On Uryson Operators with Partial Integrals in Lebesgue Spaces with Mixed Norm

C.-J. Chen and A. S. Kalitvin

Abstract. In this paper we consider some class of partial Uryson integral operators in spaces with mixed norm. We give some conditions for action, boundedness and continuity of those operators.

Keywords: Nonlinear Uryson operators, partial integral operators, acting conditions, boundedness conditions, continuity conditions

AMS subject classification: Primary 47H30, secondary 45P05, 45C10

1. Introduction

Let $T \subseteq \mathbb{R}^n$ and $S \subseteq \mathbb{R}^m$ be two compact sets with Lebesgue measure, $D = T \times S$, $a_i : D \times \mathbb{R} \rightarrow \mathbb{R}$ $(i = 1, 2, 3)$ given Carathéodory functions, and

$$A = A_1 + A_2 + A_3,$$

where

$$\begin{align*}
(A_1 x)(t, s) &= \int_T a_1(t, s, x(\tau, s)) \, d\tau \\
(A_2 x)(t, s) &= \int_S a_2(t, s, x(t, \sigma)) \, d\sigma \\
(A_3 x)(t, s) &= \iint_D a_3(t, s, x(\tau, \sigma)) \, d\tau d\sigma.
\end{align*}$$

The operators A, A_1, and A_2 are so called partial Uryson integral operators, which have been studied in $C(D)$, in spaces with mixed quasinorm $L^0[L^\beta]$, and in quasi-Banach ideal spaces (see [1, 4, 8], respectively). The properties of partial Uryson integral operators essentially differ from those of ordinary Uryson integral operators. For example, the operator A_1 with kernel $a_1(t, s, u) \equiv u$ is not completely continuous in $L^p(D)$, but the operator A_3 is completely continuous for $a_3(t, s, u) \equiv u$.

Chen Chur-jen: University of Würzburg, Dept. Math., Am Hubland, D - 97074 Würzburg
Financial support by the DAAD Bonn (Kz. A/95/08858) is gratefully acknowledged.
We remark that linear and nonlinear operators with partial integrals have applications in problems of continuum mechanics, of the theory of transfer, of differential and integro-differential equations and other questions.

In this paper the operator A is studied in Lebesgue spaces with mixed norm

$$L^q(T)[L^p(S)] \quad (1 \leq p, q \leq \infty).$$

More general classes of partial Uryson integral operators in spaces of summable functions have been studied in [3]. Action, boundedness, and continuity criteria of the operator A_3 in Lebesgue spaces have been obtained by Ojnarov [6].

2. Action, boundedness and continuity

Let $M(D)$ be the space of all real measurable almost everywhere finite functions on D. We denote by $L^q(T)[L^p(S)] \quad (1 \leq p, q \leq \infty)$ the set of functions $x \in M(D)$ for which the norm

$$\|x\|_{L^q(T)[L^p(S)]} = \|t \mapsto \|x(t, \cdot)\|_{L^p(S)}\|_{L^q(T)}$$

is defined and finite [2]. These spaces are Banach spaces. Of course, in case $p = q$ we have $L^p(T)[L^p(S)] \cong L^p(T \times S)$. Let $X(x_0, r)$ denote the closed ball of radius r with center x_0 in the space X.

The operators A_1, A_2, and A_3 are defined on functions $x \in M(D)$ for which the functions

$$(t, s, \tau) \mapsto a_1(t, s, x(\tau, s))$$

$$(t, s, \sigma) \mapsto a_2(t, s, x(t, \sigma))$$

$$(t, s, \tau, \sigma) \mapsto a_3(t, s, x(\tau, \sigma))$$

are summable in the variables τ, σ, and (τ, σ), respectively, for almost all $(t, s) \in D$. Let $D(A)$ be the domain of definition of the operator $A = A_1 + A_2 + A_3$. If $a_1(t, s, 0) = a_2(t, s, 0) = a_3(t, s, 0) = 0$, and $x_1, \ldots, x_n \in D(A)$ are functions with disjoint supports, then $x_1 + \ldots + x_n \in D(A)$ and the operator A is partially additive, i.e.,

$$A(x_1 + \ldots + x_n) = Ax_1 + \ldots + Ax_n.$$

In general, the operator $x \mapsto A(x + x_0) - Ax_0$ is partially additive for fixed $x_0 \in D(A)$.

By the partial additivity of A we have the following statement.

Theorem 1. Let $X = L^q(T)[L^p(S)] \quad (1 \leq p, q < \infty)$. Suppose that the operator A acts from $X(x_0, r)$ into $Y = L^\beta(T)[L^\alpha(S)] \quad (1 \leq \alpha, \beta \leq \infty)$. Then A acts from X into Y and is bounded (i.e., A is bounded on any bounded set). Moreover, A is continuous on X if A is continuous on $X(x_0, r)$.

By Theorem 1 the boundedness of the operator A follows direct from its action.

The next theorem concerning acting conditions (both sufficient and necessary) for the operator A_3 may be obtained following the idea of [6].
Theorem 2. The operator A_3 acts from $X = L^p(T)[L^q(S)]$ $(1 \leq p, q < \infty)$ into $Y = L^\alpha(T)[L^\beta(S)]$ $(1 \leq \alpha, \beta \leq \infty)$ if and only if, for any $u \in \mathbb{R}$,
\[
\|a_3(\cdot, \cdot, u)\|_Y \leq a |u|^{\min\{p, q\}} + b,
\]
where a and b are non-negative constants.

Proof. Without loss of generality, we assume that $\text{mes}T = \text{mes}S = 1$. Suppose that condition (4) holds. Then for any $x \in X$ the Hölder and Minkowski inequalities imply that
\[
\|A_3 x\|_Y = \left\| \int_D a_3(\cdot, \cdot, x(\tau, \sigma)) d\tau d\sigma \right\|_Y \\
\leq \int_D \left\| a_3(\cdot, \cdot, x(\tau, \sigma)) \right\|_Y d\tau d\sigma \\
\leq \int_D (a|x(\tau, \sigma)|^{\min\{p, q\}} + b) d\tau d\sigma \\
\leq a \|x\|_X^{\min\{p, q\}} + b.
\]
Hence, A_3 acts from X into Y.

Conversely, suppose that the operator A_3 acts from X into Y. Then, by Theorem 1, there exists a number $b > 0$ such that $\|A_3 x\|_Y \leq b$ if $\|x\|_X \leq 1$. Let $u \in \mathbb{R}$ and $x_u \equiv u \in X$. If $|u| \leq 1$, it is clear that
\[
\|a_3(\cdot, \cdot, u)\|_Y = \|A_3 x_u\|_Y \leq b \leq b(|u|^{\min\{p, q\}} + 1).
\]
If $|u| > 1$, we define a function \tilde{x}_u on D by
\[
\tilde{x}_u(t, s) = \begin{cases}
 u\chi_{T \times S_u}(t, s) & \text{if } p \leq q \\
 u\chi_{T_u \times S}(t, s) & \text{if } p > q
\end{cases}
\]
where S_u is a measurable subset of S with $\text{mes}S_u = |u|^{-p}$ and T_u is a measurable subset of T with $\text{mes}T_u = |u|^{-q}$. Here, $\chi_{T \times S_u}$ and $\chi_{T_u \times S}$ denote the characteristic functions of $T \times S_u$ and $T_u \times S$, respectively. Then $\|\tilde{x}_u\|_X = 1$ and
\[
\left\| |u|^{-\min\{p, q\}} a_3(\cdot, \cdot, u) + (1 - |u|^{-\min\{p, q\}}) a_3(\cdot, \cdot, 0) \right\|_Y = \|A_3 \tilde{x}_u\|_Y \leq b.
\]
Hence,
\[
\|a_3(\cdot, \cdot, u)\|_Y \leq b|u|^{\min\{p, q\}} + |u|^{\min\{p, q\}}\|a_3(\cdot, \cdot, 0)\|_Y \leq 2b|u|^{\min\{p, q\}}.
\]
From (5) and (6) it follows that condition (4) holds.

Some acting conditions for the operators A_1 and A_2 in spaces of summable functions have been given in [3]. We will give simple acting conditions (only sufficient) in the next lemma.
Lemma. Let \(1 \leq p, q, \alpha, \beta < \infty\), \(X = L^q(T)[L^p(S)]\), and \(Y = L^\beta(T)[L^\alpha(S)]\). The operators \(A_1\) and \(A_2\) act from \(X\) into \(Y\) if the kernels \(a_1\) and \(a_2\) satisfy growth conditions of the form

\[
|a_i(t, s, u)| \leq c_1 |u|^{\min\{p, q\}/\rho_i(\alpha, \beta)} + b_i(t, s) \quad (i = 1, 2)
\]

(7)

for some \(b_1, b_2 \in Y\) and \(c_1, c_2 \geq 0\), where \(\rho_1(\alpha, \beta) = \alpha\) and \(\rho_2(\alpha, \beta) = \beta\). Moreover, in this case \(A_1\) and \(A_2\) are bounded and continuous.

Proof. It is easy to show the first statement by the Hölder and Minkowski inequalities. The continuity of \(A_1\) and \(A_2\) follows from the principle of majorants [8].

We note that the growth condition (7) is not necessary for the action of \(A_1\) (resp. \(A_2\)). Moreover, there exists \(A_1\) acting from \(X\) into \(Y\) (whence \(A_1\) is even bounded), which is not continuous. In particular, the corresponding kernel \(a_1\) does not satisfy the growth condition (7) (by the previous lemma).

The following example is essentially due to P. P. Zabrejko [5].

Example. Let \(D = [0, 1] \times [0, 1]\), \(X = L^q(T)[L^p(S)]\), and \(Y = L^\beta(D)\) \((1 \leq p, q, \beta < \infty)\). Let \(z_n(t, s) = z_n(t) \geq 0\) have disjoint support, and \(|z_n|_Y = 1\). Define the kernel \(a_1\) on \(D \times \mathbb{R}\) by

\[
a_1(t, s, u) = \begin{cases}
(2^n|u| - 1)z_{n-1}(t) + (2 - 2^n|u|)z_n(t) & \text{if } 2^{-n} \leq |u| < 2^{1-n} \\
0 & \text{if } u = 0 \text{ or } |u| \geq 1.
\end{cases}
\]

Then the kernel \(a_1\) is a non-negative Carathéodory function, and the operator \(A_1\) acts from \(X\) into \(Y\) and is bounded (it even has bounded range): Indeed, by Minkowski’s inequality we have for any measurable \(x\)

\[
\|A_1 x\|_Y^\beta = \int_0^1 \left\| \int_0^1 a_1(\cdot, s, x(\tau, s)) d\tau \right\|_{L^\beta}^\beta ds \leq \int_0^1 \left(\int_0^1 \left\| a_1(\cdot, s, x(\tau, s)) \right\|_{L^\beta} d\tau \right)^\beta ds \leq 1.
\]

However, \(A_1\) is not continuous, since it maps the convergent sequence \((z_n) = (2^{-n})\) into the non-compact sequence \((A_1 x_n) = (z_n)\).

The kernel \(a_1\) not only fails to satisfy the growth condition (7). Even more, \(a_1\) does not satisfy

\[
|a_1(t, s, u)| \leq c |u|^\gamma + b(t, s) \quad (8)
\]

for fixed \(c, \gamma > 0\) and \(b \in Y\). Indeed, for \(u_n = 2^{-n}\), (8) would imply \(z_n(t, s) = a_1(t, s, u_n) \leq c + b(t, s)\), whence \(d(t, s) = b(t, s) + c\) satisfies \(d \geq z_n\) for all \(n\), which obviously is not possible, since \(d \in Y\).
The continuity of the operator A_3 does not follow from its action and boundedness as is shown by the previous example (consider $a_3 = a_1$).

To discuss continuity conditions for the operator A_3, we apply the following theorem. Recall that a set $G \subset X$ is absolutely bounded if $\sup\{\|\chi_G x\|_X : x \in G\} \to 0$ as $\mes\Omega \to 0$.

Theorem 3. Let $1 \leq p, q, \alpha, \beta < \infty$, $X = L^q(T)[L^p(S)]$ and $Y = L^\beta(T)[L^\alpha(S)]$. Suppose that, for each function $x \in X$,

$$\left\| \int_D |a_3(\cdot, \cdot, x(\tau, \sigma))|d\tau d\sigma \right\|_Y < \infty.$$

Then the operator A_3 acts from X into Y. Moreover, for each absolutely bounded set $G \subset X$ and for each $\varepsilon > 0$ there exists a number $\delta > 0$ such that the inequality

$$\sup_{x \in G} \left\| \int_{D_1} |a_3(\cdot, \cdot, x(\tau, \sigma))|d\tau d\sigma \right\|_Y < \varepsilon$$

holds whenever $D_1 \subset D$ satisfies $\mes D_1 < \delta$.

Proof. It is analogous to that of [5: Theorem 18.4].

Theorem 4 (see [7]). Let $1 \leq p, q, \alpha, \beta < \infty$. The operator A_3 acts from $X = L^q(T)[L^p(S)]$ into $Y = L^\beta(T)[L^\alpha(S)]$ and is continuous if and only if condition (4) holds and

$$\lim_{u \to u_0} \left\| a_3(\cdot, \cdot, u) - a_3(\cdot, \cdot, u_0) \right\|_Y = 0$$

(9)

for any $u_0 \in \mathbb{R}$.

Proof. Without loss of generality, assume $a_3(t, s, 0) = 0$ and $\mes T = \mes S = 1$. Suppose that the operator A_3 acts from X into Y and is continuous. Then condition (4) holds by Theorem 2. Putting $x \equiv u$ and $x_0 \equiv u_0$, we have $A_3 x = a_3(\cdot, \cdot, u)$ and $A_3 x_0 = a_3(\cdot, \cdot, u_0)$. Thus the continuity of A_3 implies (9).

Conversely, suppose that conditions (4) and (9) hold. Then the operator A_3 acts from X into Y by Theorem 2. Assume that A_3 is not continuous. This means that there exist a sequence (x_n) converging to a function x_0 in X and a number $\varepsilon_0 > 0$ such that

$$\|A_3 x_n - A_3 x_0\|_Y \geq \varepsilon_0 \quad (n \in \mathbb{N}).$$

(10)

Since $x_n \to x_0$ in X, the set $\{x_0, x_1, x_2, \ldots\}$ is absolutely bounded. Hence, by Theorem 3 there is a number $\delta > 0$ such that the inequalities

$$\|A_3 F x_n\|_Y < \frac{\varepsilon_0}{3} \quad (n \geq 0)$$

(11)

hold whenever $F \subset D$ satisfies $\mes F < \delta$. Let $c = \sup_{n \geq 0} \|x_n\|_X$, $N = c(\frac{\varepsilon}{3})^{-1/\min\{p, q\}}$, and $D_n^N = \{ (t, s) : |x_n(t, s)| \geq N \} \quad (n \geq 0)$. Then $\mes D_n^N \leq \frac{\varepsilon}{3} \quad (n \geq 0)$. Since $x_n \to x_0$ in X, we can find a subsequence (x_{n_k}) which converges almost everywhere to x_0. Moreover, by Egorov’s theorem, there exists a measurable set $D_\delta \subset D$ such that
\[\text{mes}(D - D_\delta) < \frac{\delta}{3} \quad \text{and} \quad (x_{n_k}) \text{ converges to } x_0 \text{ uniformly on } D_\delta. \]

Let \(F_k^\delta = D_\delta - (D_n \cup D_0^N) \) and \(\tilde{F}_k^\delta = D - F_k^\delta \) \((k \geq 1)\). Then \(\text{mes} \tilde{F}_k^\delta < \delta \) for any \(k \geq 1 \). Now, we estimate

\[
\| A_3x_{n_k} - A_3x_0 \|_Y \leq \| A_3\chi_{\tilde{F}_k^\delta}x_{n_k} - A_3\chi_{\tilde{F}_k^\delta}x_0 \|_Y + \| A_3\chi_{\tilde{F}_k^\delta}x_{n_k} \|_Y + \| A_3\chi_{\tilde{F}_k^\delta}x_0 \|_Y. \]

By condition (9) there is a \(\delta_0 = \delta_0(N, \varepsilon_0) > 0 \) such that

\[
\| a_3(\cdot, \cdot, u) - a_3(\cdot, \cdot, u_0) \|_Y < \frac{\varepsilon_0}{3} \quad (12)
\]

whenever \(|u| < N, |u_0| < N, \) and \(|u - u_0| < \delta_0 \). Since \((x_{n_k})\) converges to \(x_0 \) uniformly on \(D_\delta \), there exists an integer \(m = m(\delta_0) \) such that \(|x_{nm}(t, s) - x_0(t, s)| < \delta_0 \) for all \((t, s) \in D_\delta\). Combining inequalities (11) - (13) we get \(\| A_3x_{n_m} - A_3x_0 \|_Y < \varepsilon_0 \), which is contradictory to (10). Thus the operator \(A_3 \) is continuous.

References

Received 04.02.1997