The EMS Publishing House is now EMS Press and has its new home at ems.press.

Please find all EMS Press journals and articles on the new platform.

Groups, Geometry, and Dynamics


Full-Text PDF (194 KB) | Metadata | Table of Contents | GGD summary
Volume 7, Issue 3, 2013, pp. 633–651
DOI: 10.4171/GGD/201

Published online: 2013-08-27

Fast growth in the Følner function for Thompson’s group $F$

Justin Tatch Moore[1]

(1) Cornell University, Ithaca, USA

The purpose of this note is to prove a lower bound on the growth of Følner functions for Richard Thompson’s group $F$. Specifically I will prove that, for any finite generating set $\Gamma \subseteq F$, there is a constant $C$ such that Føl$_{F,\Gamma} (C^n) \geq$ exp$_{n}(0)$.

Keywords: Følner function, tower function, Thompson’s group, amenable

Moore Justin Tatch: Fast growth in the Følner function for Thompson’s group $F$. Groups Geom. Dyn. 7 (2013), 633-651. doi: 10.4171/GGD/201