The EMS Publishing House is now EMS Press and has its new home at

Please find all EMS Press journals and articles on the new platform.

Zeitschrift für Analysis und ihre Anwendungen

Full-Text PDF (265 KB) | Metadata | Table of Contents | ZAA summary
Volume 34, Issue 4, 2015, pp. 485–500
DOI: 10.4171/ZAA/1551

Published online: 2015-10-29

Angle Preserving Mappings

Ali Zamani[1], Mohammad Sal Moslehian[2] and Michael Frank[3]

(1) Ferdowsi University, Mashhad, Iran
(2) Ferdowsi University, Mashhad, Iran
(3) Hochschule für Technik, Wirtschaft und Kultur, Leipzig, Germany

In this paper, we give some characterizations of orthogonality preserving mappings between inner product spaces. Furthermore, we study the linear mappings that preserve some angles. One of our main results states that if $\mathcal{X}, \mathcal{Y}$ are real inner product spaces and $\theta\in(0, \pi)$, then an injective nonzero linear mapping $T:\mathcal{X}\longrightarrow \mathcal{Y}$ is a similarity whenever (i) $x\underset{\theta}{\angle} y\, \Leftrightarrow \,Tx\underset{\theta}{\angle} Ty$ for all $x, y\in \mathcal{X}$; (ii) for all $x, y\in \mathcal{X}$, $\|x\|=\|y\|$ and $x\underset{\theta}{\angle} y$ ensure that $\|Tx\|=\|Ty\|$. We also investigate orthogonality preserving mappings in the setting of inner product $C^{*}$-modules. Another result shows that if $\mathbb{K}(\mathscr{H})\subseteq\mathscr{A}\subseteq\mathbb{B}(\mathscr{H})$ is a $C^{*}$-algebra and $T\,:\mathscr{E}\longrightarrow \mathscr{F}$ is an $\mathscr{A}$-linear mapping between inner product $\mathscr{A}$-modules, then $T$ is orthogonality preserving if and only if $|x|\leq|y|\, \Rightarrow \,|Tx|\leq|Ty|$ for all $x, y\in \mathscr{E}$.

Keywords: Orthogonality preserving mapping, angle, inner product space, inner product $C^*$-module

Zamani Ali, Moslehian Mohammad Sal, Frank Michael: Angle Preserving Mappings. Z. Anal. Anwend. 34 (2015), 485-500. doi: 10.4171/ZAA/1551