mixed type

\[x(t) = x(0) + \int_0^t f(\xi, x(\xi), \int_0^\xi K_1(\xi, s)x(s)\,ds, \int_0^T K_2(\xi, s)x(s)\,ds)\,d\xi \]

(6)
on \[0, T\], where \(f \in C([0, T] \times X^3, X) \), \(K_i \in C(D_i, \mathbb{R}) \) and \(D_i \) \((i = 1, 2)\) are as in problem (1). We have

Theorem 4.1. Suppose that for equation (6) the same conditions as in Theorem 3.1 are satisfied. Then this equation has solutions in \(C_L([0, T], X) \). If \(S \subset C_L([0, T], X) \) is its solutions set, then \(\text{card} \, S = \text{card} \, X \).

Proof. Consider the operator

\[A_\ast : C_L([0, T], X) \to C_L([0, T], X) \]

defined by

\[A_\ast(x)(t) = x(0) + \int_0^t f(\xi, x(\xi), \int_0^\xi K_1(\xi, s)x(s)\,ds, \int_0^T K_2(\xi, s)x(s)\,ds)\,d\xi. \]

This is a continuous operator, but not a Lipschitz one. We can write

\[C_L([0, T], X) = \bigcup_{\alpha \in X} X_\alpha, \quad X_\alpha = \{x \in C_L([0, T], X) : x(0) = \alpha\}. \]

We have that \(X_\alpha \) is an invariant set of \(A_\ast \) and we apply Theorem 3.1 to \(A_\ast|_{X_\alpha} \). By using Theorem 2.3 we obtain that \(A_\ast \) is a weakly Picard operator. Consider the operator

\[A_\ast^\infty : C_L([0, T], X) \to C_L([0, T], X), \quad A_\ast^\infty(x) = \lim_{n \to \infty} A_\ast^n(x). \]

From \(A_\ast^{n+1}(x) = A_\ast(A_\ast^n(x)) \) and the continuity of \(A_\ast \), \(A_\ast^\infty(x) \in F_{A_\ast} \). Then \(A_\ast^\infty(C_L([0, T], X)) = F_{A_\ast} = S \), and \(S \neq \emptyset \). So, \(\text{card} \, S = \text{card} \, X \).

Remark 4.1. Similarly as above we can prove the existence of solutions of equation (3) that corresponds to a problem considered in [7].

In order to study data dependence for the solutions set of equation (6) we consider both (6) and the equation

\[x(t) = x(0) + \int_0^t g(\xi, x(\xi), \int_0^\xi K_1(\xi, s)x(s)\,ds, \int_0^T K_2(\xi, s)x(s)\,ds)\,d\xi \]
on \[0, T\] where \(K_1, K_2 \) are the same as in (6) and \(g \in C([0, T] \times X^3, X) \). Let \(S_1 \) be the solutions set of this equation.
Theorem 4.2. Suppose the following:

(i) There exists a constant $L_* > 0$ such that

\[
\|f(s, u_1, v_1, w_1) - f(s, u_2, v_2, w_2)\| \\
\leq L_* (\|u_1 - u_2\| + \|v_1 - v_2\| + \|w_1 - w_2\|) \\
\|g(s, u_1, v_1, w_1) - g(s, u_2, v_2, w_2)\| \\
\leq L_* (\|u_1 - u_2\| + \|v_1 - v_2\| + \|w_1 - w_2\|)
\]

for all $u_i, v_i, w_i \in X$ $(i = 1, 2)$ and all $s \in [0, T]$.

(ii) There exists a constant $M_* > 0$ such that

\[
\|f(s, u, v, w)\| \leq M_* \\
\|g(s, u, v, w)\| \leq M_*
\]

for all $u, v, w \in X$ and all $s \in [0, T]$.

(iii) $M_* \leq L_*$.

(iv) There exists a constant $\eta_1 > 0$ such that

\[
\|f(s, u, v, w) - g(s, u, v, w)\| \leq \eta_1
\]

for all $u, v, w \in X$ and all $s \in [0, T]$.

(v) $3L_* T k_0 < 1$, where $k_0 = \max(1, k_1 T, k_2 T)$.

Then

\[
H_{\|\cdot\|_C}(S, S_1) \leq \frac{\eta_1 T}{1 - 3L_* T k_0}
\]

where by $H_{\|\cdot\|_C}$ we denote the Pompeiu-Hausdorff functional with respect to $\| \cdot \|_C$ on $C_L([0, T], X)$.

Proof. Consider the operator

\[
B_*: C_L([0, T], X) \rightarrow C_L([0, T], X)
\]

defined by

\[
B_*(x)(t) = x(0) + \int_0^t g(\xi, x(\xi), \int_0^\xi K_1(\xi, s)x(s) ds, \int_0^T K_2(\xi, s)x(s) ds) d\xi
\]

on $[0, T]$. We have

\[
\|A_*^2(x)(t) - A_*(x)(t)\| \\
\leq L_* \int_0^t \|A_*(x)(\xi) - x(\xi)\|
\]
\[
+ \left\| \int_0^\xi K_1(\xi, s)(A_*(x)(s) - x(s)) \, ds \right\| \\
+ \left\| \int_0^T K_2(\xi, s)(A_*(x)(s) - x(s)) \, ds \right\| \, d\xi \\
\leq 3L_*T \max(1, k_1T, k_2T) \|A_*(x) - x\|_C \\
= 3L_*Tk_0 \|A_*(x) - x\|_C
\]
for all \(x \in C_L([0, T], X) \). Similarly,
\[
\|B_2^2(x)(t) - B_2(x)(t)\| \leq 3L_*Tk_0 \|B_2(x) - x\|_C
\]
for all \(x \in C_L([0, T], X) \). It follows that
\[
\|A_2^2(x) - A_2(x)\|_C \leq 3L_*Tk_0 \|A_2(x) - x\|_C \\
\|B_2^2(x) - B_2(x)\|_C \leq 3L_*Tk_0 \|B_2(x) - x\|_C.
\]
Because of assumption (iv), \(\|A_*(x) - B_*(x)\|_C \leq \eta_1T \) for all \(x \in C_L([0, T], X) \).
By applying Theorem 2.2 we obtain \(H_{\|\|_C}(F_{A_*}, F_{B_*}) \leq \frac{\eta_1T}{1-3L_*Tk_0} \) and the theorem is proved.

References

Received 04.04.2003, in revised form 16.12.2003