Journal of the European Mathematical Society

Full-Text PDF (466 KB) | Metadata | Table of Contents | JEMS summary
Volume 19, Issue 3, 2017, pp. 603–658
DOI: 10.4171/JEMS/677

Published online: 2017-02-15

Singularities of the moduli space of level curves

Alessandro Chiodo[1] and Gavril Farkas[2]

(1) Université Pierre et Marie Curie, Paris, France
(2) Humboldt-Universität zu Berlin, Germany

We describe the singular locus of the compacti cation of the moduli space $\mathcal R_{g, \ell}$ of curves of genus $g$ paired with an $\ell$-torsion point in their Jacobian. Generalising previous work for $\ell ≤  2$, we also describe the sublocus of noncanonical singularities for any positive integer $\ell$. For $g$ ≥ 4 and $\ell$ = 3, 4, 6, this allows us to provide a lifting result on pluricanonical forms playing an essential role in the computation of the Kodaira dimension of $\mathcal R_{g, \ell}$: for those values of $\ell$, every pluricanonical form on the smooth locus of the moduli space extends to a desingularisation of the compacti ed moduli space.

Keywords: Moduli of curves

Chiodo Alessandro, Farkas Gavril: Singularities of the moduli space of level curves. J. Eur. Math. Soc. 19 (2017), 603-658. doi: 10.4171/JEMS/677