Oberwolfach Reports


Full-Text PDF (382 KB) | Introduction as PDF | Metadata | Table of Contents | OWR summary
Volume 13, Issue 4, 2016, pp. 2705–2748
DOI: 10.4171/OWR/2016/47

Published online: 2017-12-20

Mathematical and Algorithmic Aspects of Data Assimilation in the Geosciences

Andreas Griewank[1], Sebastian Reich[2], Ian Roulstone[3] and Andrew M. Stuart[4]

(1) Humboldt-Universität zu Berlin, Germany
(2) Universität Potsdam, Germany
(3) University of Surrey, Guildford, UK
(4) University of Warwick, Coventry, UK

The field of “Data Assimilation” has been driven by applications from the geosciences where complex mathematical models are interfaced with observational data in order to improve model forecasts. Mathematically, data assimilation is closely related to filtering and smoothing on the one hand and inverse problems and statistical inference on the other. Key challenges of data assimilation arise from the high-dimensionality of the underlying models, combined with systematic spatio-temporal model errors, pure model uncertainty quantification and relatively sparse observation networks. Advances in the field of data assimilation will require combination of a broad range of mathematical techniques from differential equations, statistics, machine learning, probability, scientific computing and mathematical modeling, together with insights from practitioners in the field. The workshop brought together a collection of scientists representing this broad spectrum of research strands.

No keywords available for this article.

Griewank Andreas, Reich Sebastian, Roulstone Ian, Stuart Andrew: Mathematical and Algorithmic Aspects of Data Assimilation in the Geosciences. Oberwolfach Rep. 13 (2016), 2705-2748. doi: 10.4171/OWR/2016/47