The EMS Publishing House is now EMS Press and has its new home at ems.press.

Please find all EMS Press journals and articles on the new platform.

Oberwolfach Reports


Full-Text PDF (561 KB) | Metadata | Table of Contents | OWR summary
Online access to the full text of Oberwolfach Reports is restricted to the subscribers of the journal, who are encouraged to communicate their IP-address(es) to their agent or directly to the publisher at
subscriptions@ems-ph.org
Volume 17, Issue 1, 2020, pp. 517–568
DOI: 10.4171/OWR/2020/9

Published online: 2021-02-09

Mini-Workshop: Kronecker, Plethysm, and Sylow Branching Coefficients and their Applications to Complexity Theory

Christine Bessenrodt[1], Christopher D. Bowman[2] and Eugenio Giannelli[3]

(1) Leibniz Universität Hannover, Germany
(2) University of Kent, Canterbury, UK
(3) Università degli Studi di Firenze, Italy

The Kronecker, plethysm and Sylow branching coefficients describe the decomposition of representations of symmetric groups obtained by tensor products and induction. Understanding these decompositions has been hailed as one of the definitive open problems in algebraic combinatorics and has profound and deep connections with representation theory, symplectic geometry, complexity theory, quantum information theory, and local-global conjectures in representation theory of finite groups. The overarching theme of the Mini-Workshop has been the use of hidden, richer representation theoretic structures to prove and disprove conjectures concerning these coefficients. These structures arise from the modular and local-global representation theory of symmetric groups, graded representation theory of Hecke and Cherednik algebras, and categorical Lie theory.

No keywords available for this article.

Bessenrodt Christine, Bowman Christopher, Giannelli Eugenio: Mini-Workshop: Kronecker, Plethysm, and Sylow Branching Coefficients and their Applications to Complexity Theory. Oberwolfach Rep. 17 (2020), 517-568. doi: 10.4171/OWR/2020/9