On a Nonlinear Binomial Equation of Third Order

M. Greguš

A necessary and sufficient condition for the solution of equation $u^{\prime\prime\prime} + p(t)u^{\alpha} = 0$ ($\alpha > 0$ an odd integer, $p \leq 0$ on (a, ∞)) to be oscillatory and some sufficient conditions for the solution in the cases $p \leq 0$ and $p \geq 0$ to be oscillatory or non-oscillatory are derived. For this methods and results of the theory of linear differential equations of the third order are effectively used.

Key words: Third order nonlinear differential equations, oscillatory solutions, non-oscillatory solutions, bounded solutions

1991 AMS subj. class.: 34C15

1. The paper investigates properties of solutions of the binomial differential equation of third order $u^{\prime\prime\prime} + pu^{\alpha} = 0$, (1)

where p is a continuous function on the interval (a, ∞) with $a > -\infty$, and $\alpha > 1$ is an odd number. Some of our results can be generalized to the case where α is a ratio of odd integers. The problem has already been a research object of many authors, see [1, 3-6] and others. Here the methods developed in the study of linear differential equation of third order [2] are effectively used.

2. By a solution of equation (1) we mean a function u defined on a subinterval $\mathcal{I} \subset (a, \infty)$, with continuous third derivative and satisfying equation (1). By an oscillatory solution of equation (1) we mean a solution u of (1) that has on the interval \mathcal{I} infinitely many null points, with a limit point at the right end point of the interval \mathcal{I}. Otherwise the solution is called non-oscillatory. A non-extentable solution u defined on a bounded from above interval \mathcal{I} is sometimes called singular.

Equation (1) can be written in the linear form

$u^{\prime\prime\prime} + pu^{\alpha-1}u = 0$. (1)*

The adjoint equation to (1)* has the form

$v^{\prime\prime\prime} - pu^{\alpha-1}v = 0$. (2)

Let $t_0 \in \mathcal{I}$ and let u be a solution of equation (1) with the property $u(t_0) = u_0, u'(t_0) = u'_0, u''(t_0) = u''_0$, where at least one of the numbers u_0, u'_0, u''_0 is non-zero. Further, let v be a solution of equation (2) with the property $v(t_0) = v_0, v'(t_0) = v'_0, v''(t_0) = v''_0$, where again at least one of the numbers v_0, v'_0, v''_0 is non-zero. Then for $t \in \mathcal{I}$ we have (see [2])

$v(t)u''(t) - v'(t)u'(t) + v''(t)u(t) = \text{const}$, (3)

where $\text{const} = v_0u''_0 - v'_0u'_0 + v''_0u_0$.
If we multiply equation (1) by the solution \(u \) and integrate from \(t_0 \) to \(t \in \mathcal{I} \), then we obtain for all \(t \in \mathcal{I} \) the integral identity

\[
\int_{t_0}^{t} \left(u(t)u'(t) - \frac{1}{2} u^2(t) - \int_{t_0}^{t} \rho(t)u^{\alpha-1}(t)u^\gamma(t)\,dt\right)\,dt = \text{const.} \tag{4}
\]

Similarly, for equation (2) we obtain for all \(t \in \mathcal{I} \)

\[
\int_{t_0}^{t} \left(v(t)v'(t) - \frac{1}{2} v^2(t) - \int_{t_0}^{t} \rho(t)u^{\alpha-1}(t)v^\gamma(t)\,dt\right)\,dt = \text{const.} \tag{5}
\]

Corollary 1: Let \(p \geq 0 \) \((p \leq 0) \) on \((a, \infty)\) and \(p \neq 0 \) on any subinterval of \((a, \infty)\). Further, let \(u \) be a solution of equation (1) defined on an interval \(\mathcal{I} \subset (a, \infty) \) and with the property \(u(t_0) = u'(t_0) = 0 \) for some \(t_0 \in \mathcal{I} \). Then \(u(t) \neq 0 \), \(u'(t) \neq 0 \) for all \(t < t_0 \) \((t > t_0)\).

A similar assertion holds for the solution \(v \) of the equation (2) with the property \(v(t_0) = v'(t_0) = 0 \), \(v''(t_0) \neq 0 \) for some \(t_0 \in \mathcal{I} \), that is \(v(t) \neq 0 \), \(v'(t) \neq 0 \), \(v''(t) \neq 0 \) for all \(t > t_0 \) \((t < t_0)\).

Proof: It follows from the identities (4) and (5) and from the equations (1) and (2), respectively.

Corollary 2: Supposing \(p \) is the same as in Corollary 1, each solution \(u \) of equation (1) or (2) has at most one double null point.

3. Our goal is to derive some properties of solutions of equation (1) in the case \(p \leq 0 \).

Theorem 1: Let \(p \leq 0 \) on \((a, \infty)\). Then any non-extendable solution \(u \) of equation (1) defined on an interval \(\mathcal{I} \subset (a, \infty) \) and such that \(u(t_0) > 0 \), \(u'(t_0) > 0 \), \(u''(t_0) > 0 \) for some \(t_0 \in \mathcal{I} \) has the property \(u(t) > 0 \), \(u'(t) > 0 \), \(u''(t) > 0 \) for all \(t > t_0 \) and, moreover, \(u(t) \to \infty \), \(u'(t) \to \infty \) as \(t \) converges to the right end point of the interval \(\mathcal{I} \).

Proof: First of all we show that \(u''(t) > 0 \) for all \(t > t_0 \). Let us form the function \(V = u u'' \). If \(u'' \) has null points to the right of \(t_0 \), let us denote by \(t_1 \) the smallest of them. Hence \(u''(t_1) = 0 \). Therefore \(u(t) > 0 \), \(u'(t) > 0 \) for all \(t \in (t_0, t_1) \) and \(V(t_1) = 0 \). Since \(p \leq 0 \) there holds

\[
dV(t)/dt = u''(t)u(t) + u'(t)u''(t) - \rho(t)u^{\alpha+1}(t)u'(t) > 0 \text{ for all } t \in (t_0, t_1).
\]

After integration from \(t_0 \) to \(t_1 \) we obtain \(0 = V(t_0) + \int_{t_0}^{t_1} V'(t)\,dt > 0 \), which is a contradiction. Hence \(u''(t) > 0 \) for all \(t > t_0 \). From here it follows that \(u(t) > 0 \), \(u'(t) > 0 \) for all \(t > t_0 \). From equation (1) it also follows that \(u''(t) \geq 0 \) for all \(t > t_0 \). From these inequalities we then have that \(u(t) \to \infty \), \(u'(t) \to \infty \) as \(t \) converges to the right end point of the interval \(\mathcal{I} \).

N. Parhi and S. Parhi have proved the following

Theorem A [6 : Theorem 3.1]: Let \(p \leq 0 \) and \(\int_{t_0}^{\infty} p(t)\,dt = -\infty \). Then every bounded solution of equation (1) in \((t_0, \infty)\) is oscillatory in \((t_0, \infty)\).

Lemma 1: Let the assumptions of Theorem A be fulfilled and let \(u \) be a solution of equation (1) with the property \(u(t) > 0 \) for all \(t \geq t_0 \), where \(t_0 > a \). Then there exists such \(t_1 > t_0 \) that \(u(t) > 0 \), \(u'(t) > 0 \), \(u''(t) > 0 \) for all \(t > t_1 \).
Proof: From equation (1) it follows that $u''(t) \geq 0$ for all $t > t_0$. Then we have two possibilities for u'':

1. $u''(t_0) > 0$ and hence $u''(t) > 0$ for all $t > t_0$. Then after integration of equation (1) we get

$$u''(t) = u''(t_0) - \int_{t_0}^{t} p(t) u'(t) \, dt,$$

$$u'(t) = u'(t_0) + u''(t_0) (t - t_0) - \int_{t_0}^{t} (t - \tau) p(t) u'(t) \, d\tau,$$

$$u(t) = u(t_0) + u'(t_0) (t - t_0) + u''(t_0) \frac{(t - t_0)^2}{2!} - \int_{t_0}^{t} \frac{(t - \tau)^2}{2!} p(t) u'(t) \, d\tau.$$

From the second equation of (6) the existence of such $t_1 > t_0$ follows that $u(t) > 0$ for all $t > t_1$.

2. $u''(t) < 0$ for all $t > t_0$. Then u' is decreasing and there are again two possibilities:

(i) $u'(t) < 0$ for all $t > t_1$ and u' decreasing. Hence $u'(t) < u'(t_1)$ from where $u(t) < u(t_1) + u'(t_1) (t - t_1)$ and this is a contradiction to the assumption that $u(t) > 0$ for all $t > t_0$.

(ii) $u'(t) > 0$ for all $t > t_0$. Then the function u is decreasing in (t_1, ∞) and from the assumptions on p there follows that, for certain $t_1 > t_0$, $u''(t) > 0$ for all $t > t_1$ and this again leads to a contradiction to the assumption that $u'(t) < 0$ for all $t > t_0$.

The following theorem answers to the question which solutions of equation (1), under the assumptions of Theorem A, can be oscillatory.

Theorem 2: Let the assumptions of Theorem A concerning p be fulfilled. Then a necessary and sufficient condition for a solution u of equation (1) to be oscillatory for $t > t_0$, for some $t_0 > a$, is that

$$u(t) u''(t) - u''^2(t)/2 < 0 \text{ for all } t > t_0. \quad (7)$$

Proof: Sufficient. Let (7) hold and let e.g. $u(t) > 0$ for all $t > t_0$. It follows from Lemma 1 that there exists such $t_1 > t_0$ that $u(t_1) > 0$, $u'(t_1) > 0$, $u''(t_1) > 0$ and, from Theorem 1, $u(t) \to \infty$ as $t \to \infty$. From the integral identity (4) it follows that

$$u(t) u''(t) - u''^2(t)/2 = u(t_1) u''(t_1) - u''^2(t_1)/2 - \int_{t_1}^{t} p(t) u''(t) \, d\tau.$$

and from this and the assumptions of Theorem 2 there follows a contradiction with (7) as $t \to \infty$.

Necessity. Let the solution u of equation (1) be oscillatory in (t_0, ∞) and let t_j ($j = 1, 2, \ldots$) be null points of u in (t_0, ∞). Then from the relation (8) it follows that the function $uu'' - u''^2/2$ is increasing in (t_j, ∞), but $u(t_j) u''(t_j) - u''^2(t_j)/2 < 0$. From this fact it follows that (7) holds for all $t > t_j$.

Theorem 3: Suppose that $p \leq 0$ on (a, ∞) and $p \equiv 0$ on any subinterval of (a, ∞). Let u be a solution of equation (1) defined on an interval $\mathcal{I} \subset (a, \infty)$ and satisfying $k := u(t_0) u''(t_0) - u''^2(t_0)/2 \geq 0$ for some $t_0 \in \mathcal{I}$. Then u does not have a null point to the right of t_0 and $|u(t)| \to \infty$, $|u'(t)| \to \infty$ as t converges to the right end point of \mathcal{I}.
Proof: The solution \(u \) fulfills the identity \((4)\), i.e.

\[
 u(t)u''(t) - u'^2(t)/2 + \int_0^t p(t)u^{\alpha+1}(t)\,dt = k > 0 \quad \text{for all } t \in \mathcal{I}.
\]

Let \(u(t_1) = 0 \) for some \(t_1 > t_0 \). Then from the identity above at the point \(t_1 \) we get a contradiction. To prove the second part of the assertion let us suppose for simplicity that \(u(t) > 0 \) for all \(t > t_0 \). Then also \(u''(t) > 0 \) for all \(t > t_0 \) and from the identity \((9)\) it follows that \(u''(t) > 0 \) for all \(t > t_0 \). Suppose that \(\mathcal{I} \) is a bounded interval with right end point \(b \) and let \(u \) be bounded on it. Then also \(u'' \) is bounded as follows from the first relation in \((6)\). Note that \(u'' \) is a monotone function. From the second relation in \((6)\) it follows that the function \(u'' \) is also monotone and bounded. Hence \(u(t) \to u_0, u'(t) \to u_0', u''(t) \to u_0'' \) as \(t \to b \), where \(u_0, u_0', u_0'' \) are real numbers. That means \(u \) can be extended to \(b \), which is a contradiction and therefore \(u(t) \to \infty, u'(t) \to \infty \) as \(t \to b \). In the case \(b = \infty \) the proof is trivial - it follows from the monotonicity of the functions \(u'', u''' \) and from \((6)\).

Theorem 4: Let \(p(t) < -k^2 \) \((k > 0)\) for all \(t > t_0 \). Then each oscillatory solution \(u \) of the equation \((1)\) defined on \((t_0, \infty)\) belongs to the class \(\mathcal{B}\alpha+1 \) on \([t_0, \infty)\), i.e. \(\int_0^\infty u^{\alpha+1}(t)\,dt < \infty \).

Proof: It follows again from the identity \((4)\). Really, from Theorem 2 it follows that

\[
 u(t)u''(t) - u'^2(t)/2 = u(t_0)u''(t_0) - u'^2(t_0)/2 - \int_{t_0}^t p(t)u^{\alpha+1}(t)\,dt < 0.
\]

This implies \(\int_{t_0}^\infty p(t)u^{\alpha+1}(t)\,dt < \infty \).

4. Now our goal is to derive properties of solutions of equation \((1)\) in the case \(p \geq 0 \). For this let \(u \) be a solution of the differential equation \((1)\) defined on an interval \(\mathcal{I} \subset (a, \infty) \) and suppose that it fulfills the initial conditions \(u(t_0) = u_0, u'(t_0) = u_0', u''(t_0) = u_0'' \) for some \(t_0 \in \mathcal{I} \). Notice that the relations \((6)\) hold.

Lemma 2: Let \(p \geq 0 \) on \((a, \infty)\) and let \(u \) be a non-extentable solution of equation \((1)\) defined on \([t_0, b)\), for some \(b \in (t_0, \infty) \). Then \(b = \infty \).

Proof: It follows from the relations \((6)\). Indeed, suppose \(b < \infty, u(t) > 0 \) for all \(t \in [t_0, b) \) and bounded from above. Then from the relations \((6)\) it follows that \(u \) can be extended to \(b \). If \(u \) is unbounded on \([t_0, b)\) and \(\int_0^b (b - t)^2 p(t)u^2(t)\,dt \) exists, then \(u \) and also \(u', u'' \) can be extended to \(b \). If \(\int_0^b (b - t)^2 p(t)u^2(t)\,dt = \infty \), then from the third relation in \((6)\) it follows that \(u \) must have a zero and this is a contradiction to \(u(t) > 0 \) for all \(t \in [t_0, b) \).

Remark 1: Lemma 2 does not hold in the case of extendability of the solution to the left of the point \(t_0 \). For example the equation \(u'' - \alpha(\alpha + 1)(\alpha + 2)\alpha^2 u' + 2\alpha^2 u = 0 \) has a solution \(u = t^{-\alpha} \) defined on \((0, \infty)\). It cannot be extended to the left of 0.

Lemma 3: Let \(p \geq 0 \) on \((a, \infty)\) and let \(u \) be a solution of equation \((1)\) which for some \(t_0 > a \) and \(b \in (a, \infty) \) is oscillatory on \([t_0, b)\). Then \(u \) is unbounded on \([t_0, b)\).

Proof: It again follows from the relations \((6)\). If we suppose that \(u \) is bounded on \([t_0, b)\), then from the third relation in \((6)\) and from the Cauchy Criterion we obtain that \(u \) can be extended to \(b \), too.
The paper [5] contains a theorem of I. Ličko and M. Švec that we restate for the equation (1), $\alpha > 1$ and odd.

Theorem B: A necessary and sufficient condition for either oscillatory or monotonic convergence to zero together with its first and second derivative of each solution of the equation (1) on $[t_0, \infty)$ ($t_0 > a$) is that $p(t) > 0$ for all $t > a$ and $\int_{t_0}^{\infty} t^2 p(t) \, dt = \infty$.

The problem is which solutions of equation (1) are oscillatory on the interval (t_0, ∞) and which on the subinterval $\mathcal{I} \subset (a, \infty)$.

Theorem 5: Suppose that p fulfills the conditions of Theorem B. Then each solution u of equation (1) defined on the subinterval $\mathcal{I} \subset (a, \infty)$ and such that

$$u(t_0)u''(t_0) - u''(t_0)/2 = -\delta < 0 \text{ for some } t_0 \in \mathcal{I}$$

(10)

is oscillatory for $t > t_0$.

Proof: Let $t_0 \in (a, \infty)$ and let u be a solution of equation (1) with the property (10) and defined on \mathcal{I}. Then either \mathcal{I} is bounded from above or $\mathcal{I} = [t_0, \infty)$. In the first case u must be oscillatory for $t > t_0$ as follows from Lemma 2. In the second case let us suppose that $u(t) > 0$ for $t \in (t_0, \infty)$. Theorem B then implies that $u'(t) < 0$, $u''(t) > 0$ for all $t > t_0$, for some $t_0 \geq t_0$, and $u(t) \to 0$, $u'(t) \to 0$ as $t \to \infty$. However from the integral identity (4) we get $u(t)u''(t) - u''(t)/2 + \int_{t_0}^{t} p(t)u''(t) \, dt = -\delta < 0$, which implies

$$u''(t)/2 = u(t)u''(t) + \int_{t_0}^{t} p(t)u''(t) \, dt + \delta \geq \delta \text{ for all } t \geq t_0,$$

but this contradicts the assumption $u'(t) \to 0$ as $t \to \infty$.

Theorem 6: Suppose that p satisfies the conditions of Theorem B. Then each solution u of equation (1) with double null point at $t_0 > a$ oscillates on the right of t_0.

Proof: Again there are two cases. In the case when u is defined on a bounded from above interval it must, by Lemma 2, oscillate. In the second case when u is defined on $[t_0, \infty)$ and we suppose that $u(t) > 0$ for all $t > t_1$, for some $t_1 \geq t_0$, it has to converge together with its first and second derivatives to zero as $t \to \infty$ and moreover it has to satisfy $u(t) > 0$, $u'(t) < 0$, $u''(t) > 0$ for all $t > t_2$, for some $t_2 \geq t_1$. Let us substitute u into equation (2) and suppose that v is its solution with the property $v(t_0) = v'(t_0) = 0$, $v''(t_0) > 0$. From Corollary 1 we have that $v(t) > 0$, $v'(t) > 0$, $v''(t) > 0$ for all $t > t_0$. We use u and v to generate equation (3), i.e.

$$v'u''' - v'u' + v'u = 0.$$

(11)

If u is non-oscillatory we get from equation (11) a contradiction from the fact that $v(t)u''(t) - v'(t)u'(t) + v''(t)u(t) > 0$ for all $t > t_2$.

Let $p(t) > 0$ for all $t \in (a, \infty)$ and let u be a solution of equation (1) defined on \mathcal{I} and satisfying $u(t_0) = u'(t_0) = 0$, $u''(t_0) > 0$ for some $t_0 \in \mathcal{I}$. Further let v be a solution of equation (2) defined on \mathcal{I} and satisfying $v(t_0) = v'(t_0) = 0$, $v''(t_0) > 0$. Then equation (11) holds for $t > t_0$, where $v(t) > 0$, $v'(t) > 0$ for $t > t_0$. Let us make the substitution $u = \sqrt{v} \, y$ into equation (11). It then takes the form

$$y'' + (3v''/2v - 3v'^2/4v^2)y = 0.$$

(12)
From the integral identity (5) for \(v \) and \(t > t_0 \) we get

\[
3v''(t)/2v(t) - 3v^2(t)/4v^2(t) = 3/2v^2(t)\int_{t_0}^{t} p(\tau)u^{\alpha - \xi(\tau)}v^2(\tau)\,d\tau
\]

and equation (12) is transformed into

\[
v''(t) + \left(3/2v^2(t)\int_{t_0}^{t} p(\tau)u^{\alpha - \xi(\tau)}v^2(\tau)\,d\tau\right)v = 0.
\]

(13)

From the reasoning above we obtain

Theorem 7: A necessary and sufficient condition for a solution \(u \) of equation (1) to be oscillatory for \(t > t_0 \in \mathfrak{T} \) is that equation (13) or (12) is oscillatory for \(t > t_0 \).

Apparently, Theorem 7 does not have any practical significance for determination of oscillatoricity or non-oscillatoricity of solutions of equation (1). However, as we shall see in the following, it has a theoretical importance.

Corollary 3: Let \(p(t) > 0 \) for \(t \in (a, \infty) \) and let \(u \) be a non-extendable solution of equation (1) on \((t_0, b) \), \(a < t_0 < b < \infty \), with the property \(u(t_0) = 0 \), \(u'(t_0) \geq 0 \), \(u''(t_0) > 0 \). Then

\[
\int_{t_0}^{t} p(\tau)u^{\alpha - \xi(\tau)}v^2(\tau)\,d\tau \rightarrow \infty \text{ as } t \rightarrow b.
\]

Proof: From Lemma 3 we have that \(u \) is oscillatory on \((t_0, b) \) and from equation (1) it follows that the limit of its null points is \(b \). Suppose that \(\nu \) is a solution of equation (2) which is adjoint to the solution \(u \) and has the property \(\nu(t_0) = \nu'(t_0) = 0 \), \(\nu''(t_0) > 0 \). From Corollary 1 we have that \(\nu(t) > 0 \), \(\nu'(t) > 0 \), \(\nu''(t) > 0 \) for all \(t > t_0 \). The function \(u \) is obviously a solution of equation (11) and hence by Theorem (7) equation (13) must be oscillatory on \((t_0, b) \), \(b < \infty \). This is possible only if

\[
1/v^2(t)\int_{t_0}^{t} p(\tau)u^{\alpha - \xi(\tau)}v^2(\tau)\,d\tau \rightarrow \infty \text{ as } t \rightarrow b.
\]

(14)

However for \(t > t_0 \) clearly the inequality

\[
1/v^2(t)\int_{t_0}^{t} p(\tau)u^{\alpha - \xi(\tau)}v^2(\tau)\,d\tau \leq \int_{t_0}^{t} p(\tau)u^{\alpha - \xi(\tau)}\,d\tau
\]

holds. Hence the assertion follows.

Corollary 4: Suppose that the assumptions of Corollary 3 hold. Then any solution \(v \) of the equation (2) satisfying the condition \(v(t_0) = v'(t_0) = 0 \), \(v''(t_0) > 0 \) has the property \(v(t) \rightarrow \infty \), \(v'(t) \rightarrow \infty \), \(v''(t) \rightarrow \infty \) as \(t \rightarrow b \).

Proof: Relation (14) implies the relation

\[
\int_{t_0}^{t} p(\tau)u^{\alpha - \xi(\tau)}v^2(\tau)\,d\tau \rightarrow \infty \text{ as } t \rightarrow b.
\]

(15)

The integral identity (5) for the solution \(v \) has the form

\[
v(t)v''(t) - v^2(t)\nu/2 - \int_{t_0}^{t} p(\tau)u^{\alpha - \xi(\tau)}v^2(\tau)\,d\tau = 0.
\]

Suppose that \(v \) is bounded on \((t_0, b) \). Then
On a Binomial Equation

\[v(t) v''(t) = v' (t)^2 / 2 + \int_{t_0}^{t} p(t) u(t) v^2(t) \, dt. \]

From this and from relation (15) it follows that \(v''(t) \to \infty \) as \(t \to b \) and therefore also \(v'(t) \to \infty \), \(v(t) \to \infty \) as \(t \to \infty \). But this is in contradiction with the assumption that \(v \) is bounded.

Suppose we have linear differential equations of the third order

\[(p_1) \quad y''' + p_1 y = 0 \quad \text{and} \quad (p_2) \quad z''' + p_2 z = 0, \]

where \(p_1, p_2 \) are continuous functions on \((a, \infty)\), \(p_1(t) > 0 \) and \(p_2(t) > 0 \) for all \(t \in (a, \infty) \).

Lemma 4: Let \(p_1 \leq p_2 \) on \((a, \infty)\). If equation \((p_2)\) is non-oscillatory in \((a, \infty)\) (i.e. each of its solutions has at most a finite number of null points in \((a, \infty)\)), then the equation \((p_1)\) is also non-oscillatory in \((a, \infty)\).

Proof: The assertion is contained in Theorem 2.5 and Corollary 2.5 of [2], respectively.

Let us denote the adjoint equation \(z''' - p_1 z = 0 \) to equation \((p_1)\) by \((\bar{p_1})\).

Lemma 5: Let \(p_1(t) > 0 \) for \(t \in (a, \infty) \) and \(w \) be a solution of equation \((\bar{p_1})\) with the property \(w(t_0) = w'(t_0) = 0 \), \(w'(t_0) > 0 \) for some \(t_0 \in (a, \infty) \). Then the set of solutions \(y \) of equation \((p_1)\) with the property \(y(t_0) = 0 \) (called the bundle of solutions of equation \((p_1)\) in the point \(t_0 \)) satisfies the equation \((w)\)

\[w''' - w'y + w'y = 0. \]

Differentiating equation \((w)\) term by term we obtain the equation \((p_1)\). If equation \((w)\) is non-oscillatory on \((t_0, \infty)\), then equation \((p_1)\) is also non-oscillatory on \((t_0, \infty)\).

The proof of this lemma is not included since it is the basic property of linear equations of third order [2].

Remark 2: The assertion of Lemma 5 holds for arbitrary solutions \(w \) of equation \((\bar{p_1})\), but the interesting case is \(w(t) \neq 0 \) for \(t > t_0 \).

Theorem 8: Suppose \(p(t) > 0 \) for all \(t \in (a, \infty) \) and let \(f \) be a given function with continuous third derivative, \(f(t) > 0 \) and \(f'''(t) > 0 \) for all \(t \in (a, \infty) \), such that the equation

\[y''' + (3f''/2f - 3f'^3/4f^2)y = 0 \quad (16) \]

is non-oscillatory in \((a, \infty)\). Then each solution \(\bar{u} \) of equation \((1)\), with the property \(\bar{u}(t_0) = 0 \) for some \(t_0 > a \) and which is defined on \((t_0, \infty)\) and satisfies the inequality

\[p(t) \bar{u}'(t)/(f(t)) \leq f'''(t)/(f(t)) \quad \text{for all} \; t \geq t_0, \quad (17) \]

is non-oscillatory on \((t_0, \infty)\).

Proof: Besides of the equation

\[u''' + p \bar{u}' u = 0 \quad (18) \]

we have the equation

\[v''' + (f'''/f)v = 0, \quad (19) \]

that has been obtained by differentiating the equation.
\[f'v'' - f'v' + f''v = 0 \] \hspace{1cm} (20)

and which by the transformation \(v = \sqrt{T}y \) can be converted into the equation (16). From the assumption that equation (16) is non-oscillatory on \(\langle t_0, \infty \rangle \) it follows that equation (20) is non-oscillatory on \(\langle t_0, \infty \rangle \) and from Lemma 5 we have that equation (19) is non-oscillatory, too. From the assumption (17) and from Lemma 4 it follows that equation (18) is non-oscillatory on \(\langle t_0, \infty \rangle \). Since \(\overline{u} \) is a solution of equation (18), it is therefore non-oscillatory on \(\langle t_0, \infty \rangle \).

Corollary 5: Let \(f(t) = t^n \), where \(n = 1 + 2/\sqrt{3} \) and let \(a > 0 \). Then the equation (1) does not have an oscillatory solution \(\overline{u} \) with null point in the point \(t_0 > a \) on the interval \(\langle t_0, \infty \rangle \) that would satisfy the relation (17), i.e. the relation

\[\overline{u}^{\alpha} - \overline{u}(t) \leq 2/(3\sqrt{3}t^3p(t)) \text{ for all } t \geq t_0. \] \hspace{1cm} (21)

Proof: The equation (16) has the form

\[y'' + (3(n^2 - 2n)/4t^2)y = 0. \] \hspace{1cm} (22)

Let \(3(n^2 - 2n) = 1 \). The positive root of this equation is \(n = 1 + 2/\sqrt{3} \). By the well-known Kneser criterion equation (22) is non-oscillatory and hence equation (19) is non-oscillatory if \(f''(t)/f(t) = n(n - 1)(n - 2)/t^2 = 2/(3\sqrt{3}t^3) \). This and the relation (17) imply the relation (21).

REFERENCES

Received 23.10.1990; in revised form 13.02.1991

Prof. Dr. Michal Greguš
University of J. A. Komenský
Department of Mathematics
Mlynská dolina
842 15 Bratislava, Czechoslovakia