Zeitschrift für Analysis und ihre Anwendungen


Full-Text PDF (295 KB) | Metadata | Table of Contents | ZAA summary
Volume 36, Issue 1, 2017, pp. 1–16
DOI: 10.4171/ZAA/1576

Published online: 2017-01-06

Approximation by Riesz Means of Hexagonal Fourier Series

Ali Guven[1]

(1) Balikesir University, Turkey

Let $f$ be an $H$-periodic (periodic with respect to the hexagon lattice) Hölder continuous function of two real variables. The error $\| f-R_{n}( p_{k};f) \|$ is estimated in the uniform norm and in the Hölder norm, where $(p_{k})$ is a sequence of numbers such that $0 < p_{0} \leq p_{1}\leq \cdots$ and $R_{n} (p_{k};f)$ is the $n$th Riesz mean of hexagonal Fourier series of $f$ with respect to $(p_{k})$.

Keywords: Hexagonal Fourier series, Hölder class, Riesz mean

Guven Ali: Approximation by Riesz Means of Hexagonal Fourier Series. Z. Anal. Anwend. 36 (2017), 1-16. doi: 10.4171/ZAA/1576