The EMS Publishing House is now EMS Press and has its new home at

Please find all EMS Press journals and articles on the new platform.

Zeitschrift für Analysis und ihre Anwendungen

Full-Text PDF (255 KB) | Metadata | Table of Contents | ZAA summary
Volume 31, Issue 3, 2012, pp. 283–290
DOI: 10.4171/ZAA/1460

Published online: 2012-07-11

An Inhomogeneous, $L^2$-Critical, Nonlinear Schrödinger Equation

François Genoud[1]

(1) Heriot-Watt University, Edinburgh, UK

An inhomogeneous nonlinear Schrödinger equation is considered, which is invariant under $L^2$-scaling. The sharp condition for global existence of $H^1$-solutions is established, involving the$L^2$-norm of the ground state of the stationary equation. Strong instability of standing waves is proved by constructing self-similar solutions blowing up in fi nite time.

Keywords: Global existence, blow-up, $L^2$-critical, inhomogeneous NLS

Genoud François: An Inhomogeneous, $L^2$-Critical, Nonlinear Schrödinger Equation. Z. Anal. Anwend. 31 (2012), 283-290. doi: 10.4171/ZAA/1460