Bouligand–Severi tangents in MV-algebras

Manuela Busaniche and Daniele Mundici

Abstract. In their important recent paper published in the Annals of Pure and Applied Logic, Dubuc and Poveda call an MV-algebra A strongly semisimple if all principal quotients of A are semisimple. All boolean algebras are strongly semisimple, and so are all finitely presented MV-algebras. We show that for any 1-generator MV-algebra, semisimplicity is equivalent to strong semisimplicity. Further, a semisimple 2-generator MV-algebra A is strongly semisimple if and only if its maximal spectral space $\mu(A) \subseteq [0,1]^2$ does not have any rational Bouligand–Severi tangents at its rational points. In general, when A is finitely generated and $\mu(A) \subseteq [0,1]^n$ has a Bouligand–Severi tangent then A is not strongly semisimple. An MV-algebra A is strongly semisimple if and only if so is every 2-generator subalgebra of A.

1. Introduction

We refer to [4] and [8] for background on MV-algebras. Following Dubuc and Poveda [5], we say that an MV-algebra A is strongly semisimple if for every principal ideal I of A the quotient A/I is semisimple. Since $\{0\}$ is a principal ideal of A, every strongly semisimple MV-algebra is semisimple. The definition of “logically complete” MV-algebras in [1] is a variant of this notion, where one further assumes $I \neq \{0\}$. The paper [7] is devoted to the frame-theoretic variant of strongly semisimple MV-algebras, called “Yosida frames”. These papers, together with the results of the present paper, show that strong semisimplicity is a very interesting purely algebraic counterpart of the simplicial, topological, and differential structure of MV-algebras. Further, from the logical viewpoint, 4.3 in [9] shows that strongly semisimple MV-algebras coincide with Lindenbaum algebras of theories Θ in infinite-valued Lukasiewicz logic having the following property: for any formula ψ, the set of syntactic consequences of $\Theta \cup \{\psi\}$ coincides with the set of (Bolzano–Tarski) semantic consequences of $\Theta \cup \{\psi\}$.

Mathematics Subject Classification (2010): Primary 06D35; Secondary 49J53, 47H04, 47N10, 49J52, 54C60.

Keywords: MV-algebra, strongly semisimple, Bouligand–Severi tangent, Lukasiewicz logic, syntactic and semantic consequence, Yosida frame, semisimple, logically complete MV-algebra.
From a classical result of Hay [6] and Wójtikí [14] (see also 4.6.7 in [4] and 1.6 in [8]), it follows that every finitely presented MV-algebra is strongly semisimple. Trivially, all hyperarchimedean MV-algebras, hence in particular all boolean algebras, are strongly semisimple, and so are all simple and all finite MV-algebras (see 3.5 and 3.6.5 in [4]).

For any real-valued function g we will write $Zg = g^{-1}(0)$ for its zero set.

Our paper is devoted to n-generator strongly semisimple MV-algebras. When $n = 1$, strong semisimplicity is equivalent to semisimplicity (Theorem 5.1). To deal with the general case, we first recall that the free n-generator MV-algebra is the MV-algebra $M([0,1]^n)$ of all McNaughton functions $f : [0,1]^n \to [0,1]$, with pointwise operations of negation $\neg x = 1 - x$ and truncated addition $x \oplus y = \min(1, x + y)$. See 9.1.5 in [4].

For any nonempty closed set $X \subseteq [0,1]^n$ we let $M(X)$ denote the MV-algebra of restrictions to X of the functions in $M([0,1]^n)$.

By 3.6.7 in [4], $M(X)$ is a semisimple MV-algebra; actually, up to isomorphism, $M(X)$ is the most general possible n-generator semisimple MV-algebra A. To see this, pick generators $\{a_1, \ldots, a_n\}$ of A. Let $\pi_i : [0,1]^n \to [0,1]$ be the projection functions in the free MV-algebra $M([0,1]^n)$ for $i = 1, \ldots, n$. Then the assignment that maps $\pi_i \mapsto a_i$ for each $i = 1, \ldots, n$, uniquely extends to a homomorphism $\eta_a : M([0,1]^n) \to A$ of the free n-generator MV-algebra onto A. Let $h_a = \ker(\eta_a)$ be the kernel of this homomorphism and let

\begin{equation}
Z_a = \bigcap \{Zf \mid f \in h_a\}
\end{equation}

be the intersection of the zero sets of the McNaughton functions in h_a. Then

\begin{equation}
A \cong M(Z_a).
\end{equation}

A point $x \in \mathbb{R}^n$ is said to be rational if so are all its coordinates. By a rational vector we mean a nonzero vector $w \in \mathbb{R}^n$ such that the line $\mathbb{R}w \subseteq \mathbb{R}^n$ contains at least two rational points. An MV-algebra A is strongly semisimple if and only if so is every 2-generator subalgebra of A (Proposition 4.1). A 2-generator MV-algebra $A = M(X)$, with nonempty closed $X \subseteq [0,1]^2$, is strongly semisimple if and only if X has no rational outgoing Bouligand–Severi tangent vector at any of its rational points, [2], [12], and [10]. See Theorem 3.1. As proved in Theorem 2.3, for any closed $X \subseteq [0,1]^n$, having such a tangent is a condition sufficient for $M(X)$ not to be strongly semisimple.

Notation. Following p. 33 in [4] or p. 21 in [8], for $k \in \mathbb{N}$, $k \cdot g$ stands for the k-fold pointwise truncated addition of g.

2. Strong semisimplicity and Bouligand–Severi tangents

Severi (see §53, p. 59 and p. 392 of [11], as well as §1, p. 99 of [12]) and independently, Bouligand (p. 32 in [2]) called a half-line $H \subseteq \mathbb{R}^n$ tangent to a set $X \subseteq \mathbb{R}^n$ at an accumulation point x of X if for all $\epsilon, \delta > 0$ there is $y \in X$ different from x
such that $||y - x|| < \epsilon$, and the angle between H and the half-line through y originating at x is $\delta < \delta$. Here as usual, $||v||$ is the length of the vector $v \in \mathbb{R}^n$.

On §2, p. 100 and §4, p. 102 of [12], Severi noted that for any accumulation point x of a closed set X there is a half-line H tangent to X at x.

Today (see, e.g., p. 16 in [3], or p. 1376 in [10]), Bouligand–Severi tangents are routinely defined as follows.

Definition 2.1. Let x be an element of a closed subset X of \mathbb{R}^n, and u a unit vector in \mathbb{R}^n. We then say that u is a Bouligand–Severi tangent (unit) vector to X at x if X contains a sequence x_0,x_1,\ldots of elements, all different from x, such that

$$
\lim_{i \to \infty} x_i = x \quad \text{and} \quad \lim_{i \to \infty} (x_i - x)/||x_i - x|| = u.
$$

Observe that x is an accumulation point of X. We further say that u is outgoing if for some $\lambda > 0$ the segment $\text{conv}(x,x + \lambda u)$ intersects X only at x.

Already Severi noted that his definition of tangent half-line $H = x + \mathbb{R}_{\geq 0}u$ is equivalent to Definition 2.1. More precisely:

Proposition 2.2. (§5, p. 103 of [12]). For any nonempty closed subset X of \mathbb{R}^n, point $x \in X$, and unit vector $u \in \mathbb{R}^n$ the following conditions are equivalent:

(i) For all $\epsilon, \delta > 0$, the cone $\text{cone}_{x,u,\epsilon,\delta}$ with apex x, axis parallel to u, vertex angle 2δ and height ϵ contains infinitely many points of X.

(ii) u is a Bouligand–Severi tangent vector to X at x.

When $n = 1$, $\text{cone}_{x,u,\epsilon,\delta}$ is the segment $\text{conv}(x,x + \epsilon u)$. When $n = 2$, $\text{cone}_{x,u,\epsilon,\delta}$ is the isosceles triangle $\text{conv}(x,a,b)$ with vertex x, basis $\text{conv}(a,b)$, height equal to ϵ (and parallel to u), and vertex angle $\alpha \hat{a} \hat{b} = 2\delta$.

The next two results provide necessary and sufficient geometric conditions on X for the semisimple MV-algebra $M(X)$ to be strongly semisimple. These conditions are stated in terms of the nonexistence of Bouligand–Severi tangent vectors having certain rationality properties.

Theorem 2.3. Let X be a nonempty closed set in $[0,1]^n$. Suppose X has a Bouligand–Severi rational outgoing tangent vector u at some rational point $x \in X$. Then $M(X)$ is not strongly semisimple.

Proof. Since u is outgoing, let $\lambda > 0$ satisfy $X \cap \text{conv}(x,x + \lambda u) = \{x\}$. Without loss of generality $x + \lambda u \in \mathbb{Q}^n$. By Definition 2.1, our hypothesis yields a sequence w_1, w_2, \ldots of distinct points of X, all distinct from x, accumulating at x, at strictly decreasing distances from x, in such a way that the sequence of unit vectors u_i given by $(w_i - x)/||w_i - x||$ tends to u as i tends to ∞. Let $y = x + \lambda u$. Since $X \cap \text{conv}(x,y) = \{x\}$, no point w_i lies on the segment $\text{conv}(x,y)$, and we can further assume that the sequence of angles $\hat{w}_i \hat{x} \hat{y}$ is strictly decreasing and tends to zero as i tends to ∞.

Since both points x and y are rational, by 2.10 in [8], for some $g \in M([0,1]^n)$ the zero set

$$Zg = \{z \in [0,1]^n \mid g(z) = 0\}$$
the value of the incremental ratio \(\frac{\partial g(x)}{\partial (u)} \). Thus,
\[
\frac{\partial g(x)}{\partial (u)} = 0.
\]

Let \(J \) be the ideal of \(\mathcal{M}([0,1]^n) \) generated by \(g \),
\[
J = \{ f \in \mathcal{M}([0,1]^n) \mid f \leq k \cdot g \text{ for some } k = 0,1,2,\ldots \}.
\]

Then for each \(f \in J \),
\[
\frac{\partial f(x)}{\partial (u)} = 0.
\]

Since the directional derivatives of \(f \) at \(x \) are continuous (meaning that the map \(t \mapsto \frac{\partial f(x)}{\partial t} \) is continuous), it follows that
\[
\lim_{t \to u} \frac{\partial f(x)}{\partial t} = \frac{\partial f(x)}{\partial u} = 0. \tag{2.1}
\]

Let \(g' = g \upharpoonright X \) and let
\[
J' = \{ f' \in \mathcal{M}(X) \mid f' \leq k \cdot g' \text{ for some } k = 0,1,2,\ldots \}
\]
be the ideal of \(\mathcal{M}(X) \) generated by \(g' \). A moment’s reflection shows that
\[
J' = \{ l \upharpoonright X \mid l \in J \}. \tag{2.2}
\]

One inclusion is trivial. For the converse inclusion, if \(f \upharpoonright X \leq (k \cdot g) \upharpoonright X \) then letting \(l = f \wedge k \cdot g \) we get \(l \leq k \cdot g \). So \(l \in J \) and \(l \upharpoonright X = f \upharpoonright X \), whence \(f \upharpoonright X \) is extendible to some \(l \in J \).

For any \(f \in \mathcal{M}([0,1]^n) \), the piecewise linearity of \(f \) ensures that for all large \(i \) the value of the incremental ratio \((f(w_i) - f(x))/||w_i - x|| \) coincides with the directional derivative \(\frac{\partial f(x)}{\partial u} \) along the unit vector \(u_i = (w_i - x)/||w_i - x|| \). Thus in particular, if \(f \upharpoonright X = f' \in J' \), from (2.1)–(2.2) it follows that
\[
\lim_{i \to \infty} \frac{f(w_i) - f(x)}{||w_i - x||} = 0.
\]

Since \(x \) is rational, again by 2.10 in [8] there is \(j \in \mathcal{M}([0,1]^n) \) with \(Z_j = \{ x \} \). For some \(\omega > 0 \) we have \(\frac{\partial j(x)}{\partial (u)} = \omega \), whence
\[
\lim_{i \to \infty} \frac{j(w_i) - j(x)}{||w_i - x||} = \omega.
\]

Therefore, \(j' \notin J' \). Since \(Z_j \cap X = \{ x \} \), recalling 4.19 in [8] we see that the only maximal ideal of \(\mathcal{M}(X) \) containing \(J \) is the set of all functions in \(\mathcal{M}(X) \) that vanish at \(x \). Thus, \(j' \) belongs to all maximal ideals of \(\mathcal{M}(X) \) containing \(J \).

By 3.6.6 in [4], \(\mathcal{M}(X) \) is not strongly semisimple; specifically, \(j' / J' \) is infinitesimal in the principal quotient \(\mathcal{M}(X) / J' \).
3. A partial converse of Theorem 2.3

Theorem 3.1. Let \(X \subseteq [0, 1]^n \) be a nonempty closed set. Suppose the MV-algebra \(\mathcal{M}(X) \) is not strongly semisimple.

(i) Then \(X \) has a Bouligand–Severi tangent vector \(u \) at some point \(x \in X \) satisfying the following nonalignment condition: there is a sequence of distinct \(w_i \in X \), all distinct from \(x \) such that

\[
\lim_{i \to \infty} w_i = x, \quad \lim_{i \to \infty} \frac{w_i - x}{||w_i - x||} = u, \quad w_i \notin \text{conv}(x, x + u) \text{ for all } i.
\]

(ii) In particular, if \(n = 2 \), then \(X \) has a Bouligand–Severi outgoing rational tangent vector \(u \) at some rational point \(x \in X \).

Proof. (i) The hypothesis yields a function \(g \in \mathcal{M}([0, 1]^n) \), with its restriction \(g' = g|_X \in \mathcal{M}(X) \), in such a way that the principal ideal \(J' \) of \(\mathcal{M}(X) \) generated by \(g' \),

\[
J' = \{ l' \in \mathcal{M}(X) \mid l' \leq k \cdot g' \text{ for some } k = 1, 2, \ldots \}
\]

is strictly contained in the intersection \(I \) of all maximal ideals of \(\mathcal{M}(X) \) containing \(J' \). Thus for some \(j \in \mathcal{M}([0, 1]^n) \) letting \(j' = j|_X \) we have \(j' \in I \cap J' \). By 3.6.6 in [4] and 4.19 in [8],

\[
j' = 0 \text{ on } Zg', \text{ i.e., } X \cap Zj \supseteq X \cap Zg
\]

and

\[
\forall m = 0, 1, \ldots, \exists z_m \in X, \ j'(z_m) > m \cdot g'(z_m).
\]

There is a sequence of integers \(0 < m_0 < m_1 < \ldots \) and a subsequence \(y_0, y_1, \ldots \) of \(\{ z_1, z_2, \ldots \} \) such that \(y_i \neq y_l \) for \(i \neq l \) and

\[
\forall t = 0, 1, \ldots, \ j'(y_t) > m_t \cdot g'(y_t).
\]

The compactness of \(X \) yields an accumulation point \(x \in X \) of the \(y_t \). Without loss of generality (taking a subsequence, if necessary) we can further assume

\[
||y_0 - x|| > ||y_1 - x|| > \cdots, \text{ whence } \lim_{i \to \infty} y_i = x.
\]

By (3.3), for all \(t \), \(j'(y_t) > 0 \). Then by (3.1), \(g'(y_t) > 0 \). For each \(i = 0, 1, \ldots, \) defining the unit vector \(u_i \in \mathbb{R}^n \) by \(u_i = (y_i - x)/||y_i - x|| \), we obtain a sequence of (possibly repeated) unit vectors \(u_i \in \mathbb{R}^n \). Since the boundary of the unit ball in \(\mathbb{R}^n \) is compact, some unit vector \(u \in \mathbb{R}^n \) satisfies

\[
\forall \epsilon > 0 \text{ there are infinitely many } i \text{ such that } ||u_i - u|| < \epsilon.
\]

Some subsequence \(w_0, w_1, \ldots \) of the \(y_t \) will satisfy the condition

\[
\forall \epsilon, \delta > 0 \text{ there is } k \text{ such that for all } i > k, \ w_i \in \text{conv}_x, u, \epsilon, \delta.
\]
Correspondingly, the sequence \(v_0, v_1, \ldots \) given by \(v_k = (w_k - x)/\|w_k - x\| \) will satisfy

\[
\lim_{i \to \infty} v_i = u.
\]

We have just proved that \(u \) is a Bouligand–Severi tangent to \(X \) at \(x \).

To complete the proof of (i) we need the following:

Fact 1. \(g'(x) = 0 \).

Otherwise, from the continuity of \(g \), for some real \(\rho > 0 \) and suitably small \(\epsilon > 0 \), we have the inequality \(g(z) > \rho \) for all \(z \) in the open ball \(B_{x,\epsilon} \) of radius \(\epsilon \) centered at \(x \). By (3.5), \(B_{x,\epsilon} \) contains infinitely many \(w_i \). There is a fixed integer \(\bar{m} > 0 \) such that \(1 = \bar{m} \cdot g \geq j \) for all these \(w_i \), which contradicts (3.3).

Fact 2. \(j'(x) = 0 \).

This immediately follows from (3.1) and Fact 1.

Fact 3. \(\partial g(x)/\partial u = 0 \).

Aiming at a contradiction, suppose \(\partial g(x)/\partial u = \theta > 0 \). In view of the continuity of the map \(t \mapsto \partial g(x)/\partial t \), let \(\delta > 0 \) be such that \(\partial g(x)/\partial r > \theta/2 \), for any unit vector \(r \) such that \(\bar{r}u < \delta \). Since, by Fact 2, \(j(x) = 0 \) and both \(g \) and \(j \) are piecewise linear, there is an \(\epsilon > 0 \) together with an integer \(\bar{k} > 0 \) such that \(\bar{k} \cdot g \geq j \) over the cone \(C = \text{cone}_{x,u,\epsilon,\delta} \). By (3.5), \(C \) contains infinitely many \(w_i \), in contradiction with (3.3).

To conclude the proof of the nonalignment condition in (i), it is sufficient to show the following:

Fact 4. There is \(\lambda > 0 \) such that for all large \(i \) the segment \(\text{conv}(x, x + \lambda u) \) contains no \(w_i \).

For otherwise, from Fact 3, \(\partial g(x)/\partial (u) = 0 \), whence the piecewise linearity of \(g \) ensures that \(g \) vanishes on infinitely many \(w_i \) of \(\text{conv}(x, x + \lambda u) \) arbitrarily near \(x \). Any such \(w_i \) belongs to \(X \). Hence, by (3.1), \(j(w_i) = 0 \), in contradiction with (3.3).

The proof of (i) is now complete.

(ii) Let \(H^\pm \) be the two closed half-spaces of \(\mathbb{R}^2 \) determined by the line passing through \(x \) and \(x + u \). By (3.5), infinitely many \(w_i \) lie in the same closed half-space, say, \(H^+ \). Without loss of generality, \(H^+ \cap \text{int}([0,1]^2) \neq \emptyset \). Let \(u^\perp \) be the vector orthogonal to \(u \) such that \(x + u^\perp \in H^+ \).

Fact 5. For all small \(\epsilon > 0 \),

\[
\frac{\partial g(x + \epsilon u)}{\partial u^\perp} > 0.
\]
Aiming at a contradiction, assume $\partial g(x + \epsilon u)/\partial u^\perp = 0$. Since g is piecewise linear, by Facts 1 and 3, for suitably small $\eta, \omega > 0$, the function g vanishes over the triangle $T = \text{conv}(x, x + \eta u, x + \eta u + \omega u^\perp)$. By (3.5), T contains infinitely many w_i. By (3.1), $g(w_i) = j(w_i) = 0$, contradicting (3.3).

Fact 6.

$$\frac{\partial j(x)}{\partial u} > 0.$$

Otherwise, $\partial j(x)/\partial u = 0$. Fact 5 yields a fixed integer \bar{h} such that, on a suitably small triangle of the form $T = \text{conv}(x, x + \epsilon u, x + \epsilon u + \omega u^\perp)$, we have $\bar{h} \cdot g \geq j$. By (3.5), T contains infinitely many w_i, again contradicting (3.3).

We now prove a strong form of Fact 4, showing that u is an outgoing tangent vector:

Fact 7. For some $\lambda > 0$ the segment $\text{conv}(x, x + \lambda u)$ intersects X only at x.

Otherwise, from Facts 1 and 3 it follows that g vanishes on infinitely many points of $X \cap \text{conv}(x, x + \lambda u)$ converging to x. By (3.1), j' vanishes on all these points. Since j is piecewise linear, $\partial j(x)/\partial u = 0$, contradicting Fact 6.

By a rational line in \mathbb{R}^n we mean a line passing through at least two distinct rational points.

Fact 8. x is a rational point, and u is a rational vector.

As a matter of fact, Facts 6 and 2 yield a rational line L through x. On the other hand, Facts 3 and 5 show that the line passing through x and $x + u$ is rational and different from L. Thus x is rational, hence so is the vector u.

We conclude that X has u as a Bouligand–Severi outgoing rational tangent vector at the rational point x.

Figure 1 is a sketch of the functions g and j in the foregoing proof.

Recalling Theorem 2.3 we now obtain:

Corollary 3.2. Let $X \subseteq [0, 1]^2$ be a nonempty closed set. Then $\mathcal{M}(X)$ is not strongly semisimple iff X has a Bouligand–Severi outgoing rational tangent vector u at some rational point $x \in X$.

Examples. The above corollary provides many examples of 2-generator strongly semisimple MV-algebras:

(i) Let $\kappa \in [0, 1]$ be irrational. Let W be the arc of parabola $\{(x, y) \in [0, 1]^2 | y = \kappa x^2\}$. Then $\mathcal{M}(W)$ is strongly semisimple – for want of rational points in W.

One can similarly construct 2-generator strongly semisimple MV-algebras of the form $\mathcal{M}(V)$, by letting V be a closed subset of $[0, 1]^2$ without rational points, or else, without outgoing rational tangents.

(ii) Following [13], let $Q \subseteq [0, 1]^2$ be a polyhedron in $[0, 1]^2$, i.e., a finite union of m-simplexes ($m = 0, 1, 2$) in $[0, 1]^2$. Then Q does not have any outgoing Bouligand–Severi tangent, whence $\mathcal{M}(Q)$ is strongly semisimple.
Figure 1. A Bouligand–Severi outgoing tangent vector u to X at x, and two functions g and j. The restriction $g \mid X$ generates a principal ideal J' of $\mathcal{M}(X)$. The restriction $j \mid X$ does not belong to J', but belongs to the only maximal ideal I' of $\mathcal{M}(X)$ containing J', namely the set of all functions in $\mathcal{M}(X)$ vanishing at x. So the principal quotient $\mathcal{M}(X)/J'$ is not semisimple.

(iii) (Generalizing (ii)). Let A be a 2-generator subalgebra of a semisimple tensor product (see §9.4 in [8]) of the form $[0,1] \otimes D$, where D is a finitely presented MV-algebra. Using Lemma 3.6 and Theorem 6.3 in [8], one sees that A is isomorphic to an MV-algebra of the form $\mathcal{M}(Q)$ for some polyhedron $Q \subseteq [0,1]^2$. Thus A is strongly semisimple.

4. The general case

The central role of finitely generated, and especially of 2-generator strongly semisimple MV-algebras among all strongly semisimple MV-algebras, is shown by the following result:

Proposition 4.1. For any MV-algebra A the following conditions are equivalent:

(i) A is strongly semisimple;

(ii) A is the direct limit of a direct system $\mathcal{S} = \{A_i, \phi_{ij}\}$ of finitely generated strongly semisimple algebras A_i, where all the homomorphisms $\phi_{ij} : A_i \rightarrow A_j$ are embeddings;

(iii) each 2-generator subalgebra of A is strongly semisimple.

Proof. Recall that an MV-algebra is semisimple if and only if it has no infinitesimals. For any MV-algebras C and D, and embedding $\phi : C \rightarrow D$, letting, for any $y \in C$, $(y)_D$ denote the ideal generated by y in C, we first make the following elementary observations:
(I) For each $c \in C$, the map $\phi: C/\langle c \rangle_C \to D/\langle \phi(c) \rangle_D$ defined by $x/\langle c \rangle_C \mapsto \phi(x)/\langle \phi(c) \rangle_D$ is an embedding. This immediately follows by observing that $\phi(\langle c \rangle_C) = \langle \phi(c) \rangle_D \cap \phi(C)$.

(II) $c \in C$ is an infinitesimal of C if and only if $\phi(c)$ is an infinitesimal of D.

(III) If D is strongly semisimple then so is C. As a matter of fact, for any $c \in C$, the map $\phi: C/\langle c \rangle_C \to D/\langle \phi(c) \rangle_D$ of (I) is an embedding. By hypothesis, $D/\langle \phi(c) \rangle_D$ is semisimple, whence so is $C/\langle c \rangle_C$ by (II).

We are now ready to prove the proposition.

(i)\Rightarrow(ii). Let $\mathcal{A} = \{A_i \subseteq A \mid A_i$ is a finitely generated subalgebra of $A\}$, and let $\phi_{ij}: A_i \to A_j$ be the inclusion map whenever $A_i \subseteq A_j$. Then A together with the homomorphisms ϕ_{ij} is a direct system of MV-algebras, having A as its direct limit. By (III), each A_i is strongly semisimple.

(ii)\Rightarrow(i). Let $\mathcal{S} = \{A_i, \phi_{ij}\}$ be a directed system of strongly semisimple MV-algebras, indexed by the directed partially ordered set I, where each ϕ_{ij} is an embedding of A_i into A_j. Let A be the direct limit of \mathcal{S} with the telescopic maps $\phi_{i\infty}: A_i \to A$. Each $\phi_{i\infty}$ is an embedding. Suppose that A is not strongly semisimple, (absurdum hypothesis), and let $g \in A$ be such that $A/\langle g \rangle_A$ is not semisimple. Then there is an element $e \in A$ such that $e/\langle g \rangle_A$ is an infinitesimal of $A/\langle g \rangle_A$. Since the partial order of the index set I is directed, for some $i \in I$ there are $g_i, e_i \in A_i$ with $\phi_{i\infty}(g_i) = g$ and $\phi_{i\infty}(e_i) = e$. The map $\phi_{i\infty}: A_i/\langle g_i \rangle_{A_i} \to A/\langle g \rangle_A$ of (I) is an embedding. By (II), $e_i/\langle g_i \rangle_{A_i}$ is an infinitesimal element of $A_i/\langle g_i \rangle_{A_i}$, contrary to the hypothesis that A_i is strongly semisimple.

(i)\Rightarrow(iii). Immediate from (III).

(iii)\Rightarrow(i). If A is not strongly semisimple there are elements $g, e \in A$ such that $e/\langle g \rangle_A$ is an infinitesimal in $A/\langle g \rangle_A$. Let $B \subseteq A$ be the subalgebra of A generated by g and e. By (I) and (II), $e/\langle g \rangle_B$ is an infinitesimal element of $B/\langle g \rangle_B$, and B is not strongly semisimple. \qed

5. Coda: one-generator MV-algebras

The following result is an easy consequence of Theorem 3.1. We include the elementary proof because it provides a technique for dealing with strong semisimplicity independently of Bouligand–Severi tangents.

Theorem 5.1. Every one-generator semisimple MV-algebra A is strongly semisimple.

Proof. As in (1.1)–(1.2), let $X \subseteq [0, 1]$ be a nonempty closed set such that $A \cong \mathcal{M}(X)$. For some $g \in \mathcal{M}([0, 1])$ let J be the principal ideal of $\mathcal{M}([0, 1])$ generated by g, and let J' be the principal ideal of $\mathcal{M}(X)$ generated by $g' = g | X$.

The short argument immediately following (2.2) shows that $J' = \{f | X \mid l \in J\}$. For every $f \in \mathcal{M}([0, 1])$, letting $f' = f | X$ we must prove: if f' belongs to all
maximal ideals of $M(X)$ to which g' belongs, then f' belongs to J'. By 3.6.6 in [4] and 4.19 in [8], this amounts to proving

\[(5.1) \quad \text{if } f = 0 \text{ on } Zg \cap X, \text{ then } f \upharpoonright X \in J'.\]

Let Δ be a triangulation of $[0,1]$ such that f and g are linear over every simplex of Δ. The existence of Δ follows from the piecewise linearity of f and g, [13]. In view of the compactness of X and $[0,1]$, it is sufficient to settle the following:

Claim. Suppose $f \in M([0,1])$ vanishes over $Zg \cap X$. Then for all $x \in X$ there is an open neighbourhood $N_x \ni x$ in $[0,1]$ together with an integer $m_x \geq 0$ such that $m_x \cdot g \geq f$ on $N_x \cap X$.

We proceed by cases.

Case 1. $g(x) > 0$. Then for some integer r and open neighbourhood $N_x \ni x$ we have $g > 1/r$ on N_x. Letting $m_x = r$ we have $1 = m_x \cdot g \geq f$ on N_x, whence a fortiori, $m_x \cdot g \geq f$ on $N_x \cap X$.

Case 2. $g(x) = 0$. Since f vanishes on $Zg \cap X$, then $f(x) = 0$. Let T be a 1-simplex of Δ such that $x \in T$. Let T_x be the smallest face of T containing x.

Subcase 2.1. $T_x = T$. Then $x \in \text{int}(T)$. Since g is linear over T g vanishes on T. By our hypotheses on f and Δ, f vanishes on T, whence $0 = g \geq f = 0$ on T. Letting $N_x = \text{int}(T)$ and $m_x = 1$, we get $m_x \cdot g \geq f$ on N_x whence a fortiori, the inequality holds on $N_x \cap X$.

Subcase 2.2. $T_x = \{x\}$. Then $T = \text{conv}(x,y)$ for some $y \neq x$. Without loss of generality, $y > x$. We will exhibit a right open neighbourhood $R_x \ni x$ and an integer $r_x \geq 0$ such that $r_x \cdot g \geq f$ on $R_x \cap X$. The same argument yields a left neighbourhood $L_x \ni x$ and an integer $l_x \geq 0$ such that $l_x \cdot g \geq f$ on $L_x \cap X$. One then takes $N_x = R_x \cup L_x$ and $m_x = \max(r_x,l_x)$.

Subsubcase 2.2.1. If both g and f vanish at y, then they vanish on T (because they are linear on T). Defining $R_x = \text{int}(T) \cup \{x\}$ and $r_x = 1$, we get $r_x \cdot g \geq f$ on R_x, whence, in particular, on $R_x \cap X$.

Subsubcase 2.2.2. If both g and f are positive at y, then for all suitably large m we have $m \cdot g \geq f$ on T because $f(x) = 0$ and both f and g are linear on T. Letting r_x be the smallest such m and letting $R_x = \text{int}(T) \cup \{x\}$, we have the desired inequality on R_x, and a fortiori on $R_x \cap X$.

Subsubcase 2.2.3. $g(y) = 0, f(y) > 0$. By our hypotheses on Δ, g is linear on T and hence $g = 0$ on T. It follows that $X \cap T = \{x\}$; for otherwise, our assumption $Zf \cap X \supseteq Zg \cap X$ together with the linearity of f on T would imply $f(y) = 0$, contrary to our current hypothesis. Letting $R_x = \text{int}(T) \cup \{x\}$ and $r_x = 1$ we have $r_x \cdot g \geq f$ on $R_x \cap X$. \hfill \Box

Acknowledgement. The authors are very grateful to the three referees, whose criticism and suggestions greatly contributed to improving an earlier version. Special thanks are due to Leonardo Cabrera, for providing us with Proposition 4.1, in answer to a problem posed by one of the referees.
References

Received April 10, 2012.

Manuela Busaniche: Instituto de Matemática Aplicada del Litoral, CONICET-UNL, Güemes 3450, S3000GLN-Santa Fe, Argentina.
E-mail: mbusaniche@santafe-conicet.gov.ar

Daniele Mundici: Dipartimento di Matematica e Informatica, Università degli Studi di Firenze, Viale Morgagni 67/a, 50134 Firenze, Italy.
E-mail: mundici@math.unifi.it