The EMS Publishing House is now EMS Press and has its new home at

Please find all EMS Press journals and articles on the new platform.

Zeitschrift für Analysis und ihre Anwendungen

Full-Text PDF (331 KB) | Metadata | Table of Contents | ZAA summary
Volume 39, Issue 3, 2020, pp. 289–314
DOI: 10.4171/ZAA/1661

Published online: 2020-07-06

Fractional $p\&q$ Laplacian Problems in $\mathbb{R}^{N}$ with Critical Growth

Vincenzo Ambrosio[1]

(1) Università Politecnica delle Marche, Ancona, Italy

We deal with the following nonlinear problem involving fractional $p\&q$ Laplacians: \begin{equation*} (-\Delta)^{s}_{p}u+(-\Delta)^{s}_{q}u+|u|^{p-2}u+|u|^{q-2}u=\lambda h(x) f(u)+|u|^{q^{*}_{s}-2}u \quad \mbox{in } \mathbb{R}^{N}, \end{equation*} where $s\in (0,1)$, $1 < p < q < \frac{N}{s}$, $\q=\frac{Nq}{N-sq}$, $\lambda > 0$ is a parameter, $h$ is a nontrivial bounded perturbation and $f$ is a superlinear continuous function with subcritical growth. Using suitable variational arguments and concentration-compactness lemma, we prove the existence of a nontrivial non-negative solution for $\lambda$ sufficiently large.

Keywords: fractional $p\&q$ Laplacians, variational methods, critical exponent

Ambrosio Vincenzo: Fractional $p\&q$ Laplacian Problems in $\mathbb{R}^{N}$ with Critical Growth. Z. Anal. Anwend. 39 (2020), 289-314. doi: 10.4171/ZAA/1661