The EMS Publishing House is now EMS Press and has its new home at ems.press.

Please find all EMS Press journals and articles on the new platform.

Annales de l’Institut Henri Poincaré D


Full-Text PDF (359 KB) | Metadata | Table of Contents | AIHPD summary
Volume 1, Issue 1, 2014, pp. 1–46
DOI: 10.4171/AIHPD/1

Published online: 2014-02-04

Noncommutative determinants, Cauchy–Binet formulae, and Capelli-type identities II. Grassmann and quantum oscillator algebra representation

Sergio Caracciolo[1] and Andrea Sportiello[2]

(1) Università degli Studi di Milano, Italy
(2) Université Paris-Nord, Villetaneuse, France

We prove that, for $X$, $Y$, $A$ and $B$ matrices with entries in a non-commutative ring such that \[\hbox{$[X_{ij},Y_{k\ell}]=-A_{i\ell} B_{kj}$},\] satisfying suitable commutation relations (in particular, $X$ is a Manin matrix), row-pseudo-commutative matrix (a Manin matrix), the following identity holds: $$\mathrm {col-det } \ X \ \mathrm { col-det } \ Y \ = \langle 0\mid \mathrm { col-det } \ (aA + X (I-a^{\dagger} B)^{-1} Y)\mid 0\rangle$$ Furthermore, if also $Y$ is a Manin matrix, $[Y_{ij},Y_{kl}]=0$ for $i\neq k$, $j\neq l$ $$\mathrm {col-det } \ X \ \mathrm { col-det } \ Y =\int \mathcal{D}(\psi, \bar{\psi}) \exp \big(\sum_{k \geq 0}\frac{(\bar{\psi} A \psi)^{k}}{k+1}(\bar{\psi} X B^k Y \psi)\big)$$ Here $\langle 0 \mid$ and $\mid 0\rangle$, are respectively the bra and the ket of the ground state, $a^{\dagger}$ and $a$ the creation and annihilation operators of a quantum harmonic oscillator, while $\bar{\psi}_i$ and $\psi_i$ are Grassmann variables in a Berezin integral. These results should be seen as a generalization of the classical Cauchy–Binet formula, in which $A$ and $B$ are null matrices, and of the non-commutative generalization, the Capelli identity, in which $A$ and $B$ are identity matrices and $[X_{ij},X_{k\ell}]=[Y_{ij},Y_{k\ell}]=0$.

Keywords: Invariant Theory, Capelli identity, non-commutative determinant, Lukasiewicz paths, right-quantum matrix, Cartier-Foata matrix, Manin matrix

Caracciolo Sergio, Sportiello Andrea: Noncommutative determinants, Cauchy–Binet formulae, and Capelli-type identities II. Grassmann and quantum oscillator algebra representation. Ann. Inst. Henri Poincaré Comb. Phys. Interact. 1 (2014), 1-46. doi: 10.4171/AIHPD/1