The EMS Publishing House is now EMS Press and has its new home at ems.press.

Please find all EMS Press journals and articles on the new platform.

Zeitschrift für Analysis und ihre Anwendungen


Full-Text PDF (975 KB) | Metadata | Table of Contents | ZAA summary
Volume 9, Issue 3, 1990, pp. 193–202
DOI: 10.4171/ZAA/394

Published online: 1990-06-30

A Stabilization Method for the Tricomi Problem

N.A. Lar'kin and M. Schneider[1]

(1) Karlsruher Institut für Technologie (KIT), Germany

We prove the existence of a generalized solution of the Tricomi problem for the equation $L_0[u] = T[u] + \lambda l (u) := yu_{zz} + u_{yy} + \lambda 1 (u) = f$, where $l = \alpha^1 \partial /\partial x + \alpha^2 \partial / \partial y$ is a special differential operator and $\lambda ≥ 0$ is a constant. Then we show the solvability of an initial boundary value problem for the evolution equation $L[u] = T[u] + \partial (u)/ \partialt = F$ by an aproximation method. It is shown that the generalized solution of the evolution problem converges to the generalized solution of the Tricomi problem $T[u] = f$ as $t \to \infty$. The rate of convergence is estimated.

No keywords available for this article.

Lar'kin N.A., Schneider M.: A Stabilization Method for the Tricomi Problem. Z. Anal. Anwend. 9 (1990), 193-202. doi: 10.4171/ZAA/394