The EMS Publishing House is now EMS Press and has its new home at

Please find all EMS Press journals and articles on the new platform.

Zeitschrift für Analysis und ihre Anwendungen

Full-Text PDF (343 KB) | Metadata | Table of Contents | ZAA summary
Volume 33, Issue 2, 2014, pp. 149–170
DOI: 10.4171/ZAA/1504

Published online: 2014-04-25

Atomic Decomposition for Morrey Spaces

Takeshi Iida[1], Yoshihiro Sawano[2] and Hitoshi Tanaka[3]

(1) Fukushima National College of Technology, Japan
(2) Tokyo Metropolitan University, Japan
(3) University of Tokyo, Japan

The Hardy space $H^p ({\mathbb R}^n)$ substitutes for the Lebesgue space $L^p ({\mathbb R}^n)$. When $p>1$, then the Hardy space $H^p ({\mathbb R}^n)$ coincides with the Lebesgue spaces $L^p ({\mathbb R}^n)$. This is shown by using the reflexivity of the function spaces. The atomic decomposition is readily available for $H^p ({\mathbb R}^n)$ with $0

Keywords: Morrey spaces, fractional integral operators, atoms

Iida Takeshi, Sawano Yoshihiro, Tanaka Hitoshi: Atomic Decomposition for Morrey Spaces. Z. Anal. Anwend. 33 (2014), 149-170. doi: 10.4171/ZAA/1504