The EMS Publishing House is now EMS Press and has its new home at

Please find all EMS Press journals and articles on the new platform.

Oberwolfach Reports

Full-Text PDF (485 KB) | Introduction as PDF | Metadata | Table of Contents | OWR summary
Volume 9, Issue 4, 2012, pp. 3417–3471
DOI: 10.4171/OWR/2012/58

Published online: 2013-08-07

Mathematical and Algorithmic Aspects of Atmosphere-Ocean Data Assimilation

Andreas Griewank[1], Sebastian Reich[2], Ian Roulstone[3] and Andrew M. Stuart[4]

(1) Humboldt-Universität zu Berlin, Germany
(2) Universität Potsdam, Germany
(3) University of Surrey, Guildford, UK
(4) University of Warwick, Coventry, United Kingdom

The nomenclature “data assimilation” arises from applications in the geosciences where complex mathematical models are interfaced with observational data in order to improve model forecasts. Mathematically, data assimilation is closely related to filtering and smoothing on the one hand and inverse problems and statistical inference on the other. Key challenges of data assimilation arise from the high-dimensionality of the underlying models, combined with systematic spatio-temporal model errors, pure model uncertainty quantifications and relatively sparse observation networks. Advances in the field of data assimilation will require combination of a broad range of mathematical techniques from differential equations, statistics, probability, scientific computing and mathematical modelling, together with insights from practitioners in the field. The workshop brought together a collection of scientists representing this broad spectrum of research strands.

No keywords available for this article.

Griewank Andreas, Reich Sebastian, Roulstone Ian, Stuart Andrew: Mathematical and Algorithmic Aspects of Atmosphere-Ocean Data Assimilation. Oberwolfach Rep. 9 (2012), 3417-3471. doi: 10.4171/OWR/2012/58