The EMS Publishing House is now EMS Press and has its new home at ems.press.

Please find all EMS Press journals and articles on the new platform.

Zeitschrift für Analysis und ihre Anwendungen


Full-Text PDF (289 KB) | Metadata | Table of Contents | ZAA summary
Volume 35, Issue 4, 2016, pp. 397–410
DOI: 10.4171/ZAA/1571

Published online: 2016-10-05

Partial Regularity of Polyharmonic Maps to Targets of Sufficiently Simple Topology

Andreas Gastel[1]

(1) Universität Duisburg-Essen, Germany

We prove that polyharmonic maps $\mathbb R^m \supset \Omega \to N$ locally minimizing $\int|D^kf|^2\,dx$ are smooth on the interior of $\Omega$ outside a closed set $\Sigma$ with ${\mathcal H}^{m-2k}(\Sigma)=0$, provided that the target manifold $N \subset \mathbb R^n$ is smooth, closed, and fulfills $$\pi_1(N)=\ldots=\pi_{2k-1}(N)=0.$$

Keywords: Polyharmonic maps, partial regularity, minimizer

Gastel Andreas: Partial Regularity of Polyharmonic Maps to Targets of Sufficiently Simple Topology. Z. Anal. Anwend. 35 (2016), 397-410. doi: 10.4171/ZAA/1571