Journal of Spectral Theory
Full-Text PDF (265 KB) | Metadata |


Published online: 2017-03-22
Spectral homogeneity of discrete one-dimensional limit-periodic operators
Jake Fillman[1] (1) Rice University, Houston, USAWe prove that a dense subset of limit periodic operators have spectra which are homogeneous Cantor sets in the sense of Carleson. Moreover, by using work of Egorova, our examples have purely absolutely continuous spectrum. The construction is robust enough to extend the results to arbitrary p-adic hulls by using the dynamical formalism proposed by Avila. The approach uses Floquet theory to break up the spectra of periodic approximants in a carefully controlled manner to produce Cantor spectrum and to establish the lower bounds needed to prove homogeneity.
Keywords: Schrödinger operators, Jacobi matrices, CMV matrices, homogenous sets, limit-periodic operators
Fillman Jake: Spectral homogeneity of discrete one-dimensional limit-periodic operators. J. Spectr. Theory 7 (2017), 201-226. doi: 10.4171/JST/160