The EMS Publishing House is now EMS Press and has its new home at ems.press.

Please find all EMS Press journals and articles on the new platform.

Zeitschrift für Analysis und ihre Anwendungen


Full-Text PDF (271 KB) | Metadata | Table of Contents | ZAA summary
Volume 34, Issue 3, 2015, pp. 309–319
DOI: 10.4171/ZAA/1541

Published online: 2015-07-08

Multiplicity of Nontrivial Solutions of a Class of Fractional $p$-Laplacian Problem

Ghanmi Abdeljabbar[1]

(1) Université de Tunis, Tunisia

In this paper, we deal with existence of nontrivial solutions to the fractional $p$-Laplacian problem of the type $$\left\{ \begin{array}{rll} (-\triangle)^{\alpha}_{p} u \! \!&= \ \frac{1}{r}\frac{\partial F(x,u)}{\partial u} + \lambda a(x)|u|^{q-2}u &\mbox{ in} \ \Omega, \\[1mm] u \! \!&= \ 0 &\mbox{ in}\ \mathbb{R}^{n}\setminus\Omega, \end{array} \right.$$ where $\Omega$ is a bounded domain in $\mathbb{R}^{n}$ with smooth boundary $\partial \Omega$, $a\in C(\Omega)$, $p\geq 2$, $\alpha \in (0,1)$ such that $p \alpha < n$, $1 < q < p < r < \frac{np}{n-\alpha p}$, and $F \in C^{1}(\overline{\Omega} \times \mathbb{R}, \mathbb{R})$. Using the decomposition of the Nehari manifold, we prove that the non-local elliptic problem has at least two nontrivial solutions.

Keywords: Nontrivial solutions, sign-changing weight function, Nehari manifold

Abdeljabbar Ghanmi: Multiplicity of Nontrivial Solutions of a Class of Fractional $p$-Laplacian Problem. Z. Anal. Anwend. 34 (2015), 309-319. doi: 10.4171/ZAA/1541