Quantum Topology


Full-Text PDF (180 KB) | Metadata | Table of Contents | QT summary
Volume 4, Issue 1, 2013, pp. 77–90
DOI: 10.4171/QT/35

Published online: 2012-11-24

Polynomial invariants of graphs on surfaces

Ross Askanazi[1], Sergei Chmutov[2], Charles Estill[3], Jonathan Michel[4] and Patrick Stollenwerk[5]

(1) The Ohio State University, Columbus, OH, USA
(2) The Ohio State University, Columbus, OH, USA
(3) The Ohio State University, Columbus, OH, USA
(4) The Ohio State University, Columbus, OH, USA
(5) The Ohio State University, Columbus, OH, USA

For a graph embedded into a surface, we relate many combinatorial parameters of the cycle matroid of the graph and the bond matroid of the dual graph with the topological parameters of the embedding. This gives an expression of the polynomial, defined by M. Las Vergnas in a combinatorial way using matroids as a specialization of the Krushkal polynomial, defined using the symplectic structure in the first homology group of the surface.

Keywords: Graphs on surfaces, ribbon graphs, matroids, Krushkal polynomial, Las Vergnas polynomial, Bollob├ís–Riordan polynomial

Askanazi Ross, Chmutov Sergei, Estill Charles, Michel Jonathan, Stollenwerk Patrick: Polynomial invariants of graphs on surfaces. Quantum Topol. 4 (2013), 77-90. doi: 10.4171/QT/35