\(\alpha\)-isoptics of a triangle and their connection
to \(\alpha\)-isoptic of an oval

MALGORZATA MICHALSKA (*) - WITOLD MOZGAWA (**)

ABSTRACT - For a fixed positive angle \(\alpha, \alpha < \pi\) we get an explicit formulas for an \(\alpha\)-isoptic curve of a triangle and study some of its properties. We use obtained results to show that \(\alpha\)-isoptic of an oval is an envelope of \(\alpha\)-isoptics of properly chosen triangles.

MATHEMATICS SUBJECT CLASSIFICATION (2010). 53A04; 52A10; 52A38.

KEYWORDS. Isoptic curve, convex curve, support function, envelope, oval.

1. Introduction

For two nontrivial vectors in the complex plane \(u = u_1 + iu_2, v = v_1 + iv_2\) let \([u, v] = u_1v_2 - u_2v_1\). On the other hand we know that \([u, v] = |u| \cdot |v| \sin \mathcal{L}(u, v)\). Thus, we have the useful formula

\[
\sin \mathcal{L}(u, v) = \frac{[u, v]}{|u| \cdot |v|}.
\]

An \(\alpha\)-isoptic curve \(C_\alpha\) of a plane, closed, convex curve \(C\) is a set of those points in the complex plane from which the curve \(C\) is seen under a fixed angle \(\pi - \alpha\), \(\alpha \in (0, \pi)\). If \(C\) is strictly convex and the origin of the plane is

(*) Indirizzo dell’A.: Institute of Mathematics, Maria Curie-Skłodowska University, pl. M. Curie-Skłodowska 1, 20-031 Lublin, Poland.
E-mail: malgorzata.michalska@poczta.umcs.lublin.pl

(**) Indirizzo dell’A.: Institute of Mathematics, Maria Curie-Skłodowska University, pl. M. Curie-Skłodowska 1, 20-031 Lublin, Poland.
E-mail: mozgawa@poczta.umcs.lublin.pl
chosen inside C, then there exists (cf. [2]) a differentiable function p such that $p(t), \ t \in [0, 2\pi]$ is the distance from the origin to the support line. Function p is called a support function and in its terms we have the parametrization of C

$$(1.2) \quad z(t) = p(t)e^{it} + \dot{p}(t)ie^{it}, \quad t \in [0, 2\pi],$$

and the parametrization of its z-isoptic

$$(1.3) \quad z_z(t) = p(t)e^{it} + \left\{ -p(t) \cot z + \frac{1}{\sin z} p(t + z) \right\} ie^{it}, \quad t \in [0, 2\pi].$$

Properties of isoptics of strictly convex curves were studied in [4], [5], [9] and in [7] some results for not strictly convex curves can be found. Interesting extension of the notion of isoptic to non-euclidean spaces are given in [6].

In this paper we find an z-isoptic curve of a triangle for a fixed positive angle z, $z < \pi$ and study some of its properties. As an application of our results we show that a family of z-isoptics of properly chosen triangles has envelope which is z-isoptic of an oval.

2. Properties of an α-isoptic curve of a triangle

Let z be fixed and let $z_k = x_k + iy_k, \ k = 1, 2, 3$, denote the vertices of a counter-clockwise oriented triangle T on the complex plane \mathbb{C}. If we ever use a subindex k greater than 3, we always mean it modulo 3. For $k = 1, 2, 3$ we use the following notations. Let $\overline{a_k} = \frac{\overline{z_k + 1} \overline{z_{k+2}}}{a_k} = x_{k+2} - x_{k+1} + i(y_{k+2} - y_{k+1})$ be an oriented side of the triangle T, then $a_k = \sqrt{(x_{k+2} - x_{k+1})^2 + (y_{k+2} - y_{k+1})^2}$ denotes its length and β_k is an angle of T corresponding to the vertex z_k and opposite to the side $\overline{a_k}$. Without loss of generality we can assume throughout this paper that $\beta_1 \geq \beta_2 \geq \beta_3$ or equivalently $a_1 \geq a_2 \geq a_3$.

From the inscribed angle theorem it is known that C_z, the z-isoptic curve of T is a union of at least 3 and at most 6 circular arcs, one arc over each side of T and if z is greater then $\pi - \beta_k$ one has an additional arc over the vertex z_k. We find the equations for each part of C_z.

Over the side $\overline{a_k}$ a part of C_z is an arc of a circle $C(s_k, r_k)$ centered at the point s_k and with radius r_k. Moreover, if l_k is the line containing the side $\overline{a_k}$, then the center s_k and the vertex z_k lie in the same half plane of
l_k if and only if α is less than $\pi/2$. To find the equation of the circle $C(s_k, r_k)$ we observe that the point $z = x + iy$ belongs to the part C_z over the side $\overrightarrow{a_k}$ if the angle between the vectors $\overrightarrow{u} = \overrightarrow{zz_{k+1}}$ and $\overrightarrow{v} = \overrightarrow{zz_{k+2}}$ is equal to $\pi - \alpha$. Using formula (1.1) we obtain the equation

$$|u| \cdot |v| \sin(\pi - \alpha) = (x - x_{k+1})(y - y_{k+2}) - (y - y_{k+1})(x - x_{k+2}).$$

Taking square of both sides of the above equation we get after some calculations

$$|z - \left(\frac{(z_{k+1} + z_{k+2})}{2} \pm i \cdot \cot \alpha \cdot (z_{k+1} - z_{k+2})\right)|^2 = \frac{a_k^2}{4 \sin^2 \alpha}.$$

(2.1)

Now, the property of the vertex z_k and the center of the circle s_k lying in the same half plane allow us to determine the sign in the above formula and finally we obtain

$$r_k = \frac{a_k}{2 \sin \alpha};$$

(2.2)

and

$$s_k = \frac{(z_{k+1} + z_{k+2})}{2} - i \cot \alpha \frac{(z_{k+1} - z_{k+2})}{2}.$$

(2.3)

Figure 1. Isoptics of T for $\alpha \in \{\pi/12, 5\pi/24, 5\pi/12, 7\pi/12, 2\pi/3, 3\pi/4, 19\pi/24, 5\pi/6, 21\pi/24, 43\pi/48, 11\pi/12\}$.
It is worth to notice that the arc of the circle $C(p_k, r_k)$ which is the part of C_z over the vertex z_k, for z less then $\pi - \beta_k$, is obtained in the same way. The only deference is that the center of the circle p_k and vertex z_k lie in the same half plane of l_k if and only if z is greater then $\pi/2$. Thus for z less then $\pi - \beta_k$ from (2.1) we have the following

\[(2.4) \quad p_k = \frac{(z_{k+1} + z_{k+2})}{2} + i \cot z \frac{(z_{k+1} - z_{k+2})}{2}.
\]

Example 2.1. Let T be a triangle with vertices $z_1 = 1$, $z_2 = i$, $z_3 = -i\sqrt{3}$. Then from formulas (2.1), (2.2), (2.3) and (2.4) we get the isoptics of T.

The most interesting question is for which z the z-isoptic of T is a convex curve. To study this problem we need to find the points of intersection of two circular arcs of C_z.

If z is less or equal to $\pi - \beta_k$ then two circular arcs intersect at z_k. Let z be greater then $\pi - \beta_k$. Let ζ_k denote the intersection point of the circles $C(s_{k+1}, r_{k+1})$, $C(p_k, r_k)$ and the line l_{k+2}, and let η_k denote the intersection point of the circles $C(s_{k+2}, r_{k+2})$, $C(p_k, r_k)$ and the line l_{k+1}. We can find the coordinates of ζ_k and η_k by straightforward calculations. To simplify notations we put $\zeta_k = \eta_k = z_k$ for $z \leq \pi - \beta_k$ and together we have

\[(2.5) \quad \zeta_k = z_k + (z_{k+1} - z_k) \frac{a_{k+1} \cdot \min\{0, \sin(z + \beta_k)\}}{a_{k+2} \sin z},
\]

\[(2.6) \quad \eta_k = z_k + (z_{k+2} - z_k) \frac{a_{k+2} \cdot \min\{0, \sin(z + \beta_k)\}}{a_{k+1} \sin z}.
\]

Now we state a useful property of C_z which helps us to study its convexity.

Proposition 2.2. Let $z > \pi - \max\{\beta_1, \beta_2, \beta_3\}$ be fixed. Let T be a given triangle in the complex plane and let C_z be its z-isoptic curve. Then the triangle with the vertices s_{k+1}, p_k, ζ_k and the triangle with the vertices p_k, s_{k+2}, η_k are geometrically congruent to each other and both are similar to T for each $k \in \{1, 2, 3\}$ for which the arc of the circle $C(p_k, r_k)$ is a part of C_z.

Proof. Let $k \in \{1, 2, 3\}$ be arbitrarily chosen. If $z \leq \pi - \beta_k$, then none arc of the circle $C(p_k, r_k)$ is a part C_z. Let $z > \pi - \beta_k$. Then we
have $|\overrightarrow{s_{k+1}z_k}| = r_{k+1}$, $|\overrightarrow{s_{k+2}z_k}| = r_{k+2}$ and $|\overrightarrow{p_k\zeta_k}| = |\overrightarrow{p_k\eta_k}| = r_k$. We can obtain lengths $|\overrightarrow{s_{k+2}p_k}|$ and $|\overrightarrow{s_{k+1}p_k}|$ using formulas (2.3) and (2.4), and we get the following equality

$$|\overrightarrow{s_{k+2}p_k}| = \frac{(z_{k+2} - z_k)}{2} + i\cot\alpha\left(\frac{(z_{k+2} - z_k)}{2}\right) = r_{k+1},$$

and analogously $|\overrightarrow{s_{k+1}p_k}| = r_{k+2}$. Thus the triangle with the vertices s_{k+1}, p_k, ζ_k and the triangle with the vertices p_k, s_{k+2}, η_k have the required properties. Since k was chosen arbitrarily we get the proof. \hfill \Box

Proposition 2.2 allows us to reduce the domain of α to the interval $(0, \beta_1]$ while studying the convexity of C_α. Namely we have

Corollary 2.3. Let α be fixed. If $\alpha > \pi - \max \{\beta_1, \beta_2, \beta_3\}$ then the α-isoptic curve of T is not convex.

Proof. Due to our assumption $\beta_1 = \max \{\beta_1, \beta_2, \beta_3\}$. Let $\alpha > \pi - \beta_1$ be fixed. Then, at least an arc of $C(p_1, r_1)$ is a part of C_α. The vector $\overrightarrow{\zeta_1p_1}$ is normal to the tangent line to the circle $C(p_1, r_1)$ at the point ζ_1 and the vector $\overrightarrow{\zeta_1s_2}$ is normal to the tangent line to the circle $C(s_2, r_2)$ at the point ζ_1. By Proposition 2.2 and formula (1.1) we get that the circles $C(p_1, r_1)$ and $C(s_2, r_2)$ intersects at ζ_1 under the angle $\pi - \beta_3$, thus C_α is not convex. \hfill \Box

In fact, the domain of convexity of the curve C_α is a proper subset of $(0, \beta_1]$. We prove the following

Theorem 2.4. Let T be a given triangle in the complex plane and let C_α be its α-isoptic curve. Then C_α is a convex curve if $\alpha \leq (\pi - \max \{\beta_1, \beta_2, \beta_3\})/2$.

Proof. By our assumption we have $\beta_1 = \max \{\beta_1, \beta_2, \beta_3\}$. Let $\alpha < \pi - \beta_1$ be fixed. Then C_α consists of 3 circular arcs $C(s_k, r_k), k = 1, 2, 3$. Let γ_k denote the angle under which the circles $C(s_{k+1}, r_{k+1})$ and $C(s_{k+2}, r_{k+2})$ intersect at the point z_k. Similarly as in the proof of Corollary 2.3 the vector $\overrightarrow{z_k s_{k+2}}$ is normal to the tangent line to the circle $C(s_{k+2}, r_{k+2})$ at the point z_k and the vector $\overrightarrow{z_k s_{k+1}}$ is normal to the tangent line to the circle $C(s_{k+1}, r_{k+1})$ at the point z_k. Using formula (1.1) we find
Let $\zeta_k s_{k+2}, \bar{\zeta}_k s_{k+1}$ and consequently $\gamma_k = \pi + 2\alpha + \beta_k$. Obviously $\gamma_k \leq 2\pi$ and hence we get the required result.

Corollary 2.5. The α-isoptic curve of an equilateral polygon with n sides is convex for $\alpha \leq \pi/n$ and the (π/n)-isoptic is a circle in which the polygon is inscribed.

Proof. If a polygon is an equilateral triangle then by Theorem 2.4 its α-isoptic curve is convex for $\alpha \leq \pi/3$ and $C_{\pi/3}$ is a circle circumscribed on T.

Now let an equilateral polygon have n sides, $n > 3$. By inscribed angle theorem and Theorem 2.4 its α-isoptic curve is convex for $\alpha \leq \pi/n$. And again the (π/n)-isoptic is a circle.

3. The length of an α-isoptic curve of a triangle

In this section we study some properties of the length function $L(\alpha)$ of C_α as a function of α. To find the length function we need some additional notations. For $k = 1, 2, 3$ let φ_k denote an angular measure in radians of the arc of the circle $C(s_k, r_k)$ which is a part of C_α and for a sufficiently large α let ψ_k denote an angular measure in radians of the arc of the circle $C(p_k, r_k)$ which is also a part of C_α. Then, by the inscribed angle theorem, we have for $k = 1, 2, 3$

\begin{align}
(3.1) \quad \varphi_k &= 2(\alpha - \max \{0, \beta_{k+1} + \alpha - \pi\} - \max \{0, \beta_{k+2} + \alpha - \pi\}), \\
(3.2) \quad \psi_k &= 2\max \{0, \beta_k + \alpha - \pi\}.
\end{align}

Using the above formulas we obtain the length of C_α as a function of α

\begin{equation}
(3.3) \quad L(\alpha) = \sum_{k=1}^{3} (\varphi_k + \psi_k) r_k.
\end{equation}

Theorem 3.1. Let T be a triangle in the complex plane and let C_α be an α-isoptic curve of T for a given angle α. Then $L(\alpha)$ the length function of C_α defined by (3.3) is a continuous and strictly increasing function with respect to α. The function L is not convex.

Proof. Assume that $\beta_1 \geq \beta_2 \geq \beta_3$. Form (3.3) and the sine theorem we have the explicit formula for L
\[L(z) = \begin{cases}
\frac{2aR(\sin \beta_1 + \sin \beta_2 + \sin \beta_3)}{\sin z} & \text{for } 0 < z \leq \pi - \beta_1, \\
\frac{2R(2z \sin \beta_1 + (\pi - \beta_1)(-\sin \beta_1 + \sin \beta_2 + \sin \beta_3))}{\sin z} & \text{for } \pi - \beta_1 < z \leq \pi - \beta_2, \\
\frac{2R(z(\sin \beta_1 + \sin \beta_2 - \sin \beta_3) + (\beta_1 - \beta_2)(\sin \beta_1 - \sin \beta_2) + (\pi + \beta_3) \sin \beta_3)}{\sin z} & \text{for } \pi - \beta_2 < z \leq \pi - \beta_3, \\
\frac{4R(\beta_1 \sin \beta_1 + \beta_2 \sin \beta_2 + \beta_3 \sin \beta_3)}{\sin z} & \text{for } \pi - \beta_3 < z < \pi,
\end{cases} \]

where \(R \) is the radius of the circle circumscribing \(T \). The straightforward calculations show that \(L \) is continuous at the points \(\pi - \beta_1, \pi - \beta_2, \pi - \beta_3 \) and thus at all \(z \in (0, \pi) \). Each function \(L_k(z), k = 1, 2, 3, 4 \) is differentiable in an open subset of its domain and the derivatives are equal to

\[L_1'(z) = \frac{2R}{\sin^2 z} (\sin \beta_1 + \sin \beta_2 + \sin \beta_3)(\sin z - z \cos z), \]

\[L_2'(z) = \frac{2R}{\sin^2 z} [2 \sin \beta_1(\sin z - z \cos z) - (\pi - \beta_1)(-\sin \beta_1 + \sin \beta_2 + \sin \beta_3) \cos z], \]

\[L_3'(z) = \frac{2R}{\sin^2 z} \{ (\sin \beta_1 + \sin \beta_2 - \sin \beta_3)(\sin z - z \cos z) \\
- [(\beta_1 - \beta_2)(\sin \beta_1 - \sin \beta_2) + (\pi + \beta_3) \sin \beta_3] \cos z \}, \]

\[L_4'(z) = \frac{-4R}{\sin^2 z} (\beta_1 \sin \beta_1 + \beta_2 \sin \beta_2 + \beta_3 \sin \beta_3) \cos z. \]

Since they have property

\[(3.4) \quad L_{k+1}'(\pi - \beta_k) - L_k'(\pi - \beta_k) = \frac{a_k - a_{k+1} - a_{k+2}}{\sin \beta_k} < 0, \quad \text{for } k = 1, 2, 3, \]

thus the function \(L' \) is not defined at the points \(\pi - \beta_1, \pi - \beta_2, \pi - \beta_3 \).

We show that \(L' \) is a positive function in each interval of its domain and thus \(L \) is increasing.

First note that the function \(f(z) = \sin z - z \cos z \) is positive and increasing for \(z \in (0, \pi) \) and the function \(g(z) = -\cos z \) is positive for \(z \in (\pi/2, \pi) \). Consequently the functions \(L_1', L_3', L_4' \) are positive in their domains.
The function L'_2 is positive for $\alpha > \pi/2$ hence we have to show that it is positive in the interval $[\pi - \beta_1, \pi/2]$. Since the function
\[
h(\alpha) = 2 \sin \beta_1 (\sin \alpha - \alpha \cos \alpha) - (\pi - \beta_1)(- \sin \beta_1 + \sin \beta_2 + \sin \beta_3) \cos \alpha
\]
has nonnegative derivative for $\alpha \in [\pi - \beta_1, \pi/2]$ it is enough to show that $h(\pi - \beta_1)$ is positive. Let
\[
H(\beta_2, \beta_3) = h(\pi - \beta_1)
= 2 \sin^2 (\beta_2 + \beta_3) - (\beta_2 + \beta_3) \cos (\beta_2 + \beta_3)[\sin (\beta_2 + \beta_3) + \sin \beta_2 + \sin \beta_3].
\]
We need to show that the minimal value of H in
\[
D = \{(\beta_2, \beta_3) \mid 0 \leq \beta_3 \leq \beta_2 \leq \pi/2, \ 0 \leq \beta_2 + \beta_3 \leq \pi/2\}
\]
is nonnegative. The function H has no critical points inside D. Moreover,
\[
H(\beta_2, \pi/2 - \beta_2) = 2, \ \text{for} \ \beta_2 \in [\pi/4, \pi/2],
\]
\[
H(\beta_2, 0) = 2 \sin \beta_2 (\sin \beta_2 - \beta_2 \cos \beta_2) \geq 0, \ \text{for} \ \beta_2 \in [0, \pi/2].
\]
To complete this part of the proof we show that
\[
\tilde{H}(\beta_2) = H(\beta_2, \beta_2) = 2 \sin^2 2 - 2 \beta_2 \cos 2 \beta_2 (\sin 2 \beta_2 - 2 \sin \beta_2)
\]
is nonnegative for $\beta_2 \in [0, \pi/4]$. Once again, we use the fact that this function is nondecreasing and $\tilde{H}(0) = 0$. Indeed, we have
\[
\tilde{H}'(\beta_2) = 8 \cos \frac{\beta_2}{2} \bigg[(3 \cos \beta_2 - 1) \sin \frac{\beta_2}{2} \cos 2 \beta_2 + \beta_2 (\cos 2 \beta_2 - 2 \cos 3 \beta_2) \cos \frac{\beta_2}{2} \bigg]
= 8 \cos \frac{\beta_2}{2} \bigg\{ \cos \frac{5\beta_2}{2} \sin^2 \frac{\beta_2}{2} (\beta_2 - \sin \beta_2) + \sin \frac{5\beta_2}{2} (3 \cos \beta_2 - 1) \sin^2 \frac{\beta_2}{2} \bigg\}
+ \bigg[\cos \frac{5\beta_2}{2} (\sin \beta_2 \cos \beta_2 - \beta_2) + \frac{3}{2} \beta_2 \sin \beta_2 \sin \frac{5\beta_2}{2} \bigg].
\]
From the first formula we obtain that $\tilde{H}'(\beta_2)$ is positive for $\beta_2 \in (\pi/6, \pi/4]$. If $\beta_2 \in (0, \pi/6]$ each term in a square bracket in the second formula is positive. Thus, $\tilde{H}'(\beta_2)$ is positive for $\beta_2 \in (0, \pi/4]$. Finally, we get that $H(\beta_2, \beta_3)$ is nonnegative and is equal to 0 only if $\beta_2 = \beta_3 = 0$. This completes the proof that L'_2 is positive in its domain.

Moreover, the functions $L'_k, k = 1, 2, 3, 4$ are positive and the property (3.4) implies that the graph of L is not convex. It is worth to notice that each $L_k, k = 1, 2, 3, 4$ is convex in its domain since $(f(\alpha)/\sin^2 \alpha)' = \alpha (1 + \cos^2 \alpha)/\sin^3 \alpha > 0$ and $(- g(\alpha)/\sin^2 \alpha)' = (1 + \cos^2 \alpha)/\sin^3 \alpha > 0$ for $\alpha \in (0, \pi)$. □
Example 3.2. For the triangle \(T \) from Example 2.1 the length function \(L(x) \) given by (3.3) has the graph shown on Figure 2.

![Graph of the length function \(L(x) \) of \(T \).](image)

4. The area of an \(\alpha \)-isoptic curve of a triangle

Our aim in this section is to investigate some properties of the area function \(A(x) \) of the \(z \)-isoptic curve of \(T \) as a function of \(\alpha \). Let \(\zeta_1 \eta_1 \zeta_2 \eta_2, \zeta_3 \eta_3 \), where \(\zeta \) and \(\eta \) are defined by (2.5) and (2.6), respectively, be a counterclockwise oriented polygon. If \(\eta_k = \zeta_k = z_k \) then the point \(z_k \) is counted only once in the polygon. Using formulas (3.1) and (3.2) we get the area function of \(C_x \)

\[
A(x) = \text{area of } \zeta_1 \eta_1 \zeta_2 \eta_2 \zeta_3 \eta_3 \\
+ \sum_{k=1}^{3} \left(\varphi_k r_k^2 - \frac{1}{2} r_k^2 \sin \varphi_k \right) + \sum_{k=1}^{3} \left(\psi_k t_k^2 - \frac{1}{2} t_k^2 \sin \psi_k \right).
\]

The behavior of the function \(A(x) \) is described in the following

Theorem 4.1. Let \(T \) be a triangle in the complex plane and let \(C_x \) be an \(z \)-isoptic curve of \(T \) for a given angle \(z \). Then \(A(x) \), the area function of \(C_x \) defined by (4.1) is a differentiable, strictly increasing and convex function with respect to \(x \).
\textbf{Proof.} Assume that }β_1 ≥ β_2 ≥ β_3 \text{ and let } ζ_k \text{ and } η_k \text{ be defined by (2.5) and (2.6), respectively. To compute the area function given by (4.1) we need to find the area of a polygon } ζ_1 η_1 ζ_2 η_2 ζ_3 η_3 \text{. To this end we use theorem 3 given by Radić in [10]. He proved that

The area of } ζ_1 η_1 ζ_2 η_2 ζ_3 η_3 = \frac{1}{2} |ζ_1 + η_1 + ζ_2, η_2 + ζ_3, η_3 + ζ_3 + η_3 + ζ_1|,

\text{where}

|z_1 + z_2, z_2 + z_3, \ldots, z_n + z_1| = \sum_{1 \leq i < j \leq n} (-1)^{3+i+j} [z_i, z_j].

\text{Obviously, if } η_k = ζ_k = z_k \text{ then the point } z_k \text{ is counted only once in the polygon. Applying the sine theorem we get

\begin{align*}
A(α) &= \begin{cases}
2R^2[(x - \sin x \cos x)(1 + \cos β_1 \cos β_2 \cos β_3) + \sin^2 x \sin β_1 \sin β_2 \sin β_3] \\
\sin^2 x & \text{for } 0 < α ≤ π - β_1,
\end{cases} \\
&= \begin{cases}
2R^2[(x - \sin x \cos x)\sin^2 β_1 + \sin β_2 \sin β_3[(π - β_1) \cos β_1 + \sin β_1]] \\
\sin^2 x & \text{for } π - β_1 < α ≤ π - β_2,
\end{cases} \\
&= \begin{cases}
2R^2[(x \cos β_1 + \cos x \sin(β_1 - x)) \sin β_1 \sin β_2 + (β_1 + \beta_2) \cos β_1 + \sin β_1] \sin β_2 \sin β_3] \\
\sin^2 x & \text{for } π - β_2 < α ≤ π - β_3,
\end{cases} \\
&= \begin{cases}
\frac{2R^2(π - β_2)\sin^2 β_3}{\sin^2 x} & \text{for } π - β_3 < α < π,
\end{cases}
\end{align*}

\text{where } R \text{ is the radius of the circle circumscribed on } T. \text{ The function } A(α) \text{ is continuous at the points } π - β_1, π - β_2, π - β_3 \text{ and thus at all } α \in (0, π). \text{ The same is true for its derivative and we have

\begin{align*}
A'_1(α) &= \frac{4R^2}{\sin^3 x} \{(\sin x - α \cos x)(1 + \cos β_1 \cos β_2 \cos β_3) - \sin^2 β_1 \sin β_2 \sin β_3[(π - β_1) \cos β_1 + \sin β_1]\},
\end{align*}

\begin{align*}
A'_2(α) &= \frac{4R^2}{\sin^3 x} \{(\sin x - α \cos x) \sin^2 β_1 \\
&- \cos x \sin β_2 \sin β_3[(π - β_1) \cos β_1 + \sin β_1]\},
\end{align*}
\[A_3'(\alpha) = \frac{4R^2}{\sin^3 x} \left\{ [\sin(\alpha - \beta_3) - \alpha \cos \alpha \cos \beta_3] \sin \beta_1 \sin \beta_2 \\
- \cos \alpha [(\pi - \beta_2) \sin \beta_1 \cos \beta_2 \sin \beta_3 + ((\pi - \beta_1) \cos \beta_1 + \sin \beta_1) \sin \beta_2 \sin \beta_3]\right\}, \]

\[A_4'(\alpha) = \frac{-4R^2}{\sin^3 x} \cos \alpha [3 \sin \beta_1 \sin \beta_2 \sin \beta_3 + \beta_1 \sin^2 \beta_1 + \beta_2 \sin^2 \beta_2 + \beta_3 \sin^2 \beta_3]. \]

where the derivative of the function \(A_k(\alpha), \ k = 1, 2, 3, 4, \) is defined in its domain. Using functions \(f \) and \(g \) defined in the proof of Theorem 3.1 we immediately obtain that \(A_1', A_3', A_4' \) are positive in their domains. Moreover, since \(f'(\alpha) \geq f'(\pi - \beta_1) \) we have

\[A_2'(\alpha) \geq \frac{2f(\alpha)(\sin^2 \beta_1 - \cos \alpha \sin \beta_2 \sin \beta_3)}{\sin^3 x} \geq \frac{2f(\alpha)(\sin^2 \beta_1 - \sin \beta_2 \sin \beta_3)}{\sin^3 x} > 0. \]

Since \(A'(\alpha) \) is positive then the function \(A(\alpha) \) is strictly increasing.

The second derivative of the function \(A_k(\alpha), \ k = 1, 2, 3, 4, \) is defined in each open subset of its domain and it is equal to

\[A_1''(\alpha) = \frac{4R^2}{\sin^4 x} [\alpha(1 + 2 \cos^2 \alpha) - 3 \sin \alpha \cos \alpha](1 + \cos \beta_1 \cos \beta_2 \cos \beta_3), \]

\[A_2''(\alpha) = \frac{4R^2}{\sin^4 x} \left\{ [\alpha(1 + 2 \cos^2 \alpha) - 3 \sin \alpha \cos \alpha] \sin^2 \beta_1 \\
+ (1 + 2 \cos^2 \alpha)[(\pi - \beta_1) \cos \beta_1 + \sin \beta_1] \sin \beta_2 \sin \beta_3\right\}, \]

\[A_3''(\alpha) = \frac{4R^2}{\sin^4 x} \left\{ [\alpha(1 + 2 \cos^2 \alpha) - 3 \sin \alpha \cos \alpha] \sin \beta_1 \sin \beta_2 \cos \beta_3 \\
+ (1 + 2 \cos^2 \alpha)[(\pi - \beta_2) \sin \beta_1 \cos \beta_2 \sin \beta_3 \\
+ ((\pi - \beta_1) \cos \beta_1 + \sin \beta_1) \sin \beta_2 \sin \beta_3 + \sin \beta_1 \sin \beta_2 \sin \beta_3]\right\}, \]

\[A_4''(\alpha) = \frac{4R^2}{\sin^4 x} (1 + 2 \cos^2 \alpha)[3 \sin \beta_1 \sin \beta_2 \sin \beta_3 + \beta_1 \sin^2 \beta_1 \\
+ \beta_2 \sin^2 \beta_2 + \beta_3 \sin^2 \beta_3]. \]
Thus the function $A''(x)$ is not continuous at the points $\pi - \beta_1$, $\pi - \beta_2$, $\pi - \beta_3$, but still, it is positive in its domain. This completes the proof.

Example 4.2. Once again, let us take the triangle T from Example 2.1. Then the graph of the area function $A(x)$ given by (4.1) is shown on Figure 3.

![Figure 3. Graph of the area function $A(x)$ of T.](image)

5. Application of x-isoptic curves of a triangle

Let $x \in (0, \pi)$ be fixed. In this section we use results obtained in Section 2 to study the x-isoptic C_x of an oval C. By an oval we understand C^2, plane closed simple curve with positive curvature.

Let $p(t) \in C^2([0, 2\pi]), \ t \in [0, 2\pi]$ be the support function of C. Then the point $z_2(t)$ satisfying (1.3) belongs to C_x and it is an intersection of two lines tangent to C at points $z(t)$ and $z(t + x)$. Let ξ be an arbitrary point from an open angle $\angle (z_2(t)z(t + x), z_2(t)z(t))$ and let T be a counter-clockwise oriented triangle with vertices $z(t + x)$, $z(t)$, ξ. By $C_{x,t}$ we denote an arc of a circle

$$
(5.1) \quad z - \frac{z(t + x) + z(t) + i \cot x (z(t + x) - z(t))}{2} = \frac{|z(t + x) - z(t)|}{2 \sin x}
$$

which is also a part of x-isoptic of T. We should mention that $C_{x,t}$ does not depend on ξ. If $[\xi z(t + x), \xi z(t)] > 0$ then the center of the circle in (5.1) is
obtained from equation (2.4), overwise it is obtained from equation (2.3).
Finally we define the family of arcs as follows
\[(5.2) \quad \mathcal{F}_z = \{ C_{x,t}, t \in [0, 2\pi] \}. \]

Using the above notations we have

Theorem 5.1. \(C_z \) is the envelope of the family \(\mathcal{F}_z \) defined by (5.2).

Proof. Let \(F(x, y, t) = 0 \) denote an equation for the family \(\mathcal{F}_z \) given by (5.2). Then, applying formula (1.2) to (5.1) with \(z = x + iy \), we get
\[(5.3) \quad F(x, y, t) = (x^2 + y^2) \sin z \]
\[+ x[p(t + z) \sin t + \dot{p}(t + z) \cos t - p(t) \sin (t + z) - \dot{p}(t) \cos (t + z)] \]
\[+ y[-p(t + z) \cos t + \dot{p}(t + z) \sin t + p(t) \cos (t + z) - \dot{p}(t) \sin (t + x)] \]
\[+ p(t + z)\dot{p}(t) - p(t)\dot{p}(t + x) = 0, \]

thus \(\mathcal{F}_z \) is indeed a one parameter family of arcs. Moreover, the point
\[z_x(t) = x_z(t) + iy_z(t) \]
\[= \frac{p(t) \sin (t + x) - p(t + x) \sin t + i(-p(t) \cos (t + x) + p(t + x) \cos t)}{\sin z} \]
defined by (1.3) satisfies the equation (5.3) and thus \(z_x(t) \in C_{x,t} \) since \(\xi \) is an interior point of the angle \(\angle(z_x(t), z(t), z_x(t)) \).

Now Theorem 4 in [1] asserts that \(C_{x,t} \) and \(C_z \) are tangent at the point \(z_x(t) \). To show that \(C_z \) is the envelope of \(\mathcal{F}_z \) it is enough to check that \(F'_t(x, y, t) = 0 \) at \(z_x(t) \) (see, e.g., [3] or [11]). Indeed, we have
\[F'_t(x, y, t) = x[R(t + x) \cos t - R(t) \cos (t + x)] \]
\[+ y[R(t + x) \sin t + R(t) \sin (t + x)] + p(t + x)R(t) - p(t)R(t + x), \]
where \(R(t) = p(t) + \dot{p}(t) \) is a radius of curvature of \(C \), and finally,
\[F'_t(x_z(t), y_z(t), t) = 0, \]
which completes the proof. \(\square \)

Theorem 5.1 remains true in special case when \(T \) is inscribed in oval \(C \).

The above considerations can be related to those in paper of Martini [8] on the classical light field theory in \(\mathbb{R}^d \), \(d \geq 2 \).
REFERENCES

Manoscritto pervenuto in redazione il 4 novembre 2013.